首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable isotopes of nitrogen (N) in plants are increasingly used to evaluate ecosystem N cycling patterns. A basic assumption in this research is that plant δ15N reflects the δ15N of the N source. Recent evidence suggests that plants may fractionate on uptake, transport, or transformation of N. If the dominant source of plant N is via roots, a difference in δ15N by tissue type would suggest fractionation on transport and assimilation of N. In order to evaluate differences between species and plant parts, we measured δ15N in root, stem, and leaf tissues of individual sugar maple (Acer saccharum; SM) and American beech (Fagus grandifolia; BE) plants ranging in age from germinants to mature trees at the Hubbard Brook Experimental Forest, New Hampshire (USA). For SM, root δ15N > stem δ15N > leaf δ15N; for BE seedlings, root δ15N > stem δ15N and root δ15N > leaf δ15N. These differences suggest that fractionation occurs during plant transport and assimilation of N. Beech δ15N (root, stem, and leaf) was consistently higher than SM δ15N for 1–7 year-old seedlings. At one site, we found no differences with age in foliar δ15N (range: 4.1–4.8 ‰) for seedlings, saplings, and trees which suggests that it may be possible to compare foliar δ15N of plants of different ages at some sites. However, at another site, foliar and root δ15N were higher for trees than 1–2 year-old seedlings. This study suggests that physiological differences in N assimilation and transport processes that differ by species likely control plant δ15N.  相似文献   

2.

Aims

Variation in boron (B) efficiency in citrus in different rootstock genotypes is expressed as large differences in the occurrence of leaf symptoms and dry mass production under low B conditions, but the mechanisms responsible for such differences are unknown. This paper aims to determine whether differences in B uptake, cellular B allocation, and pectin content can explain genotype differences in B efficiency between B-efficient citrange (Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.) and B-inefficient trifoliate orange (Poncirus trifoliata (L.) Raf.) citrus rootstock.

Methods

Plants were grown hydroponically in a nutrient solution supplemented with 5 μM B for 14 days and then transferred to a B-free medium (0 μM B) or control medium (5 μM B) for 35 days. Boron uptake and allocation and cell wall pectin contents were examined.

Results

After 35 days under B deprivation, shoot dry mass in trifoliate orange decreased by 28 %, but shoot dry mass of citrange was not significantly affected. Root growth of both types of rootstock seedlings was inhibited, but the trifoliate orange was affected more than the citrange. In comparison with B concentrations in plants prior to the commencement of B treatments, B deprivation for 35 days decreased B concentration in various parts of citrange plants, and the reduction was much greater in trifoliate orange plants. Trifoliate orange seedlings contained higher B concentration and total B in cell wall on a dry leaf basis than citrange subject to 5 μM B treatment. However, the proportion of leaf B allocated in cell wall was higher in citrange than trifoliate orange when B supply was deficient in the nutrient. The changes in pectin composition in cell wall due to B deprivation differed between citrange and trifoliate orange. The decreased uronic acid (UA) content in the Na2CO3-soluble pectin was observed in both rootstock, but the increased UA content in CDTA-soluble pectin was observed only in citrange.

Conclusions

These results demonstrated that a combination of greater B uptake ability, greater B accumulation in cell walls, as well as the increased CDTA-soluble pectin, under limited external B supply, contribute to the integrity of cell walls in citrange and therefore increased tolerance to B deficiency.  相似文献   

3.
Litterfall and fine root production is a major pathway for carbon and nutrient cycling in forest ecosystems. We investigated leaf litterfall, fine-root mass, production and turnover rate in the upper soil (0–30 cm) under four major tree species (Leucaena leucocephala, Acacia nilotica, Azadirachta indica, Prosopis juliflora) of the semi-arid region of India. All the four tree species showed an unimodal peak of leaf litterfall with distinct seasonality. Leucaena leucocephala and Acacia nilotica had maximum leaf litterfall between September and December while Azadirachta indica and Prosopis juliflora shed most of their leaves between February and May. Annual leaf litterfall of the four species ranged from 3.3 Mg ha?1 (Leucaena leucocephala) to 8.1 Mg ha?1 (Prosopis juliflora). Marked seasonal variations in amount of fine root biomass were observed in all the four tree species. Fine root production was maximum in Prosopis juliflora (171 g m?2 y?1) followed by Azadirachta indica (169 g m?2 y?1), Acacia nilotica (106 g m?2 y?1) and Leucaena leucocephala (79 g m?2 y?1). Fine root biomass showed a seasonal peak after the rainy season but fell to its lowest value during the winter and dry summer season. Fine root turnover rate ranged from 0.56 to 0.97 y?1 and followed the order Azadirachta indica > Leucaena leucocephala > Prosopis juliflora > Acacia nilotica. The results of this study demonstrated that Prosopis juliflora and Azadirachta indica had greater capability for maintaining site productivity as evidenced from greater leaf litterfall and fine root production.  相似文献   

4.
The accumulation and removal efficiency of Fe by Centella asiatica was carried out at various Fe concentrations in soil treatments (0, 50, 100, 150 and 200 mg Fe/kg soil). Iron accumulation in different parts of C. asiatica (leaf, stem and root) was analyzed by atomic absorption spectrophotometer (AAS). Factorial experiment with a completely randomized design and Duncan's test were used for data analyses. The results revealed that C. asiatica have the ability to uptake and accumulate Fe significantly (p < 0.05; r = 0.977) in the aerial parts. The different soil treatments had significant effect on the total Fe accumulations in C. asiatica (p < 0.05). The potential of C. asiatica as a metal hyperaccumulator plant, harvested for analysis, shows efficient accumulation of Fe at high concentration (p < 0.05; r = 0.977). The root showed the highest accumulation of Fe followed by the leaves (p < 0.05) and the stem (p < 0.05). The Pearson correlation coefficient between leaves and root have showed highly significant correlation (p < 0.01; r = 0.785) as compared to the leaves and stem (p < 0.01; r = 0.780). The efficiency of Fe removal by C. asiatica from the contaminated soil has been evaluated by bioconcentration factor and translocation factor, found to be >1 and <1, respectively, further supporting its metal hyperaccumulator properties.  相似文献   

5.

Key message

Temperature generally explained variation in branch and leaf biomasses, whereas stem and root biomasses–temperature relationships restricted certain age stages may not hold at broader age ranges.

Abstract

In this study, biomass data for alpine temperate Larix forest, alpine Picea-Abies forest, temperate typical deciduous broadleaved forest, temperate Pinus tabulaeformis forest, temperate mixed coniferous-broadleaved forest, montane Populus-Betula deciduous forest, subtropical evergreen broadleaved forest, subtropical montane Cupressus and Sabina forest, subtropical Pinus massoniana forest and subtropical Cunninghamia lanceolata forest were used to examine the effect of temperature on biomass allocations between organs. The data of the ten forests were classified as ≤30, 31–60 and >60 years, to test whether biomass allocations of these age group forests vary systematically in their responses to temperature. With increasing mean annual temperature, branch and leaf biomasses significantly increased in ≤30, 31–60 and >60 years and all age groups; stem biomass significantly increased in ≤30-, 31–60- and >60-year groups, but no significant trend in all age groups; Root biomass significantly increased in 31–60, >60 years and all age groups, but had no response to mean annual temperature in the 30-year group, which suggest that root biomass allocation in response to temperature is dependent upon forest age. We conclude that temperature generally explained variation in branch and leaf biomasses, whereas stem and root biomasses–temperature relationships restricted certain age stages may not hold at broader age ranges.
  相似文献   

6.
Haiyan Chu  Paul Grogan 《Plant and Soil》2010,328(1-2):411-420
Copper uptake, localisation and biochemical and physiological traits were studied in hydroponically-grown Erica andevalensis plants at different increasing concentrations of Cu (1 µM, 50 µM, 100 µM, 250 µM, and 500 µM). Increasing Cu concentration in the nutrient medium led to a significative reduction in plant growth rate, an increase in root Cu concentration, leaf photosynthetic pigments and root peroxidase activity. Copper accumulation followed the pattern roots>stems>leaves, a typical behaviour of metal-excluders. Copper treatments led to significant changes in the free amino acid composition in shoots and roots and the concentration of polyamines in shoots. Analysis by scanning electron microscopy coupled with elemental X-ray analysis (SEM–EDX) showed a partial restriction of upward Cu transport by root vascular tissues. In leaf tissues, Cu mostly accumulated in the abaxial epidermis, suggesting a mechanism of compartmentalization to restrict mesophyll accumulation. The toxic effects of excess Cu were avoided to a certain extent by root immobilization, tissue compartmentalization, synthesis of complexing amino acids and induction of enzymes to prevent oxidative damage are among mechanisms adopted by Erica andevalensis to thrive in acidic-metalliferous soils.  相似文献   

7.
Several previous studies have investigated the use of the stable hydrogen and oxygen isotope compositions in plant materials as indicators of palaeoclimate. However, accurate interpretation relies on a detailed understanding of both physiological and environmental drivers of the variations in isotopic enrichments that occur in leaf water and associated organic compounds. To progress this aim we measured δ18O and δ2H values in eucalypt leaf and stem water and δ18O values in leaf cellulose, along with the isotopic compositions of water vapour, across a north-eastern Australian aridity gradient. Here we compare observed leaf water enrichment, along with previously published enrichment data from a similar north Australian transect, to Craig–Gordon-modelled predictions of leaf water isotopic enrichment. Our investigation of model parameters shows that observed 18O enrichment across the aridity gradients is dominated by the relationship between atmospheric and internal leaf water vapour pressure while 2H enrichment is driven mainly by variation in the water vapour—source water isotopic disequilibrium. During exceptionally dry and hot conditions (RH < 21%, T > 37 °C) we observed strong deviations from Craig–Gordon predicted isotope enrichments caused by partial stomatal closure. The atmospheric–leaf vapour pressure relationship is also a strong predictor of the observed leaf cellulose δ18O values across one aridity gradient. Our finding supports a wider applicability of leaf cellulose δ18O composition as a climate proxy for atmospheric humidity conditions during the leaf growing season than previously documented.  相似文献   

8.
9.
Three naturally growing plants Ipomoea carnea, Lantana camara, and Solanum surattense were found in fly ash dumpsite of Patratu thermal power station, Jharkhand, India. They were assessed for their metal uptake potential. The fly ash was slightly alkaline with very less nitrogen and organic carbon but enriched with phosphorus and heavy metals. Lantana camara and Ipomoea carnea showed good translocation from root to shoot for most of the metals except Mn and Pb. The order of metal accumulation in stem of both the plants were Fe(205mg/kg)>Mn(65mg/kg)>Cu(22.35mg/kg)>Pb(6.6mg/kg)>Cr(3.05mg/kg)>Ni(1 mg/kg)>Cd(0.5 mg/kg) and Fe(741 mg/kg)>Mn(154.05 mg/kg)>Cu(20.75 mg/kg)>Pb(6.75 mg/kg)>Ni(4.0 mg/kg)>Cr(3.3mg/kg)>Cd(0.05mg/kg), respectively. But Solanum surattense accumulated most of the metals in roots. The order was in the following order, Mn (382.2mg/kg) >Fe (264.1mg/kg) > Cu (25.35mg/kg) >Pb (5.95 mg/kg) > Ni (1.9 mg/kg) > Cr (1.8mg/kg) > Cd (0.55 mg/kg). The order of Bioconcentration factor (BCF) in root and shoot followed almost the same order as, Mn>Fe>Ni>Pb>Cu>Cr≈ Cd in all the three species. ANOVA showed significant variation in metal accumulation by root and stem between the species. Finally, it can be concluded that Solanum surattense can be used as phytostabilizer and other two species as phytoextractor of metal for fly ash dumpsite reclamation.  相似文献   

10.
Vicia faba L. seeds were grown in a pot experiment on soil, mine tailings, and a mixture of both to mimic field situations in cultivated contaminated areas near mining sites. Metals in the substrates and their translocation in root, stem and leaf tissues were investigated, including morphological responses of plants growing on mine tailings. Metal concentration – and generally bioaccumulation – was in the order: roots > leaves > stems, except Pb and Cd. Translocation was most significant for Zn and Cd, but limited for Pb. Metal concentration in root and leaf was not proportional to that in the substrates, unexpectedly the minimum being observed in the mixed substrate whilst plant growth was retarded by 20% (38% on tailings). Calcium, pH, organic matter and phosphorus were the main influencing factors for metal translocation. The ultrastructure of V. faba L. cells changed a lot in the mine tailings group: root cell walls were thickened with electron dense Pb, Zn and C particles; in chloroplasts, the number of plastoglobuli increased, whereas the thylakoids were swollen and their number decreased in grana. Finally, needle-shaped crystalline concretions made of Ca and P, with Zn content, were formed in the apoplast of the plants. The stratagems of V. faba L. undergoing high concentrations of toxic metals in carbonate substrate, suggest root cell wall thickening to decrease uptake of toxic metals, a possible control of metal transport from roots to leaves by synthesizing phytochelators–toxic metal complexes, and finally a control of exceeded Ca and metal concentration in leaves by crystal P formation as ultimate response to stress defense. The geochemical factors influencing metal availability, guaranty a reduction of metal content in plant growing on mixed tailing/soil substrate as far as carbonate are not completely dissolved.  相似文献   

11.
Abscisic acid (ABA) is one of the most important phytohormones involved in abiotic stress responses. ABA transport in plants is important in determining endogenous ABA levels and their resulting physiological responses. However, the regulation of ABA transport remains unclear. In this study, we compared the ABA concentrations and AhNCED1 levels at seedling and fruiting stages in peanut (Arachis hypogaea L.), in response to water stress. At the seedling stage, ABA initially accumulated in roots (1 h), followed by the lower stem (2 h) and finally in the upper stem (4 h). The expression/activity of an ABA biosynthesis rate-limiting enzyme, AhNCED1, showed the same accumulation patterns. In contrast, during the fruiting stage, ABA and AhNCED1 increases were initially detected in the first apical leaf of main stem, followed by the stem, and finally in the root. These results imply that biosynthesis of ABA in peanut plants subject to water deficiency could be dependent on developmental stage with the roots being the initial site of ABA biosynthesis during the seedling stage, whereas during the fruiting stage ABA biosynthesis occurs initially in the leaf. The distribution patterns of ABA in seedling stage peanuts in response to water stress were: root-stem-leaf, while in fruiting stage peanuts the distribution patterns of ABA were: leaf-stem-root. These findings will help to understand plant regulatory water deficit resistance mechanisms at seedling and fruiting stages and to advance our total understanding of the regulation of ABA transport.  相似文献   

12.
Decomposing leaf litter is a large supply of energy and nutrients for soil microorganisms. How long decaying leaves continue to fuel anaerobic microbial activity in wetland ecosystems is poorly understood. Here, we compare leaf litter from 15 tree species with different growth forms (angiosperms and gymnosperms, deciduous, and longer life span), using litterbags positioned for up to 4 years in a forested peatland in New York State. Periodically, we incubated partially decayed residue per species with fresh soil to assess its ability to fuel microbial methane (CH4) production and concomitant anaerobic carbon dioxide (CO2) production. Decay rates varied by leaf type: deciduous angiosperm > evergreen gymnosperm > deciduous gymnosperm. Decay rates were slower in leaf litter with a large concentration of lignin. Soil with residue of leaves decomposed for 338 days had greater rates of CH4 production (5.8 µmol g?1 dry mass d?1) than less decomposed (<0.42 µmol g?1 dry mass d?1) or more decomposed (2.1 µmol g?1 dry mass d?1) leaf residue. Species-driven differences in their ability to fuel CH4 production were evident throughout the study, whereas concomitant rates of CO2 production were more similar among species and declined with degree of decomposition. Methane production rates exhibited a positive correlation with pectin and the rate of pectin decomposition. This link between leaf litter decay rates, biochemical components in leaves, and microorganisms producing greenhouse gases should improve predictions of CH4 production in wetlands.  相似文献   

13.
We evaluated the phytoremediation potential of Salix spp. exposed to high cadmium (Cd) and zinc (Zn) concentrations to select feasible plant materials for restoration and revegetation of mining soil contaminated by heavy metals on the basis of their Cd and Zn accumulation, Cd-Zn interaction on bioaccumulation, and the changes of photosynthetic parameters. The Cd and Zn concentrations were in the order of root > leaf > stem, regardless of the species. In the combined Cd and Zn treatment, the leaf and stem Cd concentration in all species were higher relative to Cd-alone treatment. In contrast, the Zn concentration in plant tissues when exposed to the combined Cd + Zn treatment decreased relative to the Zn-alone treatment. The translocation factor (TF) of Cd and Zn from root to leaf was generally higher compared to TF from root to stem than those in the single treatment. The Cd + Zn treatments resulted in enhanced translocation of Cd from root to aboveground tissue (synergistic), while the same treatment suppressed the Zn translocation from root to leaf and stem (antagonistic). The reduction of photosynthetic parameters in Zn alone and Cd + Zn treatments was generally higher than that of Cd-alone treatment. Among the different species, S. caprea and P. alba×glandulosa have the lowest photosynthetic reduction relative to the control. Overall, S. caprea could be a potential candidate for phytoremediation of Cd- and Zn-contaminated sites.  相似文献   

14.
The present study aimed to compare the effects of phosphorus (P) deficiency applied only or combined with salinity on root response, P partitioning, acid phosphatase activity, and phenolic compounds in wild (Hordeum maritimum) and cultivated (H. vulgare) barley species. Seedlings were grown hydroponically under low or sufficient P supply, with or without 100 mM NaCl for 55 days. Results showed that, when individually applied, P deficiency and salinity restricted the whole plant relative growth rate in both species of barley, with a more pronounced impact of the former stress. These depressive effects were more pronounced in H. vulgare than in H. maritimum. The combined effects of P deficiency and salinity were not additive neither on whole plant RGR nor on root response parameters in both species. The root area, root/shoot P content, root and leaf acid phosphatase activities, and shoot flavonoids contents increased under P deficiency conditions with and without salt in both species. Overall, the relatively better tolerance of H. maritimum plants to P deficiency applied only or combined with salinity could be explained by the capacity of this species to maintain higher P acquisition efficiency in concomitance with a larger root system, a higher root/shoot DW ratio, a higher root/shoot P content, a greater root and leaf acid phosphatase activities, and a higher flavonoid content and antioxidant capacity under combined effects of both stresses. Thus, H. maritimum constitutes a promising model to ameliorate the tolerance of the cultivated barley species under low-P soils and/or saline regions.  相似文献   

15.
Plant growth-promoting rhizobacteria (PGPR) are important catalysts that regulate the functional properties of agricultural systems. However, there is little information on the effect of PGPR inoculation on the growth and nutrient accumulation of forest container seedlings. This study determined the effects of a growth medium inoculated with PGPR on the nutrient uptake, nutrient accumulation, and growth of Fraxinus americana container seedlings. PGPR inoculation with fertilizer increased the dry matter accumulation of the F. americana aerial parts with delayed seedling emergence time. Under fertilized conditions, the accumulation time of phosphorous (P) and potassium (K) in the F. americana aerial parts was 13 days longer due to PGPR inoculation. PGPR increased the maximum daily P and K accumulations in fertilized seedlings by 9.31 and 10.44 %, respectively, but had little impact on unfertilized ones. Regardless of fertilizer application, the root exudates, namely sugars, amino acids, and organic acids significantly increased because of PGPR inoculation. PGPR inoculation with fertilizer increased the root, shoot, and leaf yields by 19.65, 22.94, and 19.44 %, respectively, as well as the P and K contents by 8.33 and 10.60 %, respectively. Consequently, the N, P, and K uptakes increased by 19.85, 31.97, and 33.95 %, respectively. Hence, PGPR inoculation with fertilizer can be used as a bioenhancer for plant growth and nutrient uptake in forest container seedling nurseries.  相似文献   

16.
The salt tolerance of peanut (Arachis hypogaea L.) seedlings was evaluated by analyzing growth, nutrient uptake, electrolyte leakage, lipid peroxidation and alterations in levels of some organic metabolites under NaCl stress. The plant height, leaf area and plant biomass decreased significantly in salt-treated seedlings as compared with control. The relative water content (RWC %) of leaf decreased by 16 % at high concentrations of NaCl. There was an increase in the lipid peroxidation level and decrease in the electrolyte leakage at high concentrations of NaCl. The total free amino acid and proline contents of leaf increased by 5.5- and 43-folds, respectively in 150 mM NaCl-treated plants as compared with control. Total sugar and starch content increased significantly at high concentrations of NaCl. Chl a, Chl b, total chlorophyll and carotenoid contents decreased significantly at high salinity. Na+ contents of leaf, stem and root increased in dose-dependent manner. K+ content remained unaffected in leaf and root and decreased in stem by salinity. The results from present study reveal that the peanut plants have an efficient adaptive mechanism to tolerate high salinity by maintaining adequate leaf water status associated with growth restriction. In order to circumvent the stress resulting from high salinity, the levels of some organic metabolites such as total free amino acids, proline, total sugars and starch were elevated. The elevated levels of the organic metabolites may possibly have some role in maintenance of osmotic homeostasis, nutrient uptake and adequate tissue water status in peanut seedlings under high-salinity conditions.  相似文献   

17.
Pressure–volume (P–V) curves are frequently used to analyze water relation properties of woody plants in response to transpiration-induced tissue water loss. In this study, P–V analyses were conducted on eight woody species growing in the semiarid Loess Plateau region of China during a relatively dry summer season using both the recently recommended instantaneous measurement and the traditional method with rehydration pretreatment. Generally, P–V-derived parameters in this study reflected conditions in a dry growth environment. Species-specific differences were also found among P–V parameters, suggesting each species uses different mechanisms to respond to drought. Based on the results from instantaneous measurements, a descending sequence for drought tolerance ranked by water potentials at the turgor loss point (Ψtlp) was Rosa hugonis > Syringa oblata = Armeniaca sibirica > Caragana microphylla > Pyrus betulaefolia > Acer stenolobum > Quercus liaotungensis > Robinia pseudoacacia. The first five species also showed lower levels of osmotic potential at full turgor (Ψ π sat ) and higher symplastic osmotic solute content per dry weight, suggesting they possess advantages in osmotic adjustment. Also, this study supports previous reports noting rehydration pretreatment resulted in shifts in P–V parameters. The magnitude of the shifts varied with species and water conditions. The effect of rehydration was stronger for species with higher drought tolerance or subjected to the influence of drought. Differences in the parameters among species were mitigated as a result of rehydration. Those with a lower Ψtlp or midday water potential were more deeply affected by rehydration. Application of instantaneous measurements was strongly recommended for proper analysis of P–V curves particularly in arid and semiarid areas.  相似文献   

18.
Phyto-beneficial effects of rhizobacteria specifically Enterobacter species were evaluated on maize seedling health and growth. Out of the 19 isolates examined, two were remarkable in their phosphate solubilization efficiency (PSE > 70%), chitinase enzyme activity (CEA > 85%) and antifungal activity with evidence of no or low disease expression in maize seedling. The selected isolates (OSR7 and IGGR11) were identified and 16S rDNA revealed both isolates as Enterobacter species. Re-evaluation of both isolates ascertains that their combined effects are more effective on maize seedling than their individual effects. Their combinations completely suppressed pathogenic activity of Fusarium verticillioides on maize seedling with evidence of no disease symptoms. Other treatments significantly (p < 0.05) expressed varied maize seedling diseases such as leaf curl and stem rot. Apart from treatment T2 (maize + pathogen), other treatments most especially their combinations significantly (p < 0.05) enhanced seedling height, stem girth, leaf area, nitrogen and potassium contents. The phyto-beneficial effects of these Enterobacter species suggest that they could be employed as bio-inoculant for maize seedling health and growth.  相似文献   

19.
Silicon (Si) can enhance plant defense against biotic and abiotic stresses, but little is known of its possible alleviation of aluminum (Al) stress. In this study, we find out how Si may mediate Al stress based on changes in root morphological parameters, biomass, physiological attributes and concentrations of Al and Si in peanut (Arachis hypogaea L., cv. Zhongkaihua 99). The peanut was raised with (80 mg L?1) or without Si in the growth chamber under 0 and toxic Al (160 mg L?1) levels. Aluminum stress reduced the root dry weight by 52.4 %, shoot dry weight by 33.9 % and root-to-shoot ratio (R/S) by 28.8 %. However, it increased the activities of catalase in leaves and roots by as much as 161.6 and 149.0 %, superoxide dismutase by 141.7 and 147.0 %, and peroxidases by 62.0 and 64.1 %. The Si-treated peanut suffered less from Al stress through improvements in photosynthesis, biomass and R/S. The malondialdehyde, an index of membrane damage decreased significantly by 26.0 and 28.2 % in peanut leaf and root with silicon application under Al toxicity. For the peanut treated with Al, tissue concentration of Al increased by 371.5 % in the root, 20.9 % in the stem and 37.8 % in the leaf, much of the uptake was partitioned to the root. These concentrations decreased by 40.7, 5.3 and 25.6 %, respectively, following Si application.  相似文献   

20.
A putative carbohydrate binding module (CBM) from strawberry (Fragaria × ananassa Duch.) expansin 2 (CBM-FaExp2) was cloned and the encoding protein was over-expressed in Escherichia coli and purified in order to evaluate its capacity to bind different cell wall polysaccharides “in vitro”. The protein CBM-FaExp2 bound to microcrystalline cellulose, xylan and pectin with different affinities (Kad = 33.6 ± 0.44 mL g?1, Kad = 11.37 ± 0.87 mL g?1, Kad = 10.4 ± 0.19 mL g?1, respectively). According to “in vitro” enzyme assays, this CBM is able to decrease the activity of cell wall degrading enzymes such as polygalacturonase, endo-glucanase, pectinase and xylanase, probably because the binding of CBM-FaExp2 to the different substrates interferes with enzyme activity. The results suggest that expansins would bind not only cellulose but also a wide range of cell wall polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号