首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The probability that the fitter of two alleles will increase in frequency in a population goes up as the product of N (the effective population size) and s (the selection coefficient) increases. Discovering the distribution of values for this product across different alleles in different populations is a very important biological task. However, biologists often use the product Ns to define a different concept; they say that drift “dominates” selection or that drift is “stronger than” selection when Ns is much smaller than some threshold quantity (e.g., ½) and that the reverse is true when Ns is much larger than that threshold. We argue that the question of whether drift dominates selection for a single allele in a single population makes no sense. Selection and drift are causes of evolution, but there is no fact of the matter as to which cause is stronger in the evolution of any given allele.  相似文献   

2.
I distinguish two versions of kin selection theory—a purely genetic version (GKST) and a version that also appeals to cultural (i.e. non-genetically-derived) forms of cooperation (WKST)—and present an argument in favor of using the former when it comes to accounting for the evolution of cooperation in non-human organisms. Specifically, I first show that both GKST and WKST are equally mathematically coherent—they can both be derived from the Price equation—but not necessarily equally empirically plausible, as they are based on different assumptions about the inheritance system underlying the cooperative phenotype. Given this, I then, second, present a model selection theoretic argument in favor of GKST over WKST. This argument is based on the fact that, in non-human cases, the former theory is likely to be as empirically successful as WKST, while containing fewer degrees of freedom. I end by defending both the intrinsic importance of this argument and its relevance to the discussion surrounding the “gene’s eye view of evolution.”  相似文献   

3.
Martin G  Lenormand T 《Genetics》2008,179(2):907-916
The distribution of the selection coefficients of beneficial mutations is pivotal to the study of the adaptive process, both at the organismal level (theories of adaptation) and at the gene level (molecular evolution). A now famous result of extreme value theory states that this distribution is an exponential, at least when considering a well-adapted wild type. However, this prediction could be inaccurate under selection for an optimum (because fitness effect distributions have a finite right tail in this case). In this article, we derive the distribution of beneficial mutation effects under a general model of stabilizing selection, with arbitrary selective and mutational covariance between a finite set of traits. We assume a well-adapted wild type, thus taking advantage of the robustness of tail behaviors, as in extreme value theory. We show that, under these general conditions, both beneficial mutation effects and fixed effects (mutations escaping drift loss) are beta distributed. In both cases, the parameters have explicit biological meaning and are empirically measurable; their variation through time can also be predicted. We retrieve the classic exponential distribution as a subcase of the beta when there are a moderate to large number of weakly correlated traits under selection. In this case too, we provide an explicit biological interpretation of the parameters of the distribution. We show by simulations that these conclusions are fairly robust to a lower adaptation of the wild type and discuss the relevance of our findings in the context of adaptation theories and experimental evolution.  相似文献   

4.
The epistatic interactions among mutations have a large effect on the evolution of populations. In this article we provide a formalism under which epistatic interactions among pairs of mutations have a distribution whose mean can be modulated. We find that the mean epistasis is correlated to the effect of mutations or genetic robustness, which suggests that such formalism is in good agreement with most in silico models of evolution where the same pattern is observed. We further show that the evolution of epistasis is highly dependant on the intensity of drift and of how complex the organisms are, and that either positive or negative epistasis could be selected for, depending on the balance between the efficiency of selection and the intensity of drift.  相似文献   

5.
Relatively little is known about whether and how nongenetic inheritance interacts with selection to impact the evolution of phenotypic plasticity. Here, we empirically evaluated how stabilizing selection and a common form of nongenetic inheritance—maternal environmental effects—jointly influence the evolution of phenotypic plasticity in natural populations of spadefoot toads. We compared populations that previous fieldwork has shown to have evolved conspicuous plasticity in resource‐use phenotypes (“resource polyphenism”) with those that, owing to stabilizing selection favouring a narrower range of such phenotypes, appear to have lost this plasticity. We show that: (a) this apparent loss of plasticity in nature reflects a condition‐dependent maternal effect and not a genetic loss of plasticity, that is “genetic assimilation,” and (b) this plasticity is not costly. By shielding noncostly plasticity from selection, nongenetic inheritance generally, and maternal effects specifically, can preclude genetic assimilation from occurring and consequently impede adaptive (genetic) evolution.  相似文献   

6.
According to theory, two consequences of sexual selection are sexual dimorphism in size and secondary sexual characteristics, due to either intra- or intersexual selection. In this paper I suggest three criteria for the test of an evolutionary hypothesis involving quantitative morphological characters. First, the postulated change must be shown to have occurred in evolutionary time. Second, this change must be positively correlated with a change in the proposed selective agent. Third, given two taxa with different degrees of sexual size dimorphism and different mating system, the possible influence of drift must be rejected. If the hypothesis is not rejected by these three criteria, then we still have no proof of causality, but we can at least be more confident about its plausibility. This is applied to the particular hypothesis that sexual dimorphism in the Boat-tailed and Great-tailed grackles (Quiscalus spp; Icterinae; Aves) is caused by the highly polygynous mating system in these species. In relation to an outgroup, both species have increased disproportionately in male tarsus and tail size, creating an increased sexual dimorphism. This has cooccurred with the evolution of their particular mating system. However, the variance among species in male tarsus size can be accounted for by drift, and need not be a result of selection for increased size. In contrast, the variance among species in male tail size was much larger than expected under a null model of drift, indicating directional selection for long tails. The variance in female tail size was not larger than expected by drift, whereas the variance in female tarsus size was in fact lower than expected by drift, indicating stabilizing selection. The data are consistent with the hypothesis with regard to tail size, but not with regard to body size.  相似文献   

7.
8.
The evolution of cooperation is thought to be promoted by pleiotropy, whereby cooperative traits are coregulated with traits that are important for personal fitness. However, this hypothesis faces a key challenge: what happens if mutation targets a cooperative trait specifically rather than the pleiotropic regulator? Here, we explore this question with the bacterium Pseudomonas aeruginosa, which cooperatively digests complex proteins using elastase. We empirically measure and theoretically model the fate of two mutants—one missing the whole regulatory circuit behind elastase production and the other with only the elastase gene mutated—relative to the wild‐type (WT). We first show that, when elastase is needed, neither of the mutants can grow if the WT is absent. And, consistent with previous findings, we show that regulatory gene mutants can grow faster than the WT when there are no pleiotropic costs. However, we find that mutants only lacking elastase production do not outcompete the WT, because the individual cooperative trait has a low cost. We argue that the intrinsic architecture of molecular networks makes pleiotropy an effective way to stabilize cooperative evolution. Although individual cooperative traits experience loss‐of‐function mutations, these mutations may result in weak benefits, and need not undermine the protection from pleiotropy.  相似文献   

9.
The variation in color pattern between populations of the poison‐dart frog Oophaga pumilio across the Bocas del Toro archipelago in Panama is suggested to be due to sexual selection, as two other nonsexually selecting Dendrobatid species found in the same habitat and range do not exhibit this variation. We theoretically test this assertion using a quantitative genetic sexual selection model incorporating aposematic coloration and random drift. We find that sexual selection could cause the observed variation via a novel process we call “coupled drift.” Within our model, for certain parameter values, sexual selection forces frog color to closely follow the evolution of female preference. Any between‐population variation in preference due to genetic drift is passed on to color. If female preference in O. pumilio is strongly affected by drift, whereas color in the nonsexually selecting Dendrobatid species is not, coupled drift will cause increased between‐population phenotypic variation. However, with different parameter values, coupled drift will result in between‐population variation in color being suppressed compared to its neutral value, or in little or no effect. We suggest that coupled drift is a novel theoretical process that could have a role linking sexual selection with speciation both in O. pumilio, and perhaps more generally.  相似文献   

10.
11.
We study a population genetics model of an organism with a genome of L(tot)loci that determine the values of T quantitative traits. Each trait is controlled by a subset of L loci assigned randomly from the genome. There is an optimum value for each trait, and stabilizing selection acts on the phenotype as a whole to maintain actual trait values close to their optima. The model contains pleiotropic effects (loci can affect more than one trait) and epistasis in fitness. We use adaptive walk simulations to find high-fitness genotypes and to study the way these genotypes are distributed in sequence space. We then simulate the evolution of haploid and diploid populations on these fitness landscapes and show that the genotypes of populations are able to drift through sequence space despite stabilizing selection on the phenotype. We study the way the rate of drift and the extent of the accessible region of sequence space is affected by mutation rate, selection strength, population size, recombination rate, and the parameters L and T that control the landscape shape. There are three regimes of the model. If LTL(tot), there are many small peaks that can be spread over a wide region of sequence space. Compensatory neutral mutations are important in the population dynamics in this case.  相似文献   

12.
Many organisms—notably microbes—are embedded within complex communities where cooperative behaviors in the form of excreted public goods can benefit other species. Under such circumstances, intraspecific interactions are likely to be less important in driving the evolution of cooperation. We first illustrate this idea with a simple theoretical model, showing that relatedness—the extent to which individuals with the same cooperative alleles interact with each other—has a reduced impact on the evolution of cooperation when public goods are shared between species. We test this empirically using strain of Pseudomonas aeruginosa that vary in their production of metal‐chelating siderophores in copper contaminated compost (an interspecific public good). We show that nonsiderophore producers grow poorly relative to producers under high relatedness, but this cost can be alleviated by the presence of the isogenic producer (low relatedness) and/or the compost microbial community. Hence, relatedness can become unimportant when public goods provide interspecific benefits.  相似文献   

13.
Developmental plasticity looks like a promising bridge between ecological and developmental perspectives on evolution. Yet, there is no consensus on whether plasticity is part of the explanation for adaptive evolution or an optional “add‐on” to genes and natural selection. Here, we suggest that these differences in opinion are caused by differences in the simplifying assumptions, and particular idealizations, that enable evolutionary explanation. We outline why idealizations designed to explain evolution through natural selection prevent an understanding of the role of development, and vice versa. We show that representing plasticity as a reaction norm conforms with the idealizations of selective explanations, which can give the false impression that plasticity has no explanatory power for adaptive evolution. Finally, we use examples to illustrate why evolutionary explanations that include developmental plasticity may in fact be more satisfactory than explanations that solely refer to genes and natural selection.  相似文献   

14.
How the balance between selection, migration, and drift influences the evolution of local adaptation has been under intense theoretical scrutiny. Yet, empirical studies that relate estimates of local adaptation to quantification of gene flow and effective population sizes have been rare. Here, we conducted a reciprocal transplant trial, a common garden trial, and a whole‐genome‐based demography analysis to examine these effects among Arabidopsis lyrata populations from two altitudinal gradients in Norway. Demography simulations indicated that populations within the two gradients are connected by gene flow (0.1 < 4Nem < 11) and have small effective population sizes (Ne < 6000), suggesting that both migration and drift can counteract local selection. However, the three‐year field experiments showed evidence of local adaptation at the level of hierarchical multiyear fitness, attesting to the strength of differential selection. In the lowland habitat, local superiority was associated with greater fecundity, while viability accounted for fitness differences in the alpine habitat. We also demonstrate that flowering time differentiation has contributed to adaptive divergence between these locally adapted populations. Our results show that despite the estimated potential of gene flow and drift to hinder differentiation, selection among these A. lyrata populations has resulted in local adaptation.  相似文献   

15.
Some species exhibit very high levels of DNA sequence variability; there is also evidence for the existence of heritable epigenetic variants that experience state changes at a much higher rate than sequence variants. In both cases, the resulting high diversity levels within a population (hyperdiversity) mean that standard population genetics methods are not trustworthy. We analyze a population genetics model that incorporates purifying selection, reversible mutations, and genetic drift, assuming a stationary population size. We derive analytical results for both population parameters and sample statistics and discuss their implications for studies of natural genetic and epigenetic variation. In particular, we find that (1) many more intermediate-frequency variants are expected than under standard models, even with moderately strong purifying selection, and (2) rates of evolution under purifying selection may be close to, or even exceed, neutral rates. These findings are related to empirical studies of sequence and epigenetic variation.  相似文献   

16.
In speciation research, much attention is paid to the evolution of reproductive barriers, preventing diverging groups from hybridizing back into one gene pool. The prevalent view is that reproductive barriers evolve gradually as a by‐product of genetic changes accumulated by natural selection and genetic drift in groups that are segregated spatially and/or temporally. Reproductive barriers, however, can also be reinforced by natural selection against maladaptive hybridization. These mutually compatible theories are both empirically supported by studies, analysing relationships between intensity of reproductive isolation and genetic distance in sympatric taxa and allopatric taxa. Here, we present the – to our knowledge – first comparative study in a haplodiploid organism, the social spider mite Stigmaeopsis miscanthi, by measuring premating and post‐mating, pre‐ and post‐zygotic components of reproductive isolation, using three recently diverged forms of the mite that partly overlap in home range. We carried out cross‐experiments and measured genetic distances (mitochondrial DNA and nuclear DNA) among parapatric and allopatric populations of the three forms. Our results show that the three forms are reproductively isolated, despite the absence of premating barriers, and that the post‐mating, prezygotic component contributes most to reproductive isolation. As expected, the strength of post‐mating reproductive barriers positively correlated with genetic distance. We did not find a clear pattern of prezygotic barriers evolving faster in parapatry than in allopatry, although one form did show a trend in line with the ecological and behavioural relationships between the forms. Our study advocates the versatility of haplodiploid animals for investigating the evolution of reproductive barriers.  相似文献   

17.
We evaluate Sewall Wright's three-phase “shifting balance” theory of evolution, examining both the theoretical issues and the relevant data from nature and the laboratory. We conclude that while phases I and II of Wright's theory (the movement of populations from one “adaptive peak” to another via drift and selection) can occur under some conditions, genetic drift is often unnecessary for movement between peaks. Phase III of the shifting balance, in which adaptations spread from particular populations to the entire species, faces two major theoretical obstacles: (1) unlike adaptations favored by simple directional selection, adaptations whose fixation requires some genetic drift are often prevented from spreading by barriers to gene flow; and (2) it is difficult to assemble complex adaptations whose constituent parts arise via peak shifts in different demes. Our review of the data from nature shows that although there is some evidence for individual phases of the shifting balance process, there are few empirical observations explained better by Wright's three-phase mechanism than by simple mass selection. Similarly, artificial selection experiments fail to show that selection in subdivided populations produces greater response than does mass selection in large populations. The complexity of the shifting balance process and the difficulty of establishing that adaptive valleys have been crossed by genetic drift make it impossible to test Wright's claim that adaptations commonly originate by this process. In view of these problems, it seems unreasonable to consider the shifting balance process as an important explanation for the evolution of adaptations.  相似文献   

18.
Marginal populations are expected to provide the frontiers for adaptation, evolution and range shifts of plant species under the anticipated climate change conditions. Marginal populations are predicted to show genetic divergence from central populations due to their isolation, and divergent natural selection and genetic drift operating therein. Marginal populations are also expected to have lower genetic diversity and effective population size (N e) and higher genetic differentiation than central populations. We tested these hypotheses using eastern white pine (Pinus strobus) as a model for keystone, long-lived widely-distributed plants. All 614 eastern white pine trees, in a complete census of two populations each of marginal old-growth, central old-growth, and central second-growth, were genotyped at 11 microsatellite loci. The central populations had significantly higher allelic and genotypic diversity, latent genetic potential (LGP) and N e than the marginal populations. However, heterozygosity and fixation index were similar between them. The marginal populations were genetically diverged from the central populations. Model testing suggested predominant north to south gene flow in the study area with curtailed gene flow to northern marginal populations. Signatures of natural selection were detected at three loci in the marginal populations; two showing divergent selection with directional change in allele frequencies, and one balancing selection. Contrary to the general belief, no significant differences were observed in genetic diversity, differentiation, LGP, and N e between old-growth and second-growth populations. Our study provides information on the dynamics of migration, genetic drift and selection in central versus marginal populations of a keystone long-lived plant species and has broad evolutionary, conservation and adaptation significance.  相似文献   

19.
Theory indicates that numbers of mating types should tend towards infinity or remain at two. The social amoeba, Dictyostelium discoideum, however, has three mating types. It is therefore a mystery how this species has broken the threshold of two mating types, but has not increased towards a much higher number. Frequency‐dependent selection on rare types in combination with isogamy, a form of reproduction involving gametes similar in size, could explain the evolution of multiple mating types in this system. Other factors, such as drift, may be preventing the evolution of more than three. We first looked for evidence of isogamy by measuring gamete size associated with each type. We found no evidence of size dissimilarities between gametes. We then looked for evidence of balancing selection, by examining mating type distributions in natural populations and comparing genetic differentiation at the mating type locus to that at more neutral loci. We found that mating type frequency varied among the three populations we examined, with only one of the three showing an even sex ratio, which does not support balancing selection. However, we found more population structure at neutral loci than the mating type locus, suggesting that the three mating types are indeed maintained at intermediate frequencies by balancing selection. Overall, the data are consistent with balancing selection acting on D. discoideum mating types, but with a sufficiently weak rare sex advantage to allow for drift, a potential explanation for why these amoebae have only three mating types.  相似文献   

20.
Adaptive radiation is the evolution of ecological and phenotypical diversity. It arises via ecological opportunity that promotes the exploration of underutilized or novel niches mediating specialization and reproductive isolation. The assumed precondition for rapid local adaptation is diversifying natural selection, but random genetic drift could also be a major driver of this process. We used 27 populations of European whitefish (Coregonus lavaretus) from nine lakes distributed in three neighboring subarctic watercourses in northern Fennoscandia as a model to test the importance of random drift versus diversifying natural selection for parallel evolution of adaptive phenotypic traits. We contrasted variation for two key adaptive phenotypic traits correlated with resource utilization of polymorphic fish; the number of gill rakers and the total length of fish, with the posterior distribution of neutral genetic differentiation from 13 microsatellite loci, to test whether the observed phenotypic divergence could be achieved by random genetic drift alone. Our results show that both traits have been under diversifying selection and that the evolution of these morphs has been driven by isolation through habitat adaptations. We conclude that diversifying selection acting on gill raker number and body size has played a significant role in the ongoing adaptive radiation of European whitefish morphs in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号