首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microalgal lipid induction through nitrogen stress often suffers from a contradiction between biomass productivity and lipid content, i.e., either high biomass productivity with low lipid content or vice versa. A two-stage nitrogen-replete and nitrogen-deplete (NR–ND) culture was suggested to be an option to attain high lipid productivity. In this study, the effects of culture conditions and modes on biomass productivity and lipid productivity of Nannochloropsis sp. in the two stages were comprehensively investigated. The optimal culture conditions for the two stages, aiming to high biomass productivity and lipid productivity respectively, were consistent, i.e., CO2 content in aeration (1 %), phosphorus concentration in medium (181 μmol/L), incident light intensity (150 μE/(m2s)), temperature (25 °C). Different culture modes of the two stages were compared. The overall lipid productivity of the two-stage continuous-batch mode achieved 0.123 g/(L day), which was 60.3, 48.2, 34.9 and 13.5 % higher than that of single nitrogen-replete batch, single nitrogen-limited batch, continuous nitrogen-replete culture and two-stage batch–batch culture, respectively, and also higher than most reported values. This contribution provides fundamental data for the two-stage NR–ND cultivation process design of Nannochloropsis sp.  相似文献   

2.
Chlorella vulgaris accumulates lipid under nitrogen limitation, but at the expense of biomass productivity. Due to this tradeoff, improved lipid productivity may be compromised, despite higher lipid content. To determine the optimal degree of nitrogen limitation for lipid productivity, batch cultures of C. vulgaris were grown at different nitrate concentrations. The growth rate, lipid content, lipid productivity and biochemical and elemental composition of the cultures were monitored for 20 days. A starting nitrate concentration of 170 mg L?1 provided the optimal tradeoff between biomass and lipid production under the experimental conditions. Volumetric lipid yield (in milligram lipid per liter algal culture) was more than double that under nitrogen-replete conditions. Interpolation of the data indicated that the highest volumetric lipid concentration and lipid productivity would occur at nitrate concentrations of 305 and 241 mg L?1, respectively. There was a strong correlation between the nitrogen content of the cells and the pigment, protein and lipid content, as well as biomass and lipid productivity. Knowledge of the relationships between cell nitrogen content, growth, and cell composition assists in the prediction of the nitrogen regime required for optimal productivity in batch or continuous culture. In addition to enhancing lipid productivity, nitrogen limitation improves the lipid profile for biodiesel production and reduces the requirement for nitrogen fertilizers, resulting in cost and energy savings and a reduction in the environmental burden of the process.  相似文献   

3.
为了解魏氏真眼点藻(Eustigmatos vischeri Hibberd)的生物学特性,探究"批量法"、"两步法"、"补料法"和"添加碳酸氢盐"4种不同培养模式对魏氏真眼点藻生长和油脂积累的影响,本文分别采用不同初始浓度的硝酸钠供应、更换培养基、分次少量补加硝酸钠及添加低浓度Na HCO3或NH4HCO3等方法培养魏氏真眼点藻。结果显示,"批量"培养下,硝酸钠浓度为3.0 mmol/L时藻细胞生物量达到8.41 g/L,油脂最高可达到65.16%,油脂产率为0.30 g·L-1·d-1。"两步法"和"补料法"培养对藻细胞油脂积累没有显著影响,而通过"添加碳酸氢盐"培养对该藻细胞生长和油脂积累的效果最显著,其中Na NO3+NH4HCO3组生物量达到11.56 g/L,油脂最高达60.92%,与相同氮浓度"批量"培养相比,生物质浓度提高了1.0 g/L,总脂含量提高了10%,大大提高了该藻的总脂产率(达到0.39 g·L-1·d-1)。因此,魏氏真眼点藻是一株高产油藻株,当添加低浓度碳酸氢铵时最有利于促进该藻生物质浓度和总脂含量的提高,这是一种最佳的培养模式,具有潜在的开发和利用价值。  相似文献   

4.
Summary Cryptococcus albidus var. albidus CBS 4517 was able to accumulate lipid under nitrogen-limited as well as excess-nitrogen conditions. The highest lipid-producting capacity was, however, observed in nitrogen-limited cultivations. In nitrogen-limited batch cultures, a lipid content of 34% (w/w) in biomass and a maximum specific lipid productivity of 37 mg lipid/g lipid-free biomass·h, was determined. The yield of lipid from glucose was about 0.15 g/g in nitrogen-limited and 0.11 g/g in excess-nitrogen cultures.In a nitrogen-limited fed-batch culture, 12.4 g/l lipid was produced at 90 h of cultivation and the cells contained 46.3% (w/w) lipid.Higher lipid yield and cellular lipid content were observed when inorganic nitrogen sources were used compared with organic. The choice of carbon source was seen to influence growth as well as lipid production and the highest yields of lipid were obtained when glucose, maltose or mannitol was used.A cultivation temperature of 20°C provided the highest lipid productivity compared to 25°C and 30°C. Addition of citrate to the growth medium was seen to have a stimulating effect on the specific lipid productivity.  相似文献   

5.
The green microalga Chlorella protothecoides was grown heterotrophically in batch mode in a 3.7-L fermenter containing 40 g/L glucose and 3.6 g/L urea. In the late exponential phase, concentrated nutrients containing glucose and urea were fed into the culture, in which the nitrogen source was sufficient compared to carbon source. As a result, a maximum cell dry weight concentration of 48 g/L was achieved. This cell dry weight concentration was 28.4 g/L higher than that obtained in batch culture under the same growth conditions. In another cultivation run, the culture was provided with the same initial concentrations of glucose (40 g/L) and urea (3.6 g/L) as in the batch mode, followed by a relatively reduced supply of nitrogen source in the fed-batch mode to establish a nitrogen-limited culture. Such a modification resulted in an enhanced lutein production without significantly lowering biomass production. The cellular lutein content was 0.27 mg/g higher than that obtained in the N-sufficient culture. The improvements were also reflected by higher maximum lutein yield, lutein productivity, and lutein yield coefficient on glucose. This N-limited fed-batch culture was successfully scaled up from 3.7 L to 30 L, and a three-step cultivation process was developed for the high-yield production of lutein. The maximum cell dry weight concentration (45.8 g/L) achieved in the large fermenter (30 L) was comparable to that in the small one (3.7 L). The maintenance of the culture at a higher temperature (i.e., 32 degrees C) for 84 h resulted in a 19.9% increase in lutein content but a 13.6% decrease in cell dry weight concentration as compared to the fed-batch culture (30 L) without such a treatment. The enhancement of lutein production resulted from the combination of nitrogen limitation and high-temperature stress.  相似文献   

6.
Volatile fatty acids (VFAs), acetic acid, acetates, and ethanol were used as carbon sources for the production of microbial lipids using Cryptococcus albidus in batch cultures. C. albidus utilized organic acids less than glucose in the production of lipids, resulting in a lipid yield coefficient on VFAs of 0.125 g/g. In a two-stage batch culture, the lipid content increased to 43.8% (w/w) when VFAs were used as the sole carbon source in the second stage, which was two times higher than that of the batch culture. Furthermore, a 192 h, two-stage fed-batch cultivation of C. albidus produced a dry cell weight, lipid concentration, and lipid content of 26.4 g/L, 14.5 g/L, and 55.1% (w/w), respectively. The fed-batch culture model used in this study featured pure VFA solutions, with intermittent feeding, under oxygen-enriched air supply conditions. This study investigated several alternative carbon sources to reduce the cost of microbial lipids production and proved the feasibility of using VFAs as the carbon source for the provision of a high lipid content and productivity.  相似文献   

7.
Alcaligenes latus has been known to produce poly(3-hydroxybutyrate) (PHB) in a growth-associated manner even under nutrient-sufficient conditions. However, the PHB content obtained by fed-batch culture was always low, at ca. 50%, which makes the recovery process inefficient. In this study, the effect of applying nitrogen limitation on the production of PHB by A. latus was examined. In flask and batch cultures, the PHB synthesis rate could be increased considerably by applying nitrogen limitation. The PHB content could be increased to 87% by applying nitrogen limitation in batch culture, which was considerably higher than that typically obtainable (50%) under nitrogen-sufficient conditions. In fed-batch culture, cells were first cultured by the DO-stat feeding strategy without applying nitrogen limitation. Nitrogen limitation was applied at a cell concentration of 76 g (dry cell weight)/liter, and the sucrose concentration was maintained within 5 to 20 g/liter. After 8 h of nitrogen limitation, the cell concentration, PHB concentration, and PHB content reached 111.7 g (dry cell weight)/liter, 98.7 g/liter, and 88%, respectively, resulting in a productivity of 4.94 g of PHB/liter/h. The highest PHB productivity, 5.13 g/liter/h, was obtained after 16 h.  相似文献   

8.

An integrated metabolic–polymerization–macroscopic model, describing the microbial production of polyhydroxybutyrate (PHB) in Azohydromonas lata bacteria, was developed and validated using a comprehensive series of experimental measurements. The model accounted for biomass growth, biopolymer accumulation, carbon and nitrogen sources utilization, oxygen mass transfer and uptake rates and average molecular weights of the accumulated PHB, produced under batch and fed-batch cultivation conditions. Model predictions were in excellent agreement with experimental measurements. The validated model was subsequently utilized to calculate optimal operating conditions and feeding policies for maximizing PHB productivity for desired PHB molecular properties. More specifically, two optimal fed-batch strategies were calculated and experimentally tested: (1) a nitrogen-limited fed-batch policy and (2) a nitrogen sufficient one. The calculated optimal operating policies resulted in a maximum PHB content (94% g/g) in the cultivated bacteria and a biopolymer productivity of 4.2 g/(l h), respectively. Moreover, it was demonstrated that different PHB grades with weight average molecular weights of up to 1513 kg/mol could be produced via the optimal selection of bioprocess operating conditions.

  相似文献   

9.
Liu L  Du G  Chen J  Wang M  Sun J 《Bioresource technology》2008,99(17):8532-8536
This study aimed to enhance hyaluronic acid (HA) production by a two-stage culture strategy based on the modeling of batch and fed-batch culture of Streptococcus zooepidemicus. Batch culture had higher specific HA synthesis rate while fed-batch culture had higher specific cell growth rate. The lower specific HA synthesis rate in fed-batch culture resulted from the competition of cell growth for the common precursors at a low substrate concentration. Based on the modeling of batch and fed-batch culture of S. zooepidemicus, a two-stage culture strategy was proposed to enhance HA production. S. zooepidemicus were cultured in a fed-batch mode with sucrose concentration maintained at 1.0+/-0.2g/L during 0-8h and then batch culture was performed during 8-20h with an initial sucrose concentration of 15g/L. With the proposed two-stage culture strategy, HA production was increased to 6.6g/L compared with 5.0g/L in batch culture with the same total sucrose. The enhanced HA production by the proposed two-stage culture strategy resulted from the decreased inhibition of cell growth and the increased transformation rate of sucrose to HA.  相似文献   

10.
In this study, the influences of major nutrients on cell growth and lipid production were investigated in heterotrophic culture of Chlorella protothecoides. The results demonstrated that phosphorus depletion had no effect on lipid accumulation but restricted cell growth; however, nitrogen depletion could enhance lipid accumulation thus benefiting lipid production. Furthermore, the effects of glucose inhibition were comparatively investigated with osmotic stress, showing that the effects of glucose inhibition were similar to the effect of osmotic stress at equivalent osmotic pressures only if the glucose concentration was less than 100 g/L, otherwise the effects of glucose inhibition became much stronger than osmotic stress. Interestingly, it was found that a specific hyperosmotic stress could significantly enhance lipid accumulation, thus providing a new stress strategy for efficient lipid production. Finally, a novel two-stage fed-batch culture consisting of a growth phase and a lipid accumulation phase with nitrogen depletion and hyperosmotic stress was proposed, yielding a final lipid productivity of 177.3 mg/L/h with a very high lipid yield of 207.0 mg/g glucose and lipid content of 39.2% after 180 h culture, which were 1.60, 1.79 and 1.92-fold of those obtained in one-stage fed-batch culture without stress phase, respectively.  相似文献   

11.
Chlorella pyrenoidosa was cultivated in soybean processing wastewater (SPW) in batch and fed-batch cultures without a supply of additional nutrients. The alga was able to remove 77.8 ± 5.7%, 88.8 ± 1.0%, 89.1 ± 0.6% and 70.3 ± 11.4% of soluble chemical oxygen demand (SCODCr), total nitrogen (TN), NH4+-N and total phosphate (TP), respectively, after 120 h in fed-batch culture. C. pyrenoidosa attained an average biomass productivity of 0.64 g L−1 d−1, an average lipid content of 37.00 ± 9.34%, and a high lipid productivity of 0.40 g L−1 d−1. Therefore, cultivation of C. pyrenoidosa in SPW could yield cleaner water and useful biomass.  相似文献   

12.
Alcaligenes latus, Alcaligenes eutrophus, Bacillus cereus, Pseudomonas pseudoflava, Pseudomonas cepacia, and Micrococcus halodenitrificans were found to accumulate poly-(beta-hydroxybutyric-co-beta-hydroxyvaleric) acid [P(HB-co-HV)] copolymer when supplied with glucose (or sucrose in the case of A. latus) and propionic acid under nitrogen-limited conditions. A fed-batch culture of A. eutrophus produced 24 g of poly-beta-hydroxybutyric acid (PHB) liter-1 under ammonium limitation conditions. When the glucose feed was replaced with glucose and propionic acid during the polymer accumulation phase, 17 g of P(HB-co-HV) liter-1 was produced. The P(HB-co-HV) contained 5.0 mol% beta-hydroxyvaleric acid (HV). Varying the carbon-to-nitrogen ratio at a dilution rate of 0.15 h-1 in a chemostat culture of A. eutrophus resulted in a maximum value of 33% (wt/wt) PHB in the biomass. In comparison, A. latus accumulated about 40% (wt/wt) PHB in chemostat culture under nitrogen-limited conditions at the same dilution rate. When propionic acid was added to the first stage of a two-stage chemostat, A. latus produced 43% (wt/wt) P(HB-co-HV) containing 18.5 mol% HV. In the second stage, the P(HB-co-HV) increased to 58% (wt/wt) with an HV content of 11 mol% without further addition of carbon substrate. The HV composition in P(HB-co-HV) was controlled by regulating the concentration of propionic acid in the feed. Poly-beta-hydroxyalkanoates containing a higher percentage of HV were produced when pentanoic acid replaced propionic acid.  相似文献   

13.
Alcaligenes latus, Alcaligenes eutrophus, Bacillus cereus, Pseudomonas pseudoflava, Pseudomonas cepacia, and Micrococcus halodenitrificans were found to accumulate poly-(beta-hydroxybutyric-co-beta-hydroxyvaleric) acid [P(HB-co-HV)] copolymer when supplied with glucose (or sucrose in the case of A. latus) and propionic acid under nitrogen-limited conditions. A fed-batch culture of A. eutrophus produced 24 g of poly-beta-hydroxybutyric acid (PHB) liter-1 under ammonium limitation conditions. When the glucose feed was replaced with glucose and propionic acid during the polymer accumulation phase, 17 g of P(HB-co-HV) liter-1 was produced. The P(HB-co-HV) contained 5.0 mol% beta-hydroxyvaleric acid (HV). Varying the carbon-to-nitrogen ratio at a dilution rate of 0.15 h-1 in a chemostat culture of A. eutrophus resulted in a maximum value of 33% (wt/wt) PHB in the biomass. In comparison, A. latus accumulated about 40% (wt/wt) PHB in chemostat culture under nitrogen-limited conditions at the same dilution rate. When propionic acid was added to the first stage of a two-stage chemostat, A. latus produced 43% (wt/wt) P(HB-co-HV) containing 18.5 mol% HV. In the second stage, the P(HB-co-HV) increased to 58% (wt/wt) with an HV content of 11 mol% without further addition of carbon substrate. The HV composition in P(HB-co-HV) was controlled by regulating the concentration of propionic acid in the feed. Poly-beta-hydroxyalkanoates containing a higher percentage of HV were produced when pentanoic acid replaced propionic acid.  相似文献   

14.
Batch kinetics of polyhydroxybutyrate (PHB) synthesis in a bioreactor under controlled conditions of pH and dissolved oxygen gave a biomass of 14 g l(-1) with a PHB concentration of 6.1 g l(-1) in 60 h. The data of the batch kinetics was used to develop a mathematical model, which was then extrapolated to fed-batch by incorporating the dilution due to substrate feeding. Offline computer simulation of the fed-batch model was done to develop the nutrient feeding strategies in the fed-batch cultivation. Fed-batch strategies with constant feeding of only nitrogen and constant feeding of both nitrogen and fructose were tried. Constant feeding strategy for nitrogen and fructose gave a better PHB production rate of 0.56 g h(-1) over the value obtained in batch cultivation (PHB production rate - 0.4 g h(-1)).  相似文献   

15.
The green alga Parietochloris incisa contains a significant amount of the nutritionally valuable polyunsaturated fatty acid and arachidonic acid (AA) and is being considered for mass cultivation for commercial AA production. This study was primarily aimed to define a practical medium formulation that can be used in commercial mass cultivation that will contribute to a substantial increase in the AA productivity of P. incisa with concomitant reduction of nutritional cost. The effect of nutrient limitation on growth and AA content of this microalga was explored in a batch culture in outdoor conditions using a vertical tubular photobioreactor. The study was conducted in two parts: the first was primarily focused on the effect of different nitrogen concentration on growth and AA content and the second part compares nitrogen deprivation, combination of nitrogen and phosphorus deprivation, and combined overall nutrient limitations at different levels of deprivation under low and high population densities. Since complete nitrogen deprivation hampers lipid and AA accumulation of P. incisa, thus, a critical value of nitrogen supply that will activate AA accumulation must be elucidated under specific growth conditions. Under the present experimental conditions, 0.5?g(-1) sodium nitrate obtained a higher AA productivity and volumetric yield relative to the nitrogen-deprived culture corresponding to 36.32?mg?L(-1)?day(-1) and 523.19?mg?L(-1). The combined nitrogen and phosphorus limitation seemed to enhance AA productivity better than nitrogen deprivation alone. The effect of overall nutrient limitation indicates that acute nutrient deficiency can trigger rapid lipid and AA syntheses. The effect of light as a consequence of culture cell density was also discussed. This study therefore shows that the nutrient cost can be greatly reduced by adjusting the nutrient levels and culture density to induce AA accumulation in P. incisa.  相似文献   

16.
The development of fermentation conditions for the production of C595 diabody fragment (dbFv) inE. coli HB2151 clone has been explored. Investigations were carried out to study the effect of carbon supplements over the expression period, the comparison of C595 dbfv production in synthetic and complex media, the influence of acetic acid upon antibody production, and comparison of one-stage and two-stage processes operated at batch or fed-batch modes in bioreactor. Yeast extract supplied during expression yielded more antibody fragment than any other carbon supply. The synthetic medium presented higher specific productivity (0.066 mg dbFv g−1 dry cell weight) when compared to the complex medium (0.044 mg dbFv g−1 DCW). The comparison of fermentation strategies demonstrated that (1) one-stage fed-batch fermentation performed higher C595 dbFv production than that operated in batch mode which was significantly affected by acetate concentration; (2) a two-stage batch operation could enhance C595 dbFv production. It was found that a concentration of 12.3 mg L−1 broth of C595 dbFv and a cell concentration of 10.8 g L−1 broth were achieved at the end of two-stage operation in 5-L fermentation.  相似文献   

17.
Different fermentation processes, including batch, fed-batch and repeated fed-batch processes by Schizochytrium sp., were studied and compared for the effective DHA-rich microbial lipids production. The comparison between different fermentation processes showed that fed-batch process was a more efficient cultivation strategy than the batch process. Among the four different feeding strategies, the glucose concentration feed-back feeding strategy had achieved the highest fermentation results of final cell dry weight, total lipids content, DHA content and DHA productivity of 72.37, 48.86, 18.38 g l?1 and 138.8 mg l?1 h?1, respectively. The repeated fed-batch process had the advantages of reducing the time and cost for seed culture and inoculation between each fermentation cycles. The results of fermentation characteristics and lipid characterization of the repeated fed-batch process indicated that this repeated fed-batch process had promising industrialization prospect for the production of DHA-rich microbial lipids.  相似文献   

18.
在摇瓶培养的基础上,对酵母菌Lipomyces starkeyi HL进行了小型发酵罐的分批和分批补料发酵及其发酵动力学的初步研究。结果表明,通过后期补料既可明显地延长菌体脂类合成期,减缓油脂比合成速率的降低,又可增加菌液的细胞密度,最终提高了整个发酵罐的油脂产量和平均容量产率。发酵结果如下:发酵时间120h;油脂产量11.0g/L;菌体生物量19.4g/L。油脂百分含量 56.5%,显然比分批培养84h所得的11.2g/L细胞生物量和 6.1g/L油脂产量分别增长了73%和80%。此外,通  相似文献   

19.
Production of poly (3-hydroxybutyrate) (PHB) from starch was investigated in flask, batch, and fed-batch cultures of Azotobacter chroococcum. In flask culture, PHB content increased up to 74% of dry cell wt with increasing culture volume. In batch culture, PHB content increased to 44% with O2 limitation. In fed-batch culture, cell concentration of 71 g/l with 20% PHB was obtained without O2 limitation, whereas cell concentration of 54 g/l with 46% PHB was obtained with O2 limitation.  相似文献   

20.
ABSTRACT: BACKGROUND: Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. METHODS: R. toruloides was grown in batch and fed-batch cultures in 0.5 l bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100) media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. RESULTS: R. toruloides was grown on glucose, xylose, arabinose or mixtures of these carbohydrates in batch and fed-batch, nitrogen restricted conditions. Lipid production was most efficient with glucose (up to 25 g lipid L1, 48 to 75% lipid in the biomass, at up to 0.21 g lipid L1h1) as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass). Lipid production was low (15-19% lipid in biomass) with arabinose as sole carbon source and was lower than expected (30% lipid in biomass) when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L1, with 49% lipid in the biomass) and fed-batch (35 to 47 g L1, with 50 to 75% lipid in the biomass) cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. CONCLUSIONS: Lipid production in R. toruloides was lower from arabinose and mixed carbohydrates than from glucose or xylose. Although high biomass and lipid production were achieved in both batch and fed-batch cultures with glucose as carbon source, for lipid production from mixtures of carbohydrates fed-batch cultivation was preferable. Constant feeding was better than intermittent feeding. The feeding strategy did not affect the relative proportion of different fatty acids in the lipid, but the presence of C5 sugars did.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号