首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
In this study, the hepatoprotective and anti‐fibrotic actions of nootkatone (NTK) were investigated using carbon tetrachloride (CCl4)‐induced liver fibrosis in mice. CCl4 administration elevated serum aspartate and alanine transaminases levels, respectively. In addition, CCl4 produced hepatic oxidative and nitrative stress, characterized by diminished hemeoxygenase‐1 expression, antioxidant defenses, and accumulation of 4‐hydroxynonenal and 3‐nitrotyrosine. Furthermore, CCl4 administration evoked profound expression of pro‐inflammatory cytokine expressions such as tumor necrosis factor‐α, monocyte chemoattractant protein‐1, and interleukin‐1β in hepatic tissues, which corroborated with nuclear factor κB activation. Additionally, CCl4‐treated animals exhibited higher apoptosis, characterized by increased caspase 3 activity, DNA fragmentation, and poly (ADP‐ribose) polymerase activation. Moreover, histological and biochemical investigations revealed marked fibrosis in the livers of CCl4‐administered animals. However, NTK treatment mitigated CCl4‐induced phenotypic changes. In conclusion, our findings suggest that NTK exerts hepatoprotective and anti‐fibrotic actions by suppressing oxidative stress, inflammation, and apoptosis.  相似文献   

2.
This study was carried out to investigate the effects of resveratrol on cigarette smoke (CS)–induced lung injury. Experimental mice were administrated with 1 mg/kg or 3 mg/ kg resveratrol orally, 1 h prior to CS exposure (five cigarettes a day for 3 consecutive days). Airway inflammation and gene expression changes were assessed. CS exposure increased the number of pulmonary inflammatory cells, coupled with elevated production of tumor necrosis factor α and interleukin‐6 in bronchoalveolar lavage fluids. Resveratrol treatment decreased CS‐induced lung inflammation. Resveratrol restored the activities of superoxide dismutase, GSH peroxidase, and catalase in CS‐treated mice. CS significantly enhanced the nuclear translocation of nuclear factor κB (NF‐κB) and NF‐κB DNA binding activity, which was impaired by resveratrol pretreatment. In addition, resveratrol promoted CS‐induced heme oxygenase‐1 (HO‐1) expression and activation. Our results collectively indicate that resveratrol attenuates CS‐induced lung oxidative injury, which involves decreased NF‐κB activity and the elevated HO‐1 expression and activity.  相似文献   

3.
Accumulating evidence has demonstrated that hydrogen sulphide (H2S) is involved in the pathogenesis of various respiratory diseases. In the present study, we established a rat model of passive smoking and investigated whether or not H2S has protective effects against pulmonary fibrosis induced by chronic cigarette smoke exposure. Rat lung tissues were stained with haematoxylin‐eosin and Masson's trichrome. The expression of type I collagen was detected by immunohistochemistry. Oxidative stress was evaluated by detecting serum levels of malondialdehyde, superoxide dismutase and glutathione peroxidase and measuring reactive oxygen species generation in lung tissue. Inflammation was assessed by measuring serum levels of inflammatory cytokines, including high‐sensitivity C‐reactive protein, tumour necrosis factor‐α, interleukin (IL)‐1β and IL‐6. The protein expression of Nrf2, NF‐κB and phosphorylated mitogen‐activated protein kinases (MAPKs) in the pulmonary tissue was determined by Western blotting. Our findings indicated that administration of NaHS (a donor of H2S) could protect against pulmonary fibrosis in the smoking rats. H2S was found to induce the nuclear accumulation of Nrf2 in lung tissue and consequently up‐regulate the expression of antioxidant genes HO‐1 and Trx‐1 in the smoking rats. Moreover, H2S could also reduce cigarette smoking‐induced inflammation by inhibiting the phosphorylation of ERK 1/2, JNK and p38 MAPKs and negatively regulating NF‐κB activation. In conclusion, our study suggests that H2S has protective effects against pulmonary fibrosis in the smoking rats by attenuating oxidative stress and inflammation.  相似文献   

4.
Cerium is widely used in many aspects of modern society, including agriculture, industry and medicine. It has been demonstrated to enter the ecological environment, is then transferred to humans through food chains, and causes toxic actions in several organs including the brain of animals. However, the neurotoxic molecular mechanisms are not clearly understood. In this study, mice were exposed to 0.5, 1, and 2 mg/kg BW cerium chloride (CeCl3) for 90 consecutive days, and their learning and memory ability as well as hippocampal gene expression profile were investigated. Our findings suggested that exposure to CeCl3 led to hippocampal lesions, apoptosis, oxidative stress and impairment of spatial recognition memory. Furthermore, microarray data showed marked alterations in the expression of 154 genes involved in learning and memory, immunity and inflammation, signal transduction, apoptosis and response to stress in the 2 mg/kg CeCl3 exposed hippocampi. Specifically, the significant up-regulation of Axud1, Cdc37, and Ube2v1 caused severe apoptosis, and great suppression of Adcy8, Fos, and Slc5a7 expression led to impairment of mouse cognitive ability. Therefore, Axud1, Cdc37, Ube2v1, Adcy8, Fos, and Slc5a7 may be potential biomarkers of hippocampal toxicity caused by CeCl3 exposure.  相似文献   

5.
6.
Hepatocarcinoma‐intestine‐pancreas/pancreatitis‐associated protein (HIP/PAP), a C‐type lectin, exerts anti‐oxidative, anti‐inflammatory, bactericidal, anti‐apoptotic, and mitogenic functions in several cell types and tissues. In this study, we explored the role of HIP/PAP in pulmonary fibrosis (PF). Expression of HIP/PAP and its murine counterpart, Reg3B, was markedly increased in fibrotic human and mouse lung tissues. Adenovirus‐mediated HIP/PAP expression markedly alleviated bleomycin (BLM)‐induced lung injury, inflammation, and fibrosis in mice. Adenovirus‐mediated HIP/PAP expression alleviated oxidative injury and lessened the decrease in pulmonary superoxide dismutase (SOD) activity in BLM‐treated mice, increased pulmonary SOD expression in normal mice, and HIP/PAP upregulated SOD expression in cultured human alveolar epithelial cells (A549) and human lung fibroblasts (HLF‐1). Moreover, in vitro experiments showed that HIP/PAP suppressed the growth of HLF‐1 and ameliorated the H2O2‐induced apoptosis of human alveolar epithelial cells (A549 and HPAEpiC) and human pulmonary microvascular endothelial cells (HPMVEC). In HLF‐1, A549, HPAEpiC, and HPMVEC cells, HIP/PAP did not affect the basal levels, but alleviated the TGF‐β1‐induced down‐regulation of the epithelial/endothelial markers E‐cadherin and vE‐cadherin and the over‐expression of mesenchymal markers, such as α‐SMA and vimentin. In conclusion, HIP/PAP was found to serve as a potent protective factor in lung injury, inflammation, and fibrosis by attenuating oxidative injury, promoting the regeneration of alveolar epithelial cells, and antagonizing the pro‐fibrotic actions of the TGF‐β1/Smad signaling pathway.  相似文献   

7.
ObjectivesAlcohol induces inflammation and oxidative stress, causing cell damages. We previously demonstrated that astaxanthin (ASTX), a xanthophyll carotenoid, exerts anti-inflammatory and antioxidant properties in macrophages exposed to inflammatory insults. In this study, we investigated whether ASTX can inhibit alcohol-induced inflammation and oxidative stress in macrophages with the elucidation of mechanisms.MethodsRAW 264.7 macrophages and mouse bone marrow-derived macrophages were treated with 80 mM ethanol in the presence or absence of 25 μM of ASTX for 72 h. Subsequently, the expression of genes related to inflammation and oxidative stress, cellular reactive oxygen species accumulation, cellular NAD+ level and sirtuin 1 (SIRT1) activity were measured. In addition, RAW 264.7 macrophages were treated with sirtinol or resveratrol, which are known inhibitors or activators of SIRT1 activity, respectively, to determine the contribution of SIRT1 to the inhibitory effect of ASTX on inflammation and oxidative stress in macrophages exposed to ethanol.ResultsEthanol increased mRNA expression of interleukin (Il)-6, Il-1b and tumor necrosis factor α with a concomitant increase in nuclear translocation of nuclear factor κB, which was abolished by ASTX. Importantly, ethanol significantly decreased SIRT1 activity and cellular NAD+ level, but ASTX markedly attenuated the decreases in RAW 264.7 macrophages. Sirtinol increased the expression of proinflammatory genes in ethanol-induced RAW 264.7 macrophages. In contrast, resveratrol decreased proinflammatory gene expression.ConclusionsASTX showed anti-inflammatory and antioxidant properties by inhibiting decreases in SIRT1 expression and cellular NAD+ level in ethanol-treated macrophages. Therefore, ASTX may be used for the prevention of alcohol-induced cell damages.  相似文献   

8.
"It has been well known that both oxidative stress and inflammatory activity play crucial roles in the pathogenesis of type 1 diabetes mellitus (T1DM). Resveratrol (RSV), a naturally occurring polyphenol found in grapes and red wine, has recently been shown to exert potent anti-diabetic, anti-oxidative and anti-inflammatory actions. In the present study, we investigated the effect of RSV on oxidative stress and inflammatory response in the liver and spleen of streptozotocin (STZ)-induced type 1 diabetic animal models. Male Long-Evans rats were injected with 65 mg/kg STZ to induce diabetes for 2 weeks, and subsequently administrated with the dosage of 0.1 or 1 mg/kg/day RSV for 7 consecutive days. Hepatic and splenic tissues were dissected for evaluation of oxidative and inflammatory stress. Oxidative stress was assessed by quantification of oxidative indicators including superoxide anion content, lipid and protein oxidative products, as well as manganese superoxide dismutase (Mn-SOD) and nitro-tyrosine protein expression levels. Inflammatory stress was evaluated by the levels of nuclear factor κB (NF-κB) and the proinflammatory cytokine tumor necrosis factorα (TNF-α), interleukin 1 β (IL-1 β ) and IL-6. The experimental results indicated that RSV significantly decreased oxidative stress (superoxide anion content, protein carbonyl level and Mn-SOD expression) in both tissues and hepatic inflammation (NF- κB and IL-1 β ), but implicated proinflammatory potential of RSV in diabetic spleen (TNF-α and IL-6). The results of this study suggest that RSV may serve as a potent antioxidant, but RSV possesses a proinflammatory potential in certain circumstances in diabetes."  相似文献   

9.
Fatty liver disease is a disease manifested with excessive alcohol intake and obese. Importantly, hydrogen sulfide (H2S) has been revealed to participate in the progression of fatty liver; however, the underlying mechanism has not been clearly elucidated yet. In this study, we aimed to investigate the effects of exogenous H2S on fatty liver ischemia–reperfusion injury (IRI) through mediating class A scavenger receptor (SRA) pathway in rats. By determining endoplasmic reticulum stress (ERS)‐related factors, autophagy markers and apoptosis‐related factors in liver tissue and liver function, levels of oxidative stress, inflammatory factors, and hepatocyte apoptosis, the effects of H2S on IRI‐induced autophagy, oxidative stress, and inflammation were all examined in rat model of fatty liver IRI. Results from obtained data showed that H2S decreased the expression of SRA, Grp78, PERK, CHOP, and Caspase‐3, and increased that of LC3‐II/LC3‐I, in addition to alleviating the pathological changes of liver and reducing the levels of ALT, AST, LDH TBARS, and MDA. Moreover, H2S decreased the levels of oxidative stress, the expression of pro‐inflammatory factors including tumor necrosis factor α, interleukin 1, and interleukin 6, and the apoptosis of hepatocytes. Our findings suggested exogenous H2S could reduce ERS by mediating the SRA pathway and protect liver function by inducing autophagy, and protect against IRI by reducing oxidative stress and inflammation.  相似文献   

10.
Metallothionein (MT) is a free radical scavenger induced by inflammatory stimuli; however, its roles in inflammation have not been fully investigated. In the present study, we genetically determined the role of MT in ozone (O3)-induced lung inflammation using MT-I/II null (–/–) mice. Subacute (65 h) exposure to O3 (0.3 ppm) induced lung inflammation and enhanced vascular permeability, which was significantly greater in MT(–/–) than in corresponding wild-type mice. Electron microscopically, O3 exposure induced vacuolar degeneration of pulmonary endothelial and epithelial cells, and interstitial edema with focal loss of the basement membrane, which was more prominent in MT(–/–) than in wild-type mice. O3 -induced lung expression of interleukin-6 was significantly greater in MT(–/–) than in wild-type mice; however, lung expression of the chemokines examined was comparable in both genotypes of mice in the presence of O3. Following O3 exposure, the formation of oxidative stress-related molecules/adducts, such as heme oxidase-1, inducible nitric oxide synthase, 8-hydroxy-2′-deoxyguanosine, and nitrotyrosine, in the lung was significantly greater in MT(–/–) than in wild-type mice. Collectively, MT protects against O3-induced lung inflammation, at least partly, via the regulation of pulmonary endothelial and epithelial integrity and its antioxidative property.  相似文献   

11.
Aflatoxin G1 (AFG1), a member of the AF family with cytotoxic and carcinogenic properties, could cause DNA damage in alveolar type II (AT-II) cells and induce lung adenocarcinoma. Recently, we found AFG1 could induce chronic lung inflammation associated with oxidative stress in the protumor stage. Chronic inflammation plays a critical role in cigarette smoke or benzo[a]pyrene-induced lung tissues damage. However, it is unclear whether and how AFG1-induced lung inflammation affects DNA damage in AT-II cells. In this study, we found increased DNA damage and cytochrome P450 (CYP2A13) expression in AFG1-induced inflamed lung tissues. Furthermore, we treated the mice with a soluble tumor necrosis factor (TNF)-α receptor and AFG1 and found that TNF-α neutralization inhibited the AFG1-induced chronic lung inflammation in vivo, and then reversed the CYP2A13 expression and DNA damage in AT-II cells. The results suggest that AFG1 induces TNF-α-dependent lung inflammation to regulate 2A13 expression and enhance DNA damage in AT-II cells. Then, we treated the primary mice AT-II cells and human AT-II like cells (A549) with AFG1 and TNF-α and found that TNF-α enhanced the AFG1-induced DNA damage in mice AT-II cells as well as A549 cells in vitro. In AFG1-exposed A549 cells, TNF-α-enhanced DNA damage and apoptosis were reversed by CYP2A13 small interfering RNA. Blocking NF-κB pathway inhibited the TNF-α-enhanced CYP2A13 upregulation and DNA damage confirming that the CYP2A13 upregulation by TNF-α plays an essential role in the activation of AFG1 under inflammatory conditions. Taken together, our findings suggest that AFG1 induces TNF-α-dependent lung inflammation, which upregulates CYP2A13 to promote the metabolic activation of AFG1 and enhance oxidative DNA damage in AT-II cells.  相似文献   

12.
Intestinal ischaemia-reperfusion (I/R) injury can result in acute lung injury due to ischaemia and hypoxia. Dexmedetomidine (Dex), a highly selective alpha2-noradrenergic receptor (α2AR) agonist used in anaesthesia, is reported to regulate inflammation in organs. This study aimed to investigate the role and mechanism of Dex in lung injury caused by intestinal I/R. After establishing a rat model of intestinal I/R, we measured the wet-to-dry specific gravity of rat lungs upon treatments with Dex, SB239063 and the α2AR antagonist Atipamezole. Moreover, injury scoring and histopathological studies of lung tissues were performed, followed by ELISA detection on tumour necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 expression. Correlation of Caveolin-1 (Cav-1) protein expression with p38, p-p38, p-p65 and p65 in rat lung tissues was analysed, and the degree of cell apoptosis in lung tissues after intestinal I/R injury was detected by TUNEL assay. The lung injury induced by intestinal I/R was a dynamic process. Moreover, Dex had protective effects against lung injury by mediating the expression of Cal-1 and α2A-AR. Specifically, Dex promoted Cav-1 expression via α2A-AR activation and mitigated intestinal I/R-induced lung injury, even in the presence of Atipamezole. The protective effect of Dex on intestinal I/R-induced lung injury was also closely related to α2A-AR/p38 mitogen-activated protein kinases/nuclear factor-kappaB (MAPK/NF-κB) pathway. Dex can alleviate pulmonary inflammation after in intestinal I/R by promoting Cav-1 to inhibit the activation of p38 and NF-κB. In conclusion, Dex can reduce pulmonary inflammatory response even after receiving threats from both intestinal I/R injury and Atipamezole.  相似文献   

13.
14.
Insulin is important for brain function and neuronal survival. Insulin signaling is initiated by the phosphorylation of insulin receptor substrate‐1 (IRS‐1) at tyrosine (pTyr) residue. However, IRS‐1 is inhibited by phosphorylation at serine (pSer). In Alzheimer's disease (AD), oxidative stress and accumulation of amyloid beta (Aβ) induce neuroinflammation, which augments pSer‐IRS‐1 and reduces pTyr‐IRS‐1 disturbing insulin signaling pathway. Coenzyme Q10 (CoQ10) and biotin possess antioxidant and anti‐inflammatory properties, and, in this study, their impact on insulin signaling is investigated in an aluminium chloride (AlCl3) model of AD. AD was induced by oral administration of AlCl3 (75 mg/kg) for 60 days. Biotin (2 mg/kg), CoQ10 (10 mg/kg), and their combination were supplemented concomitantly with AlCl3 for 60 days. Memory test and histological examination were performed. Brain levels of lipid peroxides, antioxidants (reduced glutathione and superoxide dismutase), inflammatory markers (tumor necrosis factor‐α, interleukin‐6 [IL‐6], IL‐1, and nuclear factor κB), and phosphorylated Akt (survival kinase) as well as protein levels of Aβ, IRS‐1 (pTyr and pSer), and caspase‐3 (apoptotic marker) were determined. AlCl3 resulted in impaired memory, significant increase in Aβ, lipid peroxides, inflammatory markers, caspase‐3, and pSer‐IRS‐1, with significant reduction of the antioxidants, pTyr‐IRS‐1, and p‐Akt reflecting Aβ‐induced inflammation and defective insulin signaling. Histological examination revealed focal aggregations of inflammatory cells and neuronal degeneration. The biochemical deviations and histological changes were attenuated by the concomitant treatment with biotin and, to greater extent, with CoQ10 and the combination. In conclusion, biotin and CoQ10 could protect against AD via attenuating inflammatory response and enhancing insulin signaling.  相似文献   

15.
Pneumonia is a chronic disorder of the respiratory system associated with worsening quality of life and a significant economic burden. Pinitol, a plant cyclic polyol, has been documented for immune‐inflammatory potential. The aim of present investigation was to evaluate the potential and possible mechanism of action of pinitol against lipopolysaccharide (LPS)‐induced pneumonia in the experimental animal model. Pneumonia was induced in Sprague‐Dawley rats by intratracheal administration of LPS (2 mg/kg). Animals were treated with either vehicle or dexamethasone or pinitol (5 or 10 or 20 mg/kg). Potential of pinitol against LPS‐induced pulmonary insult was assessed based on behavioral, biochemical, molecular, and ultrastructural studies. Intratracheal instillation of LPS induced significant (P < .05) inflammatory infiltration in bronchoalveolar lavage fluid (BALF) and lung tissue reflected by elevated pleural effusion volume, lung edema, BALF polymorphonuclear leukocytes count and lung myeloperoxidase levels, which was attenuated by pinitol (10 and 20 mg/kg) administration. Pinitol also markedly (P < .05) inhibited LPS‐induced alterations in electrocardiographic, hemodynamic changes, right ventricular, and lung function tests. The LPS‐induced downregulated nuclear factor erythroid 2–related factor 2 (Nrf‐2) and heme oxygenase‐1 (HO‐1), whereas upregulated transforming growth factor‐β (TGF‐β), tumor necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), IL‐6, NOD‐, LRR‐, and pyrin domain‐containing protein 3 (NLRP3), and inducible nitric oxide synthase (iNOs) lung messenger RNA expressions were significantly (P < .05) inhibited by pinitol. Western blot analysis suggested pinitol markedly (P < .05) decreased nuclear factor‐κB (NF‐κB), inhibitor of nuclear factor κB (IkBα), toll‐like receptor 4 (TLR‐4), and cyclooxygenase‐II (COX‐II) protein expressions in the lung. These findings were further supported by histological and ultrastructural analyses of lung tissue that show pinitol significantly (P < .05) ameliorates LPS‐induced aberrations in lung tissue. In conclusion, pinitol attenuated LPS‐induced pneumonia via inhibition of TLR‐4 to downregulate the NF‐κB/IκBα signaling cascade and thus ameliorated the production of proinflammatory cytokines (TNF‐α, ILs, NLRP3, and TGF‐β), inflammatory mediators (COX‐II and iNOs) and elevated oxidative stress (Nrf‐2 and HO‐1).  相似文献   

16.
Objective: Obesity is associated with elevated oxidative stress and low‐grade systemic inflammation. We have demonstrated recently that 1α,25‐(OH)2‐D3 promotes reactive oxygen species production in cultured adipocytes, whereas suppression of 1α,25‐(OH)2‐D3 by increasing dietary calcium down‐regulates diet‐induced oxidative stress in aP2‐agouti transgenic mice. However, whether the anti‐obesity effect of dietary calcium plays a role in regulation of obesity‐associated inflammation is not clear. Research Methods and Procedures: We investigated the role of dietary calcium in the regulation of inflammatory cytokine production in aP2‐agouti transgenic mice fed low‐ and high‐calcium obesigenic diets and in the modulation of cytokine production by 1α,25‐(OH)2‐D3 in cultured murine and human adipocytes. Results: The high‐calcium diet inhibited the expression of pro‐inflammatory factors tumor necrosis factor α and interleukin (IL)‐6 by 64% and 51%, respectively (p < 0.001), in visceral fat, stimulated the expression of the anti‐inflammatory factors IL‐15 and adiponectin by 52% (p = 0.001) and 54% (p = 0.025), respectively, in visceral fat, and induced a 2‐fold increase in IL‐15 expression in soleus muscle (p = 0.01) compared with litter mate controls on a low‐calcium diet. 1α,25‐(OH)2‐D3 also markedly stimulated the expression of tumor necrosis factor α (p < 0.001) and IL‐6 (p = 0.016) in differentiated 3T3‐L1 adipocytes and increased IL‐6 (p = 0.004) and IL‐8 (p < 0.001) production in differentiated human adipocytes. These effects were blocked by calcium channel antagonism with nifedipine. Discussion: These data demonstrate that 1α,25‐(OH)2‐D3 favors inflammatory cytokine expression and inhibits anti‐inflammatory cytokine expression; accordingly, suppression of 1α,25‐(OH)2‐D3 by dietary calcium inhibits adipocyte‐derived inflammation associated with obesity.  相似文献   

17.
In this study, we investigated the in vitro effect of tomentosin on cell proliferation by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, reactive oxygen species by 2′,7′‐dichlorofluorescein diacetate staining assay, apoptosis (AO/EtBr, propidium iodide, and 4′,6‐diamidino‐2‐phenylindole staining, mitochondrial membrane potential), cell adherent, cell migration, inflammation, apoptosis, and oxidative stress from gastric cancer cells (GCCs) AGS. Upon their relative cell proliferative, inflammatory, and apoptotic molecular markers were analyzed by using the enzyme‐linked immunosorbent assay and Western blot analysis method. Treatment with tomentosin (IC50 = 20 µM) significantly inhibited cell proliferation and oxidative stress‐induced anti‐cell proliferative (proliferating cell nuclear antigen and cyclin‐D1) also regulated expression, drastically diminished tumor necrosis factor‐α, nuclear factor‐κB, interleukin‐6, and interleukin‐1β expression levels, significantly upregulated Bcl‐2 and Bax expression. Thus, this tomentosin can significantly reduce GCC proliferation via cytotoxicity which is stimulated apoptosis markers via morphology staining changes and inhibitory inflammatory markers. The tomentosin‐induced oxidative stress may be involved to stimulate apoptotic mechanisms via mitochondria‐mediated signaling by the inhibition of inflammation. Taken together, our findings suggest a possible future use of chemotherapeutic agents for pharmacological benefits and as an anti‐cancer treatment option.  相似文献   

18.
19.
The purpose of this study was to alleviate liver disturbance by applying polysaccharides from Dicliptera chinensis (DCP) to act on the adenosine monophosphate–activated protein kinase/ nuclear factor erythroid 2-related factor 2 (AMPK/ Nrf2) oxidative stress pathway and the Toll-like receptor 4 (TLR-4)/ nuclear factor kappa-B (NF-κB) inflammatory pathway and to establish an in vivo liver disturbance model using male C57BL/6J and TLR-4 knockout (−/−) mice. For this, we evaluated the expression levels of SREBP-1 and Nrf2 after silencing the expression of AMPK using siRNA technology. Our results show that with regard to the TLR-4/ NF-κB inflammatory pathway, DCP inhibits TLR-4, up-regulates the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), reduces the expression of phospho(p)-NF-κB and leads to the reduction of downstream inflammatory factors, such as tumour necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β, thereby inhibiting the inflammatory response. Regarding the AMPK/ Nrf2 oxidative stress pathway, DCP up-regulates the expression of p-AMPK and Nrf2, in addition to regulating glucose and lipid metabolism, oxidative stress and ameliorating liver disturbance symptoms. In summary, our study shows that DCP alleviates liver disturbances by inhibiting mechanisms used during liver inflammation and oxidative stress depression, which provides a new strategy for the clinical treatment of liver disturbance.  相似文献   

20.
Cardiac inflammation and oxidative stress play a key role in the pathogenesis of diabetic cardiomyopathy (DCM). The anti-aging protein Klotho has been found to protect cells from inflammation and oxidative stress. The current study aimed to explore the cardioprotective effects of Klotho on DCM and the underlying mechanisms. H9c2 cells and neonatal cardiomyocytes were incubated with 33 mM glucose in the presence or absence of Klotho. Klotho pretreatment effectively inhibited high glucose-induced inflammation, ROS generation, apoptosis, mitochondrial dysfunction, fibrosis and hypertrophy in both H9c2 cells and neonatal cardiomyocytes. In STZ-induced type 1 diabetic mice, intraperitoneal injection of Klotho at 0.01 mg/kg per 48 h for 3 months completely suppressed cardiac inflammatory cytokines and oxidative stress and prevented cardiac cell death and remodeling, which subsequently improved cardiac dysfunction without affecting hyperglycemia. This study revealed that Klotho may exert its protective effects by augmenting nuclear factor erythroid 2-related factor 2 (Nrf2) expression and inactivating nuclear factor κB (NF-κB) activation both in vitro and in vivo. Thus, this work demonstrated for the first time that the anti-aging protein Klotho may be a potential therapeutic agent to treat DCM by inhibiting oxidative stress and inflammation. We also demonstrated the critical roles of the Nrf2 and NF-κB pathways in diabetes-stimulated cardiac injuries and indicated that they may be key therapeutic targets for diabetic complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号