首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluoride is an effective caries prophylactic, but at high doses can also be an environmental health hazard. Acute or chronic exposure to high fluoride doses can result in dental enamel and skeletal and soft tissue fluorosis. Dental fluorosis is manifested as mottled, discolored, porous enamel that is susceptible to dental caries. Fluoride induces cell stress, including endoplasmic reticulum stress and oxidative stress, which leads to impairment of ameloblasts responsible for dental enamel formation. Recently we reported that fluoride activates SIRT1 and autophagy as an adaptive response to protect cells from stress. However, it still remains unclear how SIRT1/autophagy is regulated in dental fluorosis. In this study, we demonstrate that fluoride exposure generates reactive oxygen species (ROS) and the resulting oxidative damage is counteracted by SIRT1/autophagy induction through c-Jun N-terminal kinase (JNK) signaling in ameloblasts. In the mouse-ameloblast-derived cell line LS8, fluoride induced ROS, mitochondrial damage including cytochrome-c release, up-regulation of UCP2, attenuation of ATP synthesis, and H2AX phosphorylation (γH2AX), which is a marker of DNA damage. We evaluated the effects of the ROS inhibitor N-acetylcysteine (NAC) and the JNK inhibitor SP600125 on fluoride-induced SIRT1/autophagy activation. NAC decreased fluoride-induced ROS generation and attenuated JNK and c-Jun phosphorylation. NAC decreased SIRT1 phosphorylation and formation of the autophagy marker LC3II, which resulted in an increase in the apoptosis mediators γH2AX and cleaved/activated caspase-3. SP600125 attenuated fluoride-induced SIRT1 phosphorylation, indicating that fluoride activates SIRT1/autophagy via the ROS-mediated JNK pathway. In enamel organs from rats or mice treated with 50, 100, or 125 ppm fluoride for 6 weeks, cytochrome-c release and the DNA damage markers 8-oxoguanine, p-ATM, and γH2AX were increased compared to those in controls (0 ppm fluoride). These results suggest that fluoride-induced ROS generation causes mitochondrial damage and DNA damage, which may lead to impairment of ameloblast function. To counteract this impairment, SIRT1/autophagy is induced via JNK signaling to protect cells/ameloblasts from fluoride-induced oxidative damage that may cause dental fluorosis.  相似文献   

2.
Endothelial cell apoptosis induced by hypoxia is implicated in the pathogenesis of vascular diseases. However, the underlying mechanism is not clearly elucidated. In this study, we found that hypoxia increased Mxi1-0 expression, and the Mxi1-0 siRNA could inhibit caspase-8 activation and apoptosis in HUVECs induced by hypoxia. In addition, hypoxia induced FOXO3 activation, while Mxi1-0 expression and apoptosis were inhibited by transfection with FOXO3 siRNA. Using ChIP assay, we confirmed that FOXO3a binds to the Mxi1-0 promoter region. Furthermore, hypoxia treatment leads to remarkable production of reactive oxygen species (ROS), while ROS scavenger N-acetyl-L-cysteine (NAC) inhibits hypoxia-induced ROS production, apoptosis and FOXO3a-mediated Mxi1-0 up-regulation. Finally, we found that the HIF-1α siRNA inhibited hypoxia-induced HIF-1α expression and ROS production, as well as FOXO3a/Mxi1-0 activation and apoptosis in HUVECs. Taken together, this study identifies a HIF-1α/FOXO3a/Mxi1-0/caspase-8 signaling pathway in hypoxia-induced endothelial cell apoptosis. These data also indicate that HIF-1α-dependent ROS production is required for FOXO3a-mediated Mxi1-0 up-regulation and apoptosis in hypoxic endothelial cells.  相似文献   

3.
The osteoblasts could be lead to the occurrence of apoptosis by oxidative stress. The zinc transporter family SLC30A (ZnTs) plays an important role in the regulation of zinc homeostasis, however, its function in apoptosis of MC3T3-E1 cells remains unknown. This study was aimed to investigate the role of zinc transporters in cell survival, particularly in MC3T3-E1 cells, during oxidative stress, and the molecular mechanism involved. Our study found that hydrogen peroxide can induce zinc-overloaded in the cells. While high concentration of zinc plays an important role in inducing apoptosis of the MC3T3-E1 cells, we demonstrated that ZnT7 can protect MC3T3-E1 cells and reduce the aggregation of intracellular free zinc ions as well as inhibit apoptosis induced by H2O2. Moreover, ZnT7 overexpression enhanced the anti-apoptotic effects. Interestingly, suppression of ZnT7 by siRNA could significantly exacerbate apoptosis in MC3T3-E1 cells. We also found that ZnT7 promotes cell survival via two distinct signaling pathways involving activation of the PI3K/Akt-mediated survival pathway and activation of MAPK/ERK pathway. Collectively, these results suggest that ZnT7 overexpression significantly protects osteoblasts cells from apoptosis induced by H2O2. This effect is mediated, at least in part, through activation of PI3K/Akt and MAPK/ERK pathways.  相似文献   

4.
Emerging evidence implicates the zinc importer ZIP4 as a critical factor that enhances pancreatic cancer proliferation; however, the role of ZIP4 in promoting pancreatic cancer progression by regulating apoptosis requires elucidation. To determine the effect of ZIP4 on apoptosis, we used cell lines where ZIP4 levels were upregulated or silenced in combination with Chelex 100 treatment to deplete intracellular zinc. Pancreatic cancer xenografts derived from those cells were also included. TUNEL and flow cytometry analysis were used to measure apoptosis and western blotting was used to analyze protein expression for PARP and multiple caspases. Cell cycle profiles were examined by flow cytometry. Zinc depletion by Chelex induced more apoptosis of pancreatic cancer cells in comparison to normal medium, where almost no apoptosis was observed. ZIP4 stably overexpressed MIA PaCa-2 (MIA-ZIP4) cells were more resistant to zinc depletion-induced apoptosis compared with vector control. Conversely, AsPC-1 (AsPC-shZIP4) cells with stable knockdown of ZIP4 were more sensitive to zinc deficiency than control. Resistance to apoptosis mediated by ZIP4 was accomplished by the caspase pathway. In vivo data also confirmed that ZIP4 overexpressed xenografts showed less apoptosis than controls. Cell cycle profiles indicate that silencing of ZIP4 leads to decreased cell population in S phase and G0/G1 arrest. These results described a previously uncharacterized role of ZIP4 in apoptosis resistance and elucidated a novel pathway through which ZIP4 regulates pancreatic cancer growth. This research provides additional evidence for ZIP4 and related signaling cascade as a molecular target for therapeutic intervention in pancreatic cancer.  相似文献   

5.
Chronic excessive fluoride intake is known to be toxic and can lead to fluorosis and bone pathologies. However, the cellular mechanisms underlying NaF-induced cytotoxicity in osteoblasts are not well understood. The objectives of this study were to determine the effects of fluoride treatment on MC3T3-E1 osteoblastic cell viability, cell cycle analysis, apoptosis and the expression levels of bcl-2 family members: bcl-2 and bax. MC3T3-E1 cells were treated with 10−5; 5 × 10−5; 10−4; 5 × 10−4 and 10−3 M NaF for up to 48 h. NaF was found to reduce cell viability in a temporal and concentration dependent manner and promote apoptosis even at low concentrations (10−5 M). This increased apoptosis was due to alterations in the expression of both pro-apoptotic bax and anti-apoptotic bcl-2. The net result was a decrease in the bcl-2/bax ratio which was found at both the mRNA and protein levels. Furthermore, we also noted that NaF-induced S-phase arrest during the cell cycle of MC3T3-E1 cells. These data suggest that fluoride-induced osteoblast apoptosis is mediated by direct effects of fluoride on the expression of bcl-2 family members.  相似文献   

6.
7.
N-(3-oxododecanoyl)-l -homoserine lactone (3-oxo-C12-HSL), a quorum-sensing (QS) molecule produced by Gram-negative bacteria in the gastrointestinal tract, adversly impacts host cells. Our previous study demonstrated that 3-oxo-C12-HSL induced a decrease in cell viability via cell apoptosis and eventually disrupted mucin synthesis from LS174T goblet cells. However, the molecular mechanism underlying cell apoptosis and whether pyroptosis was involved in this process are still unknown. In this study, we emphasized on the caspases signal pathway and sterile inflammation to reveal the harmful effects of 3-oxo-C12-HSL on LS174T goblet cells. Our data showed that 3-oxo-C12-HSL is a major inducer of oxidative stress indicated by a high level of intracellular reactive oxygen species (ROS). However, TQ416, an inhibitor of paraoxonase 2, can effectively block oxidative stress. A higher ROS level is the trigger for activating the caspase-1 and 3 cascade signal pathways. Blockade of ROS synthesis and caspase-1 and 3 cascades can obviously rescue the viability of LS174T cells after 3-oxo-C12-HSL treatment. We also found that paralleled with a higher level of ROS and caspases activation, an abnormal expression of proinflammatory cytokines was induced by 3-oxo-C12-HSL treatment; however, the blockage of TLRs-NF-κB pathway cannot restore cell viability and secretary function. These data collectively indicate that 3-oxo-C12-HSL exposure induces damages to cell viability and secretary function of LS174T goblet cells, which is mediated by oxidative stress, cell apoptosis, and sterile inflammation. Overall, the data in this study will provide a better understanding of the harmful impacts of some QS molecules on host cells and their underlying mechanism.  相似文献   

8.
Sapylin (OK-432) revealed biological properties in cancers. In this study, the effect of sapylin on lung cancer cell A549 was investigated. A549 cell lines were treated with sapylin (0.1, 0.5, and 1 KE/mL) for different time intervals. A549 cell proliferation and apoptosis was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide/Ki67 assay and flow cytometry, respectively. Western blot was used to determine the expressions of proteins involved in proliferation, apoptosis, and phosphoinositide 3-kinase/serine/threonine kinase (PI3K/AKT), Wnt3a/β-catenin signaling pathway. Level of intracellular reactive oxygen species (ROS) was insured by using the ROS kit. Sapylin inhibited A549 cell viability and the expressions of proliferation-related proteins (cyclin E1 and D1) in dose- and time-dependent manners. Sapylin promoted apoptosis in a dose- and time-dependent manners. Sapylin also promoted the expressions of apoptotic proteins (cleaved caspase-3 and 8) in dose- and time-dependent manners. Furthermore, sapylin increased the intracellular concentration of ROS in a dose-dependent manner. Besides, the high expression of ROS level might induce inhibition of cell viability and increase cell apoptosis. The mechanistic study revealed that sapylin inactivated the PI3K/AKT and Wnt3a/β-catenin signaling pathways. Our findings suggest that sapylin inhibits proliferation and promotes apoptosis in lung cancer cells, thus providing a new theoretical basis for the treatment of lung cancer.  相似文献   

9.
Several natural products have been demonstrated to both enhance the anti-tumor efficacy and alleviate the side effects of conventional chemotherapy drugs. Rhein, a main constituent of the Chinese herb rhubarb, has been shown to induce apoptosis in various cancer types. However, the exact pharmacological mechanisms controlling the influence of Rhein on chemotherapy drug effects in pancreatic cancer (PC) remain largely undefined. In this study, we found that Rhein inhibited the growth and proliferation of PC cells through G1 phase cell cycle arrest. Moreover, Rhein induced caspase-dependent mitochondrial apoptosis of PC cells through inactivation of the PI3K/AKT pathway. Combination treatment of Rhein and oxaliplatin synergistically enhanced apoptosis of PC cells through increased generation of intracellular reactive oxygen species (ROS) and inactivation of the PI3K/AKT pathway. Pre-treatment with the ROS scavenger N-acetyl-L-cysteine attenuated the combined treatment-induced apoptosis and restored the level of phosphorylated AKT, indicating that ROS is an upstream regulator of the PI3K/AKT pathway. The combination therapy also exhibited stronger anti-tumor effects compared with single drug treatments in vivo. Taken together, these data demonstrate that Rhein can induce apoptosis and enhance the oxaliplatin sensitivity of PC cells, suggesting that Rhein may be an effective strategy to overcome drug resistance in the chemotherapeutic treatment of PC.  相似文献   

10.

Background  

Zinc plays important roles in maintaining normal function of the prostate and in development of prostate malignancy. It has been demonstrated that prostate malignant epithelial cells contain much less cellular zinc than the surrounding normal epithelial cells. However, the pathway(s) which leads to lower zinc accumulation in malignant prostate epithelial cells is poorly understood. In this study, the zinc homeostatic features of two human prostate epithelial cell lines (non-tumorigenic, RWPE1, and tumorigenic, RWPE2) were investigated. Effects of over-expression of ZIP1 in RWPE2 on cell proliferation and apoptosis were also studied.  相似文献   

11.
The BMP/Smad signaling pathway plays an important role in the viability and differentiation of osteoblast; however, it is not clear whether this pathway is involved in the fluoride-induced osteoblast differentiation. In this study, we investigated the role of BMP/Smad signaling pathway in fluoride-induced osteoblast-like Saos-2 cells differentiation. Cells were exposed to fluoride of different concentrations (0, 0.1, 0.2, 0.4, 0.8, and 1.6 mM), and cell proliferation was determined using WST assays. The expression of osteoblast marker genes such as osteocalcin (BGP) and bone alkaline phosphatase (BALP) were detected by qRT-PCR. We found that fluoride enhanced the proliferation of Saos-2 cells in a dose-dependent manner and 0.2 mM of fluoride resulted in a higher expression of osteoblast marker genes. In addition, immunofluorescence analysis showed that the promotion effects of 0.2 mM of fluoride on Saos-2 cells differentiation were associated with the activation of the BMP/Smad pathway. Expression of phosphorylated Smad1/5(p-Smad1/5) was higher in cells exposed to 0.2 mM of fluoride. Plasmid expression vectors encoding the short hairpin RNA (shRNA) targeting Smad4 gene were used to block the BMP/Smad pathway, which resulted in a significantly reduced expression of BGP and BALP as well as their corresponding mRNA. The mRNA levels after transfection remained low even in the presence of fluoride. The present results reveal that BMP/Smad signaling pathway was altered during the period of osteogenesis, and that the activities of p-Smad1/5 were required for Saos-2 cells viability and differentiation induced by fluoride.  相似文献   

12.
It has been suggested that ZIP7 (Ke4, Slc39a7) belongs to the ZIP family of zinc transporters. Transient expression of the V5-tagged human ZIP7 fusion protein in CHO cells led to elevation of the cytoplasmic zinc level. However, the precise function of ZIP7 in cellular zinc homeostasis is not clear. Here we report that the ZIP7 gene is ubiquitously expressed in human and mouse tissues. The endogenous ZIP7 was associated with the Golgi apparatus and was capable of transporting zinc from the Golgi apparatus into the cytoplasm of the cell. Moreover, by using the yeast mutant strain Deltazrt3 that was defective in release of stored zinc from vacuoles, we found that ZIP7 was able to decrease the level of accumulated zinc and in the meantime to increase the nuclear/cytoplasmic labile zinc level in the ZIP7-expressing zrt3 mutant. We showed that the protein expression of ZIP7 was repressed under zinc-rich condition, whereas there were no effects of zinc on ZIP7 gene expression and intracellular localization. Neither did zinc deficiency affect the intracellular distribution of ZIP7 in mammalian cells. Our study demonstrates that ZIP7 is a functional zinc transporter that acts by transporting zinc from the Golgi apparatus to the cytoplasm of the cell.  相似文献   

13.
This study investigated the role of oncogenic H-Ras in DNA repair capacity in NIH3T3 cells. Expression of dominant-positive H-Ras (V12-H-Ras) enhanced the host cell reactivation of luciferase activity from UV-irradiated and cisplatin-treated plasmids and also increased the unscheduled DNA synthesis following cisplatin or UV treatment of cells. This observed enhancement of DNA repair capacity was inhibited by transient transfection with dominant-negative H-Ras (N17-H-Ras) or Rac1 (N17-Rac1) plasmids. Moreover, stable transfection of dominant-positive Rac1 (V12-Rac1) further enhanced DNA repair capacity. Because reactive oxygen species (ROS) are known to be a downstream effector of oncogenic Ras, we examined the role of ROS in DNA repair capacity. We found that ROS production by V12-H-Ras expression was mediated by the Ras/phosphatidylinositol 3-kinase (PI3K)/Rac1/NADPH oxidase-dependent pathway and that pretreatment of V12-H-Ras-transformed cells with an antioxidant (N-acetylcysteine) and an NADPH oxidase inhibitor (diphenyleneiodonium) decreased DNA repair capacity. Similarly, treatment with PI3K inhibitors (wortmannin and LY294002) inhibited the ability of oncogenic H-Ras to enhance DNA repair capacity. Furthermore, inhibition of the Ras/PI3K/Rac1/NADPH oxidase pathway resulted in increased sensitivity to cisplatin and UV in V12-H-Ras-expressing NIH3T3 cells. Taken together, these results provide evidence that oncogenic H-Ras activates DNA repair capacity through the Ras/PI3K/Rac1/NADPH oxidase-dependent pathway and that increased ROS production via this signaling pathway is required for enhancement of the DNA repair capacity induced by oncogenic H-Ras.  相似文献   

14.
Uveal melanoma (UM) is a highly invasive intraocular malignancy with high mortality. Presently, there is no FDA-approved standard for the treatment of metastatic UM. Pristimerin is a natural quinine methide triterpenoid compound with anti-angiogenic, anti-cancer and anti-inflammatory activities. However, Pristimerin potential cytotoxic effect on UM was poorly investigated. In the present study, we found the migration and invasion of UM-1 cells were inhibited by Pristimerin which also caused a rapid increase of ROS, decreased mitochondrial membrane potential, induced the accumulation of cells in G0/G1 phase, ending with apoptotic cell death. Pristimerin inhibited Akt and FoxO3a phosphorylation and induced nuclear accumulation of FoxO3a in UM-1 cells, increased the expression of pro-apoptotic proteins Bim、p27Kip1, cleaved caspase-3, PARP and Bax, and decreased the expression of Cyclin D1 and Bcl-2. LY294002 or Akt-siRNA inhibited the PI3K/Akt/FoxO3a pathway and promoted the Pristimerin-induced apoptosis, while Pristimerin effects were partially abolished in FoxO3a knockdown UM-1 cell cultures. Taken together, present results showed that Pristimerin induced apoptotic cell death through inhibition of PI3K/Akt/FoxO3a pathway in UM-1 cells. These findings indicate that Pristimerin may be considered as a potential chemotherapeutic agent for patients with UM.  相似文献   

15.
Myeloperoxidase (MPO) is an important enzyme involved in the genesis and development of atherosclerosis. Vascular peroxidase 1 (VPO1) is a newly discovered member of the peroxidase family that is mainly expressed in vascular endothelial cells and smooth muscle cells and has structural characteristics and biological activity similar to those of MPO. Our specific aims were to explore the effects of VPO1 on endothelial cell apoptosis induced by oxidized low-density lipoprotein (ox-LDL) and the underlying mechanisms. The results showed that ox-LDL induced endothelial cell apoptosis and the expression of VPO1 in endothelial cells in a concentration- and time-dependent manner concomitant with increased intracellular reactive oxygen species (ROS) and hypochlorous acid (HOCl) generation, and up-regulated protein expression of the NADPH oxidase gp91phox subunit and phosphorylation of p38 MAPK. All these effects of ox-LDL were inhibited by VPO1 gene silencing and NADPH oxidase gp91phox subunit gene silencing or by pretreatment with the NADPH oxidase inhibitor apocynin or diphenyliodonium. The p38 MAPK inhibitor SB203580 or the caspase-3 inhibitor DEVD-CHO significantly inhibited ox-LDL-induced endothelial cell apoptosis, but had no effect on intracellular ROS and HOCl generation or the expression of NADPH oxidase gp91phox subunit or VPO1. Collectively, these findings suggest for the first time that VPO1 plays a critical role in ox-LDL-induced endothelial cell apoptosis and that there is a positive feedback loop between VPO1/HOCl and the now-accepted dogma that the NADPH oxidase/ROS/p38 MAPK/caspase-3 pathway is involved in ox-LDL-induced endothelial cell apoptosis.  相似文献   

16.
Subfamily II of the solute-linked carrier 39A superfamily contains three well-conserved zinc transporters (ZIPs1, 2, 3) whose physiological functions are unknown. We generated mice homozygous for knockout alleles of ZIP1 and both ZIP1 and ZIP 3 (double-knockout). These mice were apparently normal when dietary zinc was replete, but when dietary zinc was limited during pregnancy embryos from ZIP1 or ZIP3 knockout mice were two to three times more likely to develop abnormally than those in wildtype mice, and 91% (71/78) of embryos developed abnormally in ZIP1, ZIP3 double-knockout mice. Analysis of the patterns of expression of these genes in mice revealed predominate expression in intestinal stromal cells, nephric-tubular epithelial cells, pancreatic ductal epithelial cells, and hepatocytes surrounding the central vein. This suggests that these zinc transporters function, at least in part, in the redistribution and/or retention of zinc rather than its acquisition from the diet. In conclusion, mutations in the ZIP1 and ZIP3 zinc transporter genes are silent when dietary intake of zinc is normal, but can dramatically compromise the success of pregnancy when dietary intake of zinc is limiting.  相似文献   

17.
IntroductionZinc homeostasis is regulated by SLC39A/ZIP, SLC30A/ZnT, and metallothionein (MT) families in human cells. Zinc dyshomeostasis may affect or be affected by the abnormal behavior of cancer cells. Although decreased serum zinc levels are observed in patients with pancreatic adenocarcinoma (PAAD), limited information is available regarding the expression pattern and prognostic roles of zinc homeostasis-related genes in PAAD.ObjectivesThe primary objective of this study was to explore the expression pattern and prognostic roles of zinc homeostasis-related genes in PAAD.MethodsThe expression pattern of 35 known zinc homeostasis-related genes in PAAD was systemically explored based on RNA-sequencing data from the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) projects. The association between the expression levels of zinc homeostasis-related genes and survival of PAAD patients was evaluated using the Kaplan-Meier method and the log-rank test. Expressional correlation between zinc homeostasis-related genes with potential prognostic value in PAAD and normal pancreatic controls was evaluated using Pearson’s correlation analysis. Functional enrichment analyses were performed to elucidate possible mechanisms for the potential prognostic and therapeutic roles of these zinc homeostasis-related genes in PAAD. Effects of ZIP11, ZnT1, or ZnT6 knockdown on the proliferation and the migration of Capan-1 pancreatic cancer cells were assessed by the CCK-8 assay and the wound healing assay respectively.ResultsWe demonstrated that the expression levels of ZIP1, ZIP3, ZIP4, ZIP6, ZIP7, ZIP9, ZIP10, ZIP11, ZIP13, ZnT1, ZnT5, ZnT6, ZnT7, and ZnT9 were increased, whereas the expression levels of ZIP5, ZIP14, ZnT2, MT1 G, MT1H, and MT1X were decreased in PAAD tumors compared with normal pancreatic controls. Among these differentially-expressed genes related to zinc homeostasis, higher expression of ZIP4, ZIP11, ZnT1 or ZnT6 predicted poorer prognosis with the possible involvement of several cancer-related processes and pathways in PAAD patients. We further demonstrated that knockdown of ZIP11 attenuated Capan-1 cell proliferation with decreased activation of ERK1/2 pathway; knockdown of ZnT1 attenuated Capan-1 cell proliferation with decreased activation of ERK1/2, p38 MAPK, NF-kB, and mTOR pathways; knockdown of ZnT6 attenuated Capan-1 cell proliferation with decreased activation of ERK1/2, p38 MAPK, and NF-kB pathways.ConclusionsHigher expression of the zinc transporter ZIP4, ZIP11, ZnT1 or ZnT6 predicted poorer prognosis in patients with PAAD. These findings provide new clues for understanding the complex relationship between zinc homeostasis and pancreatic cancer.  相似文献   

18.
19.

Background

Insulin receptor substrate (IRS)-1 is associated with tumorigenesis; its levels are elevated in several human cancers. IRS-1 protein binds to several oncogene proteins. Oxidative stress and reactive oxygen species (ROS) are involved in the initiation and progression of cancers. Cancer cells produce greater levels of ROS than normal cells do because of increased metabolic stresses. However, excessive production of ROS kills cancer cells. Autophagy usually serves as a survival mechanism in response to stress conditions, but excessive induction of autophagy results in cell death. In addition to inducing necrosis and apoptosis, ROS induces autophagic cell death. ROS inactivates IRS-1 mediated signaling and reduces intracellular IRS-1 concentrations. Thus, there is a complex relationship between IRS-1, ROS, autophagy, and cancer. It is not fully understood how cancer cells grow rapidly and survive in the presence of high ROS levels.

Methods and results

In this study, we established mouse NIH/3T3 cells that overexpressed IRS-1, so mimicking cancers with increased IRS-1 expression levels; we found that the IRS-1 overexpressing cells grow more rapidly than control cells do. Treatment of cells with glucose oxidase (GO) provided a continuous source of ROS; low dosages of GO promoted cell growth, while high doses induced cell death. Evidence for GO induced autophagy includes increased levels of isoform B-II microtubule-associated protein 1 light chain 3 (LC3), aggregation of green fluorescence protein-tagged LC3, and increased numbers of autophagic vacuoles in cells. Overexpression of IRS-1 resulted in inhibition of basal autophagy, and reduced oxidative stress-induced autophagy and cell death. ROS decreased the mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase signaling, while overexpression of IRS-1 attenuated this inhibition. Knockdown of autophagy-related gene 5 inhibited basal autophagy and diminished oxidative stress-induced autophagy and cell death.

Conclusion

Our results suggest that overexpression of IRS-1 promotes cells growth, inhibits basal autophagy, reduces oxidative stress-induced autophagy, and diminishes oxidative stress-mediated autophagy-dependent cell death. ROS-mediated autophagy may occur via inhibition of IRS-1/phosphatidylinositol 3-kinase/mTOR signaling. Our data afford a plausible explanation for IRS-1 involvement in tumor initiation and progression.  相似文献   

20.
Abamectin (ABA) as one of the worldwide used compounds in agriculture has raised safety concerns on nontarget organism toxicity. However, the study of male reproductive system damage caused by ABA remains unclear. Our aim is to investigate the effect of ABA‐induced cytotoxicity in TM3 Leydig cells and their underlying mechanisms. ABA inhibits TM3 cell viability and proliferation via cell cycle arrested in the G0/G1 phase. In addition, ABA‐induced mitochondrial depolarization leads to an imbalance in Bcl‐2 family expression, causing caspase‐dependent apoptosis in TM3 cells. The increased ratio of cells expression LC3 protein and LC3‐II to LC3‐I indicated the activation of autophagy potentially. Further experiments revealed ABA treatment reduced phosphatidylinositol 3‐kinase (PI3K), protein kinase B (AKT) phosphorylation, and mammalian target of rapamycin (mTOR) phosphorylation. Pretreatment with a PI3K/AKT inhibitor, LY294002, mimicked the ABA‐mediated effects on cytotoxicity. Pretreatment with a PI3K/AKT agonist, insulin‐like growth factor‐1, reversed the effects of ABA. ABA caused the accumulation of intracellular reactive oxygen species (ROS) by increased intensity of the ROS indicator. However, N‐acetylcysteine as ROS scavengers inhibited ABA‐induced apoptosis and autophagy and reversed these ABA‐mediated effects on PI3K/AKT/mTOR pathway. On the basis of the above results, it is suggested that ABA exposure induces apoptosis and autophagy in TM3 cells by ROS accumulation to mediate PI3K/AKT/mTOR signaling pathway suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号