首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用抑制性扣除杂交技术克隆水稻磷饥饿诱导基因   总被引:3,自引:0,他引:3  
磷素是植物生长所必需的重要元素。在缺磷环境中,植物能够调节自身的形态、生理生化和基因表达水平来适应环境的变化。为研究水稻(Oryzn sativa L.)耐低磷胁迫的分子机理,采用抑制性扣除杂交技术(SSH)构建磷饥饿诱导的水稻根系扣除cDNA文库。通过文库筛选和测序获得18个已知基因和47个功能未知基因。这些基因参与了不同的代谢过程,包括磷吸收和转运、信号传导、蛋白质合成和降解、碳水化合物代谢和胁迫反应。Northern杂交结果表明,在磷饥饿胁迫下这些基因呈现不同的表达模式,并且不同代谢过程中的基因对磷饥饿有着不同的反应。  相似文献   

2.
3.
To isolate the genes involved in the response of graminaceous plants to Fe-deficient stress, a protein induced by Fe-deficiency treatment was isolated from barley (Hordeum vulgare L.) roots. Based on the partial amino acid sequence of this protein, a cDNA (HvAPT1) encoding adenine phosphoribosyltransferase (APRT: EC 2.4.2.7) was cloned from a cDNA library prepared from Fe-deficient barley roots. Southern analysis suggested that there were at least two genes encoding APRT in barley. Fe deficiency increased HvAPT1 expression in barley roots and resupplying Fe to the Fe-deficient plants rapidly negated the increase in HvAPT1 mRNA. Analysis of localization of HvAPT1-sGFP fusion proteins in tobacco BY-2 cells indicated that the protein from HvAPT1 was localized in the cytoplasm of cells. Consistent with the results of Northern analysis, the enzymatic activity of APRT in barley roots was remarkably increased by Fe deficiency. This induction of APRT activity by Fe deficiency was also observed in roots of other graminaceous plants such as rye, maize, and rice. In contrast, the induction was not observed to occur in the roots of a non-graminaceous plant, tobacco. Graminaceous plants generally synthesize the mugineic acid family phytosiderophores (MAs) in roots under Fe-deficient conditions. In this paper, a possible role of HvAPT1 in the biosynthesis of MAs related to adenine salvage in the methionine cycle is discussed.  相似文献   

4.
5.
6.
7.
8.
9.
Lei M  Liu Y  Zhang B  Zhao Y  Wang X  Zhou Y  Raghothama KG  Liu D 《Plant physiology》2011,156(3):1116-1130
Plants respond to phosphate (Pi) starvation by exhibiting a suite of developmental, biochemical, and physiological changes to cope with this nutritional stress. To understand the molecular mechanism underlying these responses, we isolated an Arabidopsis (Arabidopsis thaliana) mutant, hypersensitive to phosphate starvation1 (hps1), which has enhanced sensitivity in almost all aspects of plant responses to Pi starvation. Molecular and genetic analyses indicated that the mutant phenotype is caused by overexpression of the SUCROSE TRANSPORTER2 (SUC2) gene. As a consequence, hps1 has a high level of sucrose (Suc) in both its shoot and root tissues. Overexpression of SUC2 or its closely related family members SUC1 and SUC5 in wild-type plants recapitulates the phenotype of hps1. In contrast, the disruption of SUC2 functions greatly inhibits plant responses to Pi starvation. Microarray analysis further indicated that 73% of the genes that are induced by Pi starvation in wild-type plants can be induced by elevated levels of Suc in hps1 mutants, even when they are grown under Pi-sufficient conditions. These genes include several important Pi signaling components and those that are directly involved in Pi transport, mobilization, and distribution between shoot and root. Interestingly, Suc and low-Pi signals appear to interact with each other both synergistically and antagonistically in regulating gene expression. Our genetic and genomic studies provide compelling evidence that Suc is a global regulator of plant responses to Pi starvation. This finding will help to further elucidate the signaling mechanism that controls plant responses to this particular nutritional stress.  相似文献   

10.
11.
Stress responses depend on the correct regulation of gene expression. The discovery that abiotic as well as biotic stresses can regulate miRNA levels, coupled with the identification and functional analyses of stress-associated genes as miRNA targets, provided clues about the vital role that several miRNAs may play in modulating plant resistance to stresses. Nitrogen availability seriously affects crops productivity and environment and the understanding of the miRNA-guided stress regulatory networks should provide new tools for the genetic improvement of nitrogen use efficiency of crops. A recent study revealed the potential role of a number of nitrate-responsive miRNAs in the maize adaptation to nitrate fluctuations. In particular, results obtained suggested that a nitrate depletion might regulate the expression of genes involved in the starvation adaptive response, by affecting the spatio-temporal expression patterns of specific miRNAs.  相似文献   

12.
Plants can exhibit Fe-deficiency stress response when they areexposed to Fe-deficiency conditions. The relative importanceof the individual Fe-deficiency stress-response reactions, forexample, increased release of H+ from roots, enhanced root plasmamembrane-bound Fe3+ -reductase activity, and release of reductant,in Fe-deficiency resistance is not understood. To address thisproblem, the Fe-deficiency stress response of two cultivarsof subterranean clover (subclover), Koala (Trifolium brachycalycinumKatzn. and Morley) (Fe-deficiency resistant) and Karridale (T.subterraneum L.) (Fe-deficiency susceptible), were evaluated.The plants were cultured hydroponically at 0 (–Fe) and30 (+Fe) µM Fe3+ EDTA conditions. After 6 d Fe treatment,the –Fe Koala and Karridale decreased the pH of the nutrientsolution by 1.83 and 0.79 units, respectively, while the +Feplants increased the pH of the nutrient solution. The H+ -releaserate of the –Fe Koala determined 7 d after Fe treatmentinitiation was more than three times higher than that of the–Fe Karridale. The –Fe plants had a significantlyenhanced Fe3+ -reduction rate compared with the +Fe plants foreach cultivar, but the resistant cultivar did not exhibit ahigher root Fe3+ -reduction rate than the susceptible cultivarat each Fe treatment. Reductant release from the roots of subcloverwas negligible. These results indicate that Fe-deficiency-inducedH+ release may be the predominant factor influencing Fe-deficiencyresistance in subclover. Key words: Fe-deficiency, Fe3+ reduction, H+ release, stress response, Trifolium  相似文献   

13.
14.
15.
16.
Fe is an essential mineral element that plants need for their growth. When there is low soil availability of Fe, plants show severe deficiency symptoms. Under Fe-deficiency conditions, plants alter a number of processes to acquire Fe from soil. Genes involved in these mechanisms have been identified from different model plants, including Arabidopsis and rice. Fe transport within plants is also tightly regulated. In this study, we used H9405, a cultivar of rice with high Fe accumulation in seeds, and Yangdao 6, a cultivar with low seed Fe accumulation, to study their responses under different Fe conditions. Our results showed that genes involved in acquisition of Fe from soil in these two cultivars were both up-regulated in roots under Fe-deficiency conditions, and the elevation of the expression was much higher in Yangdao 6 than in H9405. However, remobilization-related genes in shoot vasculature were expressed in an opposite way between the two cultivars. In H9405, the expression of these genes was up-regulated; but in Yangdao 6, their expression was reduced. Our results showed that the differential expression of root-uptake and shoot-remobilization genes in the two cultivars is correlated to the Fe content in roots, shoots, and seeds. Strategies to biofortify rice cultivars with different characteristics were also discussed based on our discovery.  相似文献   

17.
Yu Y  Zhang H  Li W  Mu C  Zhang F  Wang L  Meng Z 《Gene》2012,498(2):212-222
The FK506-binding proteins (FKBPs) belong to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily, and have been implicated in a wide spectrum of biological processes, including protein folding, hormone signaling, plant growth, and stress responses. Genome-wide structural and evolutionary analyses of the entire FKBP gene family have been conducted in Arabidopsis and rice. In the present study, a genome-wide analysis was performed to identify all maize FKBP genes. The availability of complete maize genome sequences allowed for the identification of 24 FKBP genes. Chromosomal locations in the maize genome were determined and the protein domain and motif organization of ZmFKBPs analyzed. The phylogenetic relationships between maize FKBPs were also assessed. The expression profiles of ZmFKBP genes were measured under different environmental conditions and revealed distinct ZmFKBP gene expression patterns under heat, cold, salt, and drought stress. These data not only contribute to a better understanding of the complex regulation of the maize FKBP gene family, but also provide evidence supporting the role of FKBPs in multiple signaling pathways involved in stress responses. This investigation may provide valuable information for further research on stress tolerance in plants and potential strategies for enhancing maize survival under stressful conditions.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号