首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细菌群体感应及其在食品变质中的作用   总被引:1,自引:0,他引:1  
食品相关细菌引起的生物被膜形成和食品变质是食品工业中的重大问题。研究表明细菌群体感应(Quorum sensing,QS)与被膜形成、食品腐败变质密切相关。重点对细菌产生的各种QS信号分子及其在被膜形成的作用和被膜在食品工业中的重要性做了介绍。QS信号分子与食品变质密切相关,故对QS抑制剂作为新型食品防腐剂以延长储存期限及加强食品安全的前景进行了概述。  相似文献   

2.
近年来,噬菌体由于其特异性侵染细菌的特性,在食品加工及保藏过程中有害微生物的控制和检测方面展现出良好的应用前景。例如在食品表面喷洒噬菌体或将噬菌体与食品包装材料结合,对食源性致病菌及腐败菌加以控制,以及利用基因工程手段构建报告噬菌体对食源性致病菌进行快速检测等。然而,噬菌体也是危害食品发酵的重要因素之一,轻则减产,重则引起整个发酵过程失败,造成巨大的经济损失。目前主要通过噬菌体消毒及灭活、发酵菌种变换等方式防止噬菌体污染。本文综述了食品工业中噬菌体应用及危害的研究现状,以期为拓宽噬菌体在食品工业中的应用途径及开发噬菌体污染防治的新技术提供理论依据。  相似文献   

3.
Biofilms are a common cause of food contamination with undesirable bacteria, such as pathogenic bacteria. Staphylococcus aureus is one of the major bacteria causing food-borne diseases in humans. A study designed to determine the presence of S. aureus on food contact surfaces in dairy, meat, and seafood environments and to identify coexisting microbiota has therefore been carried out. A total of 442 samples were collected, and the presence of S. aureus was confirmed in 6.1% of samples. Sixty-three S. aureus isolates were recovered and typed by random amplification of polymorphic DNA (RAPD). Profiles were clustered into four groups which were related to specific food environments. All isolates harbored some potential virulence factors such as enterotoxin production genes, biofilm formation-associated genes, antibiotic resistance, or lysogeny. PCR-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprints of bacterial communities coexisting with S. aureus revealed the presence of bacteria either involved in food spoilage or of concern for food safety in all food environments. Food industry surfaces could thus be a reservoir for S. aureus forming complex communities with undesirable bacteria in multispecies biofilms. Uneven microbiological conditions were found in each food sector, which indicates the need to improve hygienic conditions in food processing facilities, particularly the removal of bacterial biofilms, to enhance the safety of food products.  相似文献   

4.
微生物在生长过程中为适应生存环境而形成了生物膜,Dr.Costerton JW在生物膜方面的研究为我们开拓了微生物学的新领域。微生物生物膜是由微生物群体及其包被的细胞外多聚物和基质网组成,它们彼此黏附或者黏附到组织或物体的表面。微生物生物膜与微生物的耐药性形成、基因的转移以及引起机体的持续性感染等都密切相关。目前对生物膜的研究重点已经深入到微生物相互间的信号传递、致病基因的转移以及如何干预微生物生物膜的形成等方面。此外,在治理污水和环境保护工程、生物材料工程和食品工业等方面,微生物生物膜技术已经得到了应用。  相似文献   

5.
Biofilm could be defined as a complex communities of microorganisms seen affixed to surfaces, they form clusters without sticking to any surface and buried firmly in an extracellular matrix (ECM). This matrix is formed by microorganisms in the formation of either extracellular polymeric substances (EPSS) or extracellular polymer. Many reviews have addressed the negative consequences of biofilm production in the food industry, among which we talk about biofilms being responsible for spoilage microorganisms and foodborne pathogens such as Listeria monocytogenes, Bacillus cereus etc. These contamination could be linked to biofilms presence in the processing plant. Although researches have tried conferring solutions to these challenges in the food industry, however, in this review we have tried to focus on the positive impact of biofilms formed in the food industry. It is critically expedient while trying to find the solution to the challenges of biofilm in the food industry to develop and give a major focus on the advantages and positive impact biofilm has in the food industry, which has been greatly neglected. Hence in this article, we have highlighted some positive impacts of biofilms formed in the food industry, like enhancing plant health and productivity of food products, as an agent of water and wastewater treatment in the food industry, as a tool in reducing the amount of excess sludge in the wastewater treatment plant. The development of edible biofilms, fermented food products and the production of biodegradable food packaging are also part of biofilms beneficial roles in the food industries.  相似文献   

6.
生物被膜的物理特性及其表征   总被引:1,自引:0,他引:1  
生物被膜涉及到人类生产生活的方方面面。生物被膜的形成有时是有益的,可用于生物降解、生物催化等;但同时也造成了诸多不利的影响,医疗领域中的感染性疾病、工业生产中的生物污损等均与生物被膜的形成有关。生物被膜形成过程中的物理性质决定着生物被膜的形态结构以及机械稳定性,对它在应对外界环境刺激并得以生存具有重要的意义。本文介绍了生物被膜形成初期和发展过程中的物理性质以及相应的表征手段。其中,细菌的表面粘附由细菌的近界面运动行为及细菌与表面的相互作用决定,并对生物被膜的初期形成起关键的作用。此外,机械性能测试发现成熟的生物被膜可看作具备粘弹性的聚合物。  相似文献   

7.
AIMS: The aim of this work was to purify and characterize antibacterial compounds produced by Lactobacillus murinus strain L1. METHODS AND RESULTS: Antagonistic activity was observed in a deferred agar-spot assay against spoilage and pathogenic bacteria, but not against lactobacilli. The inhibitory activity occurred between pH 3.0 and 5.0, and was heat stable. The active compounds were purified by gel filtration chromatography and two peaks of antibacterial activity were observed using Bacillus cereus ATCC 11778 and Shigella sonnei ATCC 11060 as indicator strains. Two active low molecular weight compounds were responsible for this phenomenon and UV spectroscopy, gas chromatography and mass spectrometry were used to characterize them. One of them is lactic acid, while the other is a mono-substituted aromatic ring apparently constituted by group residues of m/z 192 linked in tandem to phenylalanine. CONCLUSIONS: Lactobacillus murinus produces at least two low molecular weight compounds active against B. cereus and Sh. sonnei. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first purification of a new broad-spectrum antibacterial compound from Lact. murinus which inhibits various pathogenic and food spoilage bacteria without acting on other lactobacilli. Using it as a biotechnological control agent of bacterial spoilage may be a promising possibility for the food industry.  相似文献   

8.
The SOS response is a conserved inducible pathway in bacteria that is involved in DNA repair and restart of stalled replication forks. Activation of the SOS response can result in stress resistance and mutagenesis. In food processing facilities and during food preservation, bacteria are exposed to stresses and stimuli that potentially activate the SOS response, resulting in resistant or adapted bacteria. This review places the bacterial SOS response in a food safety perspective by providing an overview of the known triggers of the SOS response mechanism and its impact on the survival of spoilage and pathogenic bacteria.  相似文献   

9.
The ability of many bacteria to adhere to surfaces and to form biofilms has major implications in a variety of industries including the food industry, where biofilms create a persistent source of contamination. The formation of a biofilm is determined not only by the nature of the attachment surface, but also by the characteristics of the bacterial cell and by environmental factors. This review focuses on the features of the bacterial cell surface such as flagella, surface appendages and polysaccharides that play a role in this process, in particular for bacteria linked to food‐processing environments. In addition, some aspects of the attachment surface, biofilm control and eradication will be highlighted.  相似文献   

10.
Bacteriocins are antimicrobial peptides or proteins produced by strains of diverse bacterial species. The antimicrobial activity of this group of natural substances against foodborne pathogenic, as well as spoilage bacteria, has raised considerable interest for their application in food preservation. Application of bacteriocins may help reduce the use of chemical preservatives and/or the intensity of heat and other physical treatments, satisfying the demands of consumers for foods that are fresh tasting, ready to eat, and lightly preserved. In recent years, considerable effort has been made to develop food applications for many different bacteriocins and bacteriocinogenic strains. Depending on the raw materials, processing conditions, distribution, and consumption, the different types of foods offer a great variety of scenarios where food poisoning, pathogenic, or spoilage bacteria may proliferate. Therefore, the effectiveness of bacteriocins requires careful testing in the food systems for which they are intended to be applied against the selected target bacteria. This and other issues on application of bacteriocins in foods of dairy, meat, seafood, and vegetable origins are addressed in this review.  相似文献   

11.
Bacteriocins are antimicrobial peptides or proteins produced by strains of diverse bacterial species. The antimicrobial activity of this group of natural substances against foodborne pathogenic, as well as spoilage bacteria, has raised considerable interest for their application in food preservation. Application of bacteriocins may help reduce the use of chemical preservatives and/or the intensity of heat and other physical treatments, satisfying the demands of consumers for foods that are fresh tasting, ready to eat, and lightly preserved. In recent years, considerable effort has been made to develop food applications for many different bacteriocins and bacteriocinogenic strains. Depending on the raw materials, processing conditions, distribution, and consumption, the different types of foods offer a great variety of scenarios where food poisoning, pathogenic, or spoilage bacteria may proliferate. Therefore, the effectiveness of bacteriocins requires careful testing in the food systems for which they are intended to be applied against the selected target bacteria. This and other issues on application of bacteriocins in foods of dairy, meat, seafood, and vegetable origins are addressed in this review.  相似文献   

12.
Abstract

Food wasted due to food spoilage remains a global challenge to the environmental sustainability and security of food supply. In food manufacturing, post-processing contamination of food can occur due to persistent bacterial biofilms, which can be resistant to conventional cleaning and sanitization. The objective was to characterize the efficacy of a polymeric coating in reducing Pseudomonas aeruginosa biofilm establishment and facilitating its removal. Viable cell density of a 48?h biofilm was reduced by 2.10 log cfu cm?2 on the coated surface, compared to native polypropylene. Confocal laser scanning and electron microscopy indicated reductions in mature biofilm viability and thickness on the coated material. The antifouling coating improved cleanability, with ~2.5 log cfu cm?2 of viable cells remaining after 105?min cleaning by water at 65?°C, compared to 4.5 log cfu cm?2 remaining on native polypropylene. Such coatings may reduce the persistence of biofilms in food processing environments, in support of reducing food spoilage and waste  相似文献   

13.
14.
Bacteriophages have attracted great attention for application in food biopreservation. Lytic bacteriophages specific for human pathogenic bacteria can be isolated from natural sources such as animal feces or industrial wastes where the target bacteria inhabit. Lytic bacteriophages have been tested in different food systems for inactivation of main food-borne pathogens including Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, Salmonella enterica, Shigella spp., Campylobacter jejuni and Cronobacter sakazkii, and also for control of spoilage bacteria. Application of lytic bacteriophages could selectively control host populations of concern without interfering with the remaining food microbiota. Bacteriophages could also be applied for inactivation of bacteria attached to food contact surfaces or grown as biofilms. Bacteriophages may receive a generally recognized as safe status based on their lack of toxicity and other detrimental effects to human health. Phage preparations specific for L. monocytogenes, E. coli O157:H7 and S. enterica serotypes have been commercialized and approved for application in foods or as part of surface decontamination protocols. Phage endolysins have a broader host specificity compared to lytic bacteriophages. Cloned endolysins could be used as natural preservatives, singly or in combination with other antimicrobials such as bacteriocins.  相似文献   

15.
Conventional methods for detecting indicator and pathogenic bacteria in water may underestimate the actual population due to sublethal environmental injury, inability of the target bacteria to take up nutrients and other physiological factors which reduce bacterial culturability. Rapid and direct methods are needed to more accurately detect and enumerate active bacteria. Such a methodological advance would provide greater sensitivity in assessing the microbiological safety of water and food. The principle goal of this presentation is to describe novel approaches we have formulated for the rapid and simultaneous detection of bacteria plus the determination of their physiological activity in water and other environmental samples. The present version of our method involves the concentration of organisms by membrane filtration or immunomagnetic separation and combines an intracellular fluorochrome (CTC) for assessment of respiratory activity plus fluorescent-labelled antibody detection of specific bacteria. This approach has also been successfully used to demonstrate spatial and temporal heterogeneities of physiological activities in biofilms when coupled with cryosectioning. Candidate physiological stains include those capable of determining respiratory activity, membrane potential, membrane integrity, growth rate and cellular enzymatic activities. Results obtained thus far indicate that immunomagnetic separation can provide a high degree of sensitivity in the recovery of seeded target bacteria (Escherichia coli O157:H7) in water and hamburger. The captured and stained target bacteria are then enumerated by either conventional fluorescence microscopy or ChemScan(R), a new instrument that is very sensitive and rapid. The ChemScan(R) laser scanning instrument (Chemunex, Paris, France) provides the detection of individual fluorescently labelled bacterial cells using three emission channels in less than 5 min. A high degree of correlation has been demonstrated between results obtained with the ChemScan and traditional plate counts of mixed natural bacterial populations in water. The continuing evolution of these methods will be valuable in the rapid and accurate analysis of environmental samples.  相似文献   

16.
Biofilms are frequently studied in the context of submerged or aquatic systems. However, much less is known about biofilms in unsaturated systems, despite their importance to such processes as food spoilage, terrestrial nutrient cycling, and biodegradation of environmental pollutants in soils. Using modeling and experimentation, we have described the biodegradation of toluene in unsaturated media by bacterial biofilms as a function of matric water potential, a dominant variable in unsaturated systems. We experimentally determined diffusion and kinetic parameters for Pseudomonas putida biofilms, then predicted biodegradation rates over a range of matric water potentials. For validation, we measured the rate of toluene depletion by intact biofilms and found the results to reasonably follow the model predictions. The diffusion coefficient for toluene through unsaturated P. putida biofilm averaged 1.3 x 10(7) cm(2)/s, which is approximately two orders of magnitude lower than toluene diffusivity in water. Our studies show that, at the scale of the microbial biofilm, the diffusion of toluene to biodegrading bacteria can limit the overall rate of biological toluene depletion in unsaturated systems. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 656-670, 1997.  相似文献   

17.
Bacteriocins are ribosomally synthesized peptides having considerable potential as a food preservative because of their strong antagonistic activity against many food spoilage and pathogenic organisms. A bacteriocin from Lactobacillus rhamnosus isolates was purified using ammonium sulphate precipitation and molecular exclusion chromatography techniques. Ammonium sulphate precipitation resulted in higher yield of bacteriocin, but the specific activity and fold purification were higher for molecular exclusion chromatography. The bacteriocin exhibited inhibition against food-borne pathogens and spoilage microorganisms, including both Gram-positive and -negative bacteria. Amylase, lipase and catalase did not alter the antimicrobial activity but proteolytic enzymes inactivated the bacteriocin. It was heat stable and exhibited activity in a pH range of 2–8 with maximum activity at pH 5.0. Molecular weight of bacteriocin was found to be ~5.6 kDa using SDS-PAGE. HPLC profile showed a single peak further attesting the purity of the bacteriocin.  相似文献   

18.
Bacteriocins are antimicrobial peptides produced by bacteria Gram-negative and Gram-positive, including lactic acid bacteria (LAB), organisms that are traditionally used in food preservation practices. Bacteriocins have been shown to have an aptitude as biofilm controlling agents in Listeria monocytogenes biofilms, a major risk for consumers and the food industry. Biofilms protect pathogens from sanitization procedures, allowing them to survive and persist in processing facilities, resulting in the cross-contamination of the end products. Studies have been undertaken on bacteriocinogenic LAB, their bacteriocins, and bioengineered bacteriocin derivatives for controlling L. monocytogenes biofilms on different surfaces through inhibition, competition, exclusion, and displacement. These alternative strategies can be considered promising in preventing the development of resistance to conventional sanitizers and disinfectants. Bacteriocins are “friendly” antimicrobial agents, and with high prevalence in nature, they do not have any known associated public health risk. Most trials have been carried out in vitro, on food contact materials such as polystyrene and stainless steel, while there have been few studies performed in situ to consolidate the results observed in vitro. There are strategies that can be employed for prevention and eradication of L. monocytogenes biofilms (such as the establishment of standard cleaning procedures using the available agents at proper concentrations). However, commercial cocktails using alternatives compounds recognized as safe and environmental friendly can be an alternative approach to be applied by the industries in the future.  相似文献   

19.
Flow cytometry applications in the food industry   总被引:1,自引:0,他引:1  
Flow cytometry has become a valuable tool in food microbiology. By analysing large numbers of cells individually using light-scattering and fluorescence measurements, this technique reveals both cellular characteristics and the levels of cellular components. Flow cytometry has been developed to rapidly enumerate microorganisms; to distinguish between viable, metabolically active and dead cells, which is of great importance in food development and food spoilage; and to detect specific pathogenic microorganisms by conjugating antibodies with fluorochromes, which is of great use in the food industry. In addition, high-speed multiparametric data acquisition, analysis and cell sorting, which allow other characteristics of individual cells to be studied, have increased the interest of food microbiologists in this technique. This mini-review gives an overview of the principles of flow cytometry and examples of the application of this technique in the food industry.  相似文献   

20.
While the potential emergence of food spoilage and pathogenic bacteria with resistance to lantibiotics is a concern, the creation of derivatives of starter cultures and adjuncts that can grow in the presence of these antimicrobials may have applications in food fermentations. Here a bank of Lactococcus lactis IL1403 mutants was created and screened, and a number of novel genetic loci involved in lantibiotic resistance were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号