首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【目的】通过检测郫县豆瓣在不同发酵阶段细菌的种类、丰度及数量,探究郫县豆瓣的不同发酵产品发酵过程中细菌的动态变化情况。【方法】采用16S rRNA基因测序对郫县豆瓣4个发酵阶段中细菌种类及丰度进行分析,利用荧光定量PCR(quantitative real-time PCR,qPCR)方法检测不同发酵阶段的细菌总数。【结果】郫县豆瓣在初期的发酵过程中细菌群落处于动态稳定,在不同发酵阶段细菌群落组成相对丰富,从郫县豆瓣整个初期的发酵过程来看,细菌群落多样性呈现升高的趋势,Shannon指数从1.25升高到3.50;在郫县豆瓣初期发酵过程中细菌群落的数量以及多样性与发酵环境息息相关,不同发酵阶段细菌群落的多样性也有所不同,其中在干辣椒发酵阶段中泛菌属(Pantoea)为最优势菌属,占比为20%;在蚕豆瓣发酵阶段中葡萄球菌属(Staphylococcus)的相对丰度最高,占比为38%;混合发酵后,在红油豆瓣发酵阶段的最优势菌属是乳酸杆菌属(Lactobacillus),占比达到27%,郫县豆瓣发酵阶段的最优势菌属是乳酸杆菌属(Lactobacillus),占比为62%。【结论】推断在郫县豆瓣不同发酵阶段初期相对丰度较大的菌属对郫县豆瓣的质量以及产量可能会产生重大影响。  相似文献   

2.
Lactic Acid Bacteria (LAB) are a functional group of microorganisms comprising Gram-positive, catalase negative bacteria that produce lactic acid as the major metabolic end-product of carbohydrate fermentation. Among LAB, Lactobacillus is the genus including a high number of GRAS species (Generally Recognized As Safe) and many strains are among the most important bacteria in food microbiology and human nutrition, due to their contribution to fermented food production or their use as probiotics. From a taxonomic point of view, the genus Lactobacillus includes at present (October 2012), 152 validly described species, and it belongs to the family Lactobacillaceae together with genus Pediococcus, with whom it is phylogenetically intermixed. The updated phylogenetic analysis based on 16S rRNA gene sequence revealed that the family is divided into 15 groups of three or more species, 4 couples and 10 single lines of descents. In addition, other taxonomically relevant information for Lactobacillus species was collected. This study aims at updating the taxonomy of the genus Lactobacillus, presenting the phylogenetic structure of the Lactobacillaceae and discussing the clusters as possible nuclei of genera to be described in the future. It is expected that scientists and producers in the field of probiotics could benefit from information reported here about the correct identification procedures and nomenclature of beneficial strains of lactobacilli.  相似文献   

3.
Denaturing gradient gel electrophoresis (DGGE) of DNA fragments obtained by PCR amplification of the V2-V3 region of the 16S rRNA gene was used to detect the presence of Lactobacillus species in the stomach contents of mice. Lactobacillus isolates cultured from human and porcine gastrointestinal samples were identified to the species level by using a combination of DGGE and species-specific PCR primers that targeted 16S-23S rRNA intergenic spacer region or 16S rRNA gene sequences. The identifications obtained by this approach were confirmed by sequencing the V2-V3 region of the 16S rRNA gene and by a BLAST search of the GenBank database.  相似文献   

4.
5.
In the present scenario, it is now well documented that probiotics confer health benefits to the host and the purported probiotic effects are highly strain specific. Hence, accurate genotypic identification is extremely important to link the strain to the specific health effect. With this aim, specific primed-PCR assays were developed and explored for the molecular identification and typing of a putative indigenous probiotic isolate Lp91 of human faecal origin. PCR with specific primers targeting 23S rRNA gene of genus Lactobacillus and 16S rRNA gene of species L. plantarum resulted positive for Lp91. In addition, BLAST analysis of 16S rRNA gene sequence of Lp91 and multiple sequence alignment of 16S rRNA gene variable (V2-V3) regions along with the reference sequences revealed it as L. plantarum with a sequence identity of more than 99%. Furthermore, resolution of 16S rRNA gene sequences was sufficient to infer a phylogenetic relationship amongst Lactobacillus species. In order to determine strain-level variations, randomly amplified polymorphic DNA (RAPD) banding profiles of Lp91 obtained with OPAA-01, OPAP-01 and OPBB-01 primers were compared with those of reference strains of Lactobacillus spp., and Lp91 could be delineated as a distinct strain. Apart from this, presence of probiotic markers viz. bile salt hydrolase (bsh) and collagen-binding protein (cbp) encoding genes in Lp91 genome could be attributed to its exploitation as a potential probiotic adjunct in the development of indigenous functional foods. Lactobacillus isolates/or strains from the gastrointestinal system, fermented products and other environmental niches could be identified and characterized by employing the PCR methods developed in this study; they are rapid, reproducible and more accurate than the conventional methods based on the fermentation profiles.  相似文献   

6.
The aim of this study was to evaluate the use of denaturing high-performance liquid chromatography (DHPLC) to characterize cystic fibrosis (CF) airway microbiota including both bacteria and fungi. DHPLC conditions were first optimized using a mixture of V6, V7 and V8 region 16S rRNA gene PCR amplicons from 18 bacterial species commonly found in CF patients. Then, the microbial diversity of 4 sputum samples from 4 CF patients was analyzed using cultural methods, cloning/sequencing (for bacteria only) and DHPLC peak fraction collection/sequencing. DHPLC analysis allowed identifying more bacterial and fungal species than the classical culture methods, including well-recognized pathogens such as Pseudomonas aeruginosa. Even if a lower number of bacterial Operational Taxonomic Units (OTUs) was identified by DHPLC, it allowed to find OTUs unidentified by cloning/sequencing. The combination of both techniques permitted to correlate the majority of DHPLC peaks to defined OTUs. Finally, although Aspergillus fumigatus detection using DHPLC can still be improved, this technique clearly allowed to identify a higher number of fungal species versus classical culture-based methods. To conclude, DHPLC provided meaningful additional data concerning pathogenic bacteria and fungi as well as fastidious microorganisms present within the CF respiratory tract. DHPLC can be considered as a complementary technique to culture-dependent analyses in routine microbiological laboratories.  相似文献   

7.
Sake (Japanese rice wine) production is a complex, multistage process in which fermentation is performed by a succession of mixed fungi and bacteria. This study employed high-throughput rRNA marker gene sequencing, quantitative PCR, and terminal restriction fragment length polymorphism to characterize the bacterial and fungal communities of spontaneous sake production from koji to product as well as brewery equipment surfaces. Results demonstrate a dynamic microbial succession, with koji and early moto fermentations dominated by Bacillus, Staphylococcus, and Aspergillus flavus var. oryzae, succeeded by Lactobacillus spp. and Saccharomyces cerevisiae later in the fermentations. The microbiota driving these fermentations were also prevalent in the production environment, illustrating the reservoirs and routes for microbial contact in this traditional food fermentation. Interrogating the microbial consortia of production environments in parallel with food products is a valuable approach for understanding the complete ecology of food production systems and can be applied to any food system, leading to enlightened perspectives for process control and food safety.  相似文献   

8.
The animal gastrointestinal tract houses a large microbial community, the gut microbiota, that confers many benefits to its host, such as protection from pathogens and provision of essential metabolites. Metagenomic approaches have defined the chicken fecal microbiota in other studies, but here, we wished to assess the correlation between the metagenome and the bacterial proteome in order to better understand the healthy chicken gut microbiota. Here, we performed high-throughput sequencing of 16S rRNA gene amplicons and metaproteomics analysis of fecal samples to determine microbial gut composition and protein expression. 16 rRNA gene sequencing analysis identified Clostridiales, Bacteroidaceae, and Lactobacillaceae species as the most abundant species in the gut. For metaproteomics analysis, peptides were generated by using the Fasp method and subsequently fractionated by strong anion exchanges. Metaproteomics analysis identified 3,673 proteins. Among the most frequently identified proteins, 380 proteins belonged to Lactobacillus spp., 155 belonged to Clostridium spp., and 66 belonged to Streptococcus spp. The most frequently identified proteins were heat shock chaperones, including 349 GroEL proteins, from many bacterial species, whereas the most abundant enzymes were pyruvate kinases, as judged by the number of peptides identified per protein (spectral counting). Gene ontology and KEGG pathway analyses revealed the functions and locations of the identified proteins. The findings of both metaproteomics and 16S rRNA sequencing analyses are discussed.  相似文献   

9.
The bacterial diversity and community structure involved in Chinese sauerkraut is one of the most important factors shaping the final characteristics of traditional foods. In this research, Lactobacillus casei 11MZ‐5‐1 was applied in Chinese sauerkraut fermentation as a starter culture. Illumina Miseq sequencing analysis was used to reveal the bacterial diversity and community structure during Chinese sauerkraut fermentation. A total of 177 283 high‐quality reads of 16S rRNA V4 regions were obtained. The inoculation of L. casei 11MZ‐5‐1 decreased considerably the bacterial richness and bacterial diversity. This inoculum led to the replacement of Lactococcus by Lactobacillus. The levels of Pseudomonas and Enterobacter bacteria decreased. These findings reveal the evolution of important bacterial groups that are involved in fermentation and will facilitate improvements in the Chinese sauerkraut fermentation process.

Significance and Impact of the Study

This research thoroughly revealed the effects of Lactobacillus casei 11MZ‐5‐1 starter cultures on bacterial communities during Chinese sauerkraut fermentation. Illumina Miseq sequencing was effective technique to monitor the bacterial diversity and community structure. The inoculation of L. casei 11MZ‐5‐1 led to the decline of bacterial richness and diversity together with a consistent predominance of Lactobacillus during spontaneous fermentation. The result collectively suggested L. casei 11MZ‐5‐1 is a promising starter in Chinese sauerkraut manufacturing.  相似文献   

10.
We isolated and identified functional groups of bacteria in the rumen of Creole goats involved in ruminal fermentation of native forage shrubs. The functional bacterial groups were evaluated by comparing the total viable, total anaerobic, cellulolytic, hemicellulolytic, and amylolytic bacterial counts in the samples taken from fistulated goats fed native forage diet (Atriplex lampa and Prosopis flexuosa). Alfalfa hay and corn were used as control diet. The roll tubes method increased the possibility of isolating and 16S rDNA gene sequencing allowed definitive identification of bacterial species involved in the ruminal fermentation. The starch and fiber contents of the diets influenced the number of total anaerobic bacteria and fibrolytic and amylolytic functional groups. Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans were the main species isolated and identified. The identification of bacterial strains involved in the rumen fermentation helps to explain the ability of these animals to digest fiber plant cell wall contained in native forage species.  相似文献   

11.
An old world fruit bat Pteropus giganteus, held in captivity and suffering from necrosis of its wing digits, failed to respond to antibiotic therapy and succumbed to the infection. Samples submitted to the National Centre for Foreign Animal Disease were tested for viral infection. Vero E6 cells exhibited minor but unique cytopathic effects on second blind passage, and full CPE by passage four. Utilizing an unbiased random amplification technique from cell culture supernatant, we identified a bacterium belonging to the Bradyrhizobiaceae. Purification of cell culture supernatant on TY media revealed a slow growing bacterial isolate. In this study using electron microscopy, 16S rRNA gene analysis and whole genome sequencing, we identify a novel bacterial species associated with the site of infection belonging to the genus Afipia. This genus of bacteria is very diverse, with only a limited number of species characterized. Afipia felis, previously described as the etiological agent to cause cat scratch disease, and Afipia septicemium, most recently shown to cause disease in humans, highlight the potential for members of this genus to form a branch of opportunistic pathogens within the Bradyrhizobiaceae. Increased utilization of next generation sequencing and genomics will aid in classifying additional members of this intriguing bacterial genera.  相似文献   

12.
Resistant starch (RS) exacerbates health benefits on the host via modulation of the gut bacterial community. By far, these effects have been less well explored for RS of type 4. This study aimed at gaining a community-wide insight into the impact of enzymatically modified starch (EMS) on the cecal microbiota and hindgut fermentation in growing pigs. Castrated male pigs (n = 12/diet; 29-kg body weight) were fed diets with either 70% EMS or control starch for 10 days. The bacterial profile of each cecal sample was determined by sequencing of the V345 region of the 16S rRNA gene using the Illumina MiSeq platform. EMS diet reduced short-chain fatty acid concentrations in cecum and proximal colon compared to the control diet. Linear discriminant analyses and K means clustering indicated diet-specific cecal community profiles, whereby diversity and species richness were not different among diets. Pigs showed host-specific variation in their most abundant phyla, Firmicutes (55%), Proteobacteria (35%), and Bacteroidetes (10%). The EMS diet decreased abundance of Ruminococcus, Parasutterella, Bilophila, Enterococcus, and Lactobacillus operational taxonomic units (OTU), whereas Meniscus and Actinobacillus OTU were increased compared to those with the control diet (P < 0.05). Quantitative PCR confirmed results for host effect on Enterobacteriaceae and diet effect on members of the Lactobacillus group. The presence of less cecal short-chain fatty acids and the imputed metabolic functions of the cecal microbiome suggested that EMS was less degradable for cecal bacteria than the control starch. The present EMS effects on the bacterial community profiles were different than the previously reported RS effects and can be linked to the chemical structure of EMS.  相似文献   

13.
14.
Acute laminitis has been associated with the overgrowth of gram-positive bacteria within the equine hindgut, causing the release of factor(s) leading to ischemia-reperfusion of the digits. The products of fermentation which trigger acute laminitis are, as yet, unknown; however, vasoactive amines are possible candidates. The objectives of this study were to use an in vitro model of carbohydrate overload to study the change in populations of cecal streptococci and lactobacilli and to establish whether certain species of these bacteria were capable of producing vasoactive amines from amino acids. Cecal contents from 10 horses were divided into aliquots and incubated anaerobically with either corn starch or inulin (fructan; both at 1 g/100 ml). Samples were taken at 6-h intervals over a 24-h period for enumeration of streptococci, lactobacilli, and gram-negative anaerobes by a dilution method onto standard selective growth media. The effects of the antibiotic virginiamycin (1 mg/100 ml) and calcium hydrogen phosphate (CaHPO4; 0.3 g/100 ml) were also examined. Fermentation of excess carbohydrate was associated with increases in numbers of streptococci and lactobacilli (2- to 3.5-log unit increases; inhibited by virginiamycin) but numbers of gram-negative anaerobes were not significantly affected. A screening agar technique followed by 16S rRNA gene sequence analysis enabled the identification of 26 different bacterial strains capable of producing one or more vasoactive amines. These included members of the species Streptococcus bovis and five different Lactobacillus spp. These data suggest that certain bacteria, whose overgrowth is associated with carbohydrate fermentation, are capable of producing vasoactive amines which may play a role in the pathogenesis of acute laminitis.  相似文献   

15.
16.
Lactobacillus isolates were identified by PCR amplification and sequencing of the region between the 16S and 23S rRNA genes (spacer region). The sequences obtained from the isolates were compared to those of reference strains held in GenBank. A similarity of 97.5% or greater was considered to provide identification. To check the reliability of the method, the V2-V3 region of the 16S rRNA gene was amplified and sequenced in the case of isolates whose spacer region sequences were less than 99% similar to that of a reference strain. Confirmation of identity was obtained in all instances. Spacer region sequencing provided rapid and accurate identification of Lactobacillus isolates obtained from gastrointestinal, yoghurt, and silage samples. It had an advantage over 16S V2-V3 sequence comparisons because it distinguished between isolates of Lactobacillus casei and Lactobacillus rhamnosus.  相似文献   

17.
《Anaerobe》2001,7(2):59-66
In this study, we identified the predominant culturable anaerobic bacteria and enumerated the total culturable anaerobic bacterial population present in samples of feedlot manure from Southern Queensland. Sixteen bacterial isolates were cultured from feedlot pad material with species of Lactobacillus, Clostridium and Bacillus predominating. From a library of 123 clones, produced by the amplification, cloning and partial DNA sequencing of the 16S rRNA gene, only 3% were closely related to previously described species and 21% to known genera. Of the total clone library, 96% were apparently Gram-positive and fell within families whose members were generally anaerobes. The majority (71%) of the clone library was related to either members of the family Clostridiaceae or lactic acid-producing bacteria (Lactobacillus or Lactosphaera). It was concluded that Gram-positive clostridial and lactic acid-producing bacteria predominate in feedlot pad manure. The overwhelming majority of species are novel and have not been obtained in culture. It would appear that the most likely source of the sickly-sweet nuisance odours (particularly from butyric acid) that emanate from feedlots is the by-product of anaerobic fermentation by clostridia. Gut-inhabiting and Gram-negative bacteria do not appear to survive for lengthy periods of time under the environmental conditions present in feedlot manure.  相似文献   

18.
Short-chain fatty acids (SCFAs) can be produced by primary and waste activated sludge anaerobic fermentation. The yield and product spectrum distribution of SCFAs can be significantly affected by different initial pH values. However, most studies have focused on the physical and chemical aspects of SCFA production by waste activated sludge fermentation at different pH values. Information on the bacterial community structures during acidogenic fermentation is limited. In this study, comparisons of the bacterial communities during the co-substrate fermentation of food wastes and sewage sludge at different pH values were performed using the barcoded Illumina paired-end sequencing method. The results showed that different pH environments harbored a characteristic bacterial community, including sequences related to Lactobacillus, Prevotella, Mitsuokella, Treponema, Clostridium, and Ureibacillus. The most abundant bacterial operational taxonomic units in the different pH environments were those related to carbohydrate-degrading bacteria, which are associated with constituents of co-substrate fermentation. Further analyses showed that during organic matter fermentation, a core microbiota composed of Firmicutes, Proteobacteria, and Bacteroidetes existed. Comparison analyses revealed that the bacterial community during fermentation was significantly affected by the pH, and that the diverse product distribution was related to the shift in bacterial communities.  相似文献   

19.
Carbohydrate availability shifts when bacteria attach to a surface and form biofilm. When salivary planktonic bacteria form an oral biofilm, a variety of polysaccharides and glycoproteins are the primary carbon sources; however, simple sugar availabilities are limited due to low diffusion from saliva to biofilm. We hypothesized that bacterial glycoside hydrolase (GH) activities would be higher in a biofilm than in saliva in order to maintain metabolism in a low-sugar, high-glycoprotein environment. Salivary bacteria from 13 healthy individuals were used to grow in vitro biofilm using two separate media, one with sucrose and the other limiting carbon sources to a complex carbohydrate. All six GHs measured were higher in vitro when grown in the medium with complex carbohydrate as the sole carbon source. We then collected saliva and overnight dental plaque samples from the same individuals and measured ex vivo activities for the same six enzymes to determine how oral microbial utilization of glycoconjugates shifts between the planktonic phase in saliva and the biofilm phase in overnight dental plaque. Overall higher GH activities were observed in plaque samples, in agreement with in vitro observation. A similar pattern was observed in GH activity profiles between in vitro and ex vivo data. 16S rRNA gene analysis showed that plaque samples had a higher abundance of microorganisms with larger number of GH gene sequences. These results suggest differences in sugar catabolism between the oral bacteria located in the biofilm and those in saliva.  相似文献   

20.
Wet wheat distillers' grain (WWDG), a residue from ethanol fermentation, was examined from a microbiological perspective. After storage, WWDG was characterized by a high content of lactobacilli, nondetectable levels of other bacteria, occasional occurrence of yeasts, and a pH of about 3.6 and contained a mixture of lactic acid, acetic acid, and ethanol. The composition of lactobacilli in WWDG was simple, including primarily the species Lactobacillus amylolyticus, Lactobacillus panis, and Lactobacillus pontis, as determined by 16S rRNA gene sequencing. Since the use of WWDG as pig feed has indicated a health-promoting function, some relevant characteristics of three strains of each of these species were examined together with basal physiological parameters, such as carbohydrate utilization and growth temperature. Seven of the strains were isolated from WWDG, and two strains from pig feces were included for comparison. It was clear that all three species could grow at temperatures of 45 to 50°C, with L. amylolyticus being able to grow at temperatures as high as 54°C. This finding could be the explanation for the simple microflora of WWDG, where a low pH together with a high temperature during storage would select for these organisms. Some strains of L. panis and L. pontis showed prolonged survival at pH 2.5 in synthetic stomach juice and good growth in the presence of porcine bile salt. In addition, members of all three species were able to bind to immobilized mucus material in vitro. Especially the isolates from pig feces but, interestingly, some isolates from WWDG as well possessed properties that might be of importance for colonization of the gastrointestinal tracts of pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号