首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we report on vaccination approaches against infectious bursal disease (IBD) of poultry that were performed with complete yeast of the species Kluyveromyces lactis (K. lactis). Employing a genetic system that enables the rapid production of stably transfected recombinant K. lactis, we generated yeast strains that expressed defined quantities of the virus capsid forming protein VP2 of infectious bursal disease virus (IBDV). Both, subcutaneous as well as oral vaccination regiments with the heat-inactivated but otherwise untreated yeast induced IBDV-neutralizing antibodies in mice and chickens. A full protection against a subsequent IBDV infection was achieved by subcutaneous inoculation of only milligram amounts of yeast per chicken. Oral vaccination also generated protection: while mortality was observed in control animals after virus challenge, none of the vaccinees died and ca. one-tenth were protected as indicated by the absence of lesions in the bursa of Fabricius. Recombinant K. lactis was thus indicated as a potent tool for the induction of a protective immune response by different applications. Subcutaneously applied K. lactis that expresses the IBDV VP2 was shown to function as an efficacious anti-IBD subunit vaccine.  相似文献   

2.
Infectious bursal disease virus (IBDV) causes economically important immunosuppressive disease in young chickens. The self-assembling capsid protein (VP2) from IBDV strain IR01 was expressed in Pichia pastoris resulting in the formation of homomeric, 23-nm infectious bursal disease subviral particles (IBD-SVPs) with a yield of 76 mg/l before and 38 mg/l after purification. Anti-IBDV antibodies were detected in chickens injected with purified IBD-SVPs or fed with either purified IBD-SVPs or inactivated P. pastoris cells containing IBD-VP2 (cell-encapsulated). Challenge studies using the heterologous classical IBDV strain (MB3) showed that intramuscular vaccination with 20 µg purified IBD-SVPs conferred full protection, achieved complete virus clearance and prevented bursal damage and atrophy, compared with only 40% protection, 0–10% virus clearance accompanied by severe atrophy and substantial bursal damage in mock-vaccinated and challenge controls. The commercial IBDV vaccine also conferred full protection and achieved complete virus clearance, albeit with partial bursal atrophy. Oral administration of 500 µg purified IBD-SVPs with and without adjuvant conferred 100% protection but achieved only 60% virus clearance with adjuvant and none without it. Moderate bursal damage was observed in both cases but the inclusion of adjuvant resulted in bursal atrophy similar to that observed with live-attenuated vaccine and parenteral administration of 20 µg purified IBD-SVPs. The oral administration of 250 mg P. pastoris cells containing IBD-VP2 resulted in 100% protection with adjuvant and 60% without, accompanied by moderate bursal damage and atrophy in both groups, whereas 25 mg P. pastoris cells containing IBD-VP2 resulted in 90–100% protection with moderate bursal lesions and severe atrophy. Finally, the oral delivery of 50 µg purified IBD-SVPs achieved 40–60% protection with severe bursal lesions and atrophy. Both oral and parenteral administration of yeast-derived IBD-VP2 can therefore induce a specific and protective immune response against IBDV without affecting the growth rate of chickens.  相似文献   

3.
牛肝提取物提高仔鸡免疫力的研究   总被引:15,自引:0,他引:15  
将牛肝提取物注射到第13日龄和第15日龄鸡胚中能显著提高孵出后仔鸡的抗SRBC血清抗体的效价,促进脾和法氏囊淋巴细胞增殖、分化。同时,牛肝提取物与雏鸡法氏囊粗提取液,抗鸡法氏囊病毒抗体均有增强仔鸡抵抗传染性法氏囊病的能力。实验结果表明牛肝提取物中可能含有类似法氏囊素的物质。  相似文献   

4.
It has previously been shown that infectious bursal disease virus is a naked icosahedral particle with a diameter of about 60 nm and a genome consisting of two segments of double-stranded RNA (Müller et al., J. Virol. 31:584-589, 1979). One of the two major structural polypeptides (molecular weight, 40,000) of this virus could not be found in lysates of infected cells; it is derived from a precursor polypeptide demonstrable inside the cells in relatively large quantities and seems to be processed during virus assembly or later. The precursor molecule is regularly present in the infectious virus particle (buoyant density, 1.33 g/ml) in minor proportions, but it represents an outstanding structural element of incomplete noninfectious particles ("top components"; buoyant density, 1.29 g/ml) which contain viral RNA. This type of incomplete particles is mainly produced by chicken embryo fibroblasts in contrast to lymphoid cells from the bursa of Fabricius. Precursor-product relationships also seem to exist in the biosynthesis of the other viral polypeptides. In contrast to some other viruses with a segmented double-stranded RNA genome, none of the structural proteins of infectious bursal disease virus is appreciably glycosylated.  相似文献   

5.
The aim of this study was to investigate the inhibitory effect of Sargassum polysaccharide on oxidative stress induced by infectious bursa disease virus (IBDV) in chicken bursal lymphocytes. The levels of IL-1β, IL-8, IL-10, TNF-α, MCP-1, reduced glutathione and reactive oxygen species in chicken bursal lymphocytes treated with IBDV or both IBDV and Sargassum polysaccharide were measured, and the activities of superoxide dimutase and glutathione peroxidase were evaluated. Our results showed that oxidative stress appeared when chicken bursal lymphocytes were incubated with IBDV for 8 h at 100 TCID50. Sargassum polysaccharide inhibited oxidative stress by increasing the amount of reduced glutathione, promoting the activities of superoxide dimutase and glutathione peroxidase and reducing the level of reactive oxygen species. The polysaccharide also raised IL-1β, IL-8, IL-10 and TNF-α levels in cells infected with IBDV. These findings suggest that Sargassum polysaccharide acts against infection by elevating antioxidant capacity and cytokine levels in chicken bursal lymphocytes.  相似文献   

6.
In contrast to typical mammals, the chicken MHC (the BF-BL region of the B locus) has strong genetic associations with resistance and susceptibility to infectious pathogens as well as responses to vaccines. We have shown that the chicken MHC encodes a single dominantly expressed class I molecule whose peptide-binding motifs can determine resistance to viral pathogens, such as Rous sarcoma virus and Marek’s disease virus. In this report, we examine the response to a molecular defined vaccine, fp-IBD1, which consists of a fowlpox virus vector carrying the VP2 gene of infectious bursal disease virus (IBDV) fused with β-galactosidase. We vaccinated parental lines and two backcross families with fp-IBD1, challenged with the virulent IBDV strain F52/70, and measured damage to the bursa. We found that the MHC haplotype B15 from line 15I confers no protection, whereas B2 from line 61 and B12 from line C determine protection, although another locus from line 61 was also important. Using our peptide motifs, we found that many more peptides from VP2 were predicted to bind to the dominantly expressed class I molecule BF2*1201 than BF2*1501. Moreover, most of the peptides predicted to bind BF2*1201 did in fact bind, while none bound BF2*1501. Using peptide vaccination, we identified one B12 peptide that conferred protection to challenge, as assessed by bursal damage and viremia. Thus, we show the strong genetic association of the chicken MHC to a T cell vaccine can be explained by peptide presentation by the single dominantly expressed class I molecule.  相似文献   

7.
The cDNA fragments 466–966 and 878–1088 coding for the precursor M (prM) protein and polypeptide M31–75-E1–30 of the Russian strain LEIV-Vlg99-27889-human of the West Nile virus (WNV) were synthesized and cloned. The corresponding prM and M31–75-E1–30 recombinant polypeptides were purified by affinity chromatography. The prM polypeptide interacted with a polyclonal serum against WNV in ELISA and immunoblotting, demonstrating the immunochemical similarity of the recombinant polypeptide and the native WNV prM protein. Six species-specific monoclonal antibodies (mAbs) against the prM recombinant polypeptide recognized at least four epitopes on the recombinant polypeptides. In addition, mAb 7D11 displayed a virus-neutralizing activity. The patterns of mAb interactions with the prM, M31–75-E1–30, E1–180, and E260–466 recombinant polypeptides revealed cross-reacting epitopes in regions 260–466 of the E protein and 31–75 of the M31–75-E1–30 polypeptide and the WNV prM protein. A spatial model revealed structural similarity of the C-terminal regions of the E and M proteins of WNV, supporting the results of immunochemical experiments. Based on virus neutralization by mAb 7D11, which recognized an epitope mapping to region 31–75 of the WNV M protein, an important function in virus penetration into the cell was assumed for the C-terminal region of the M protein.  相似文献   

8.
The N-terminally myristoylated matrix (MA) domain of the HIV-1 Gag polyprotein promotes virus assembly by targeting Gag to the inner leaflet of the plasma membrane. Recent studies indicate that, prior to membrane binding, MA associates with cytoplasmic tRNAs (including tRNALys3), and in vitro studies of tRNA-dependent MA interactions with model membranes have led to proposals that competitive tRNA interactions contribute to membrane discrimination. We have characterized interactions between native, mutant, and unmyristylated (myr-) MA proteins and recombinant tRNALys3 by NMR spectroscopy and isothermal titration calorimetry. NMR experiments confirm that tRNALys3 interacts with a patch of basic residues that are also important for binding to the plasma membrane marker, phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. Unexpectedly, the affinity of MA for tRNALys3 (Kd = 0.63 ± 0.03 μM) is approximately 1 order of magnitude greater than its affinity for PI(4,5)P2-enriched liposomes (Kd(apparent) = 10.2 ± 2.1 μM), and NMR studies indicate that tRNALys3 binding blocks MA association with liposomes, including those enriched with PI(4,5)P2, phosphatidylserine, and cholesterol. However, the affinity of MA for tRNALys3 is diminished by mutations or sample conditions that promote myristate exposure. Since Gag–Gag interactions are known to promote myristate exposure, our findings support virus assembly models in which membrane targeting and genome binding are mechanistically coupled.  相似文献   

9.
通过对上海近郊某鸡场数群 10日龄左右的病鸡的临床症状、病理变化、病毒分离、纯化、动物回归、血清学检测及病毒核酸纯化、VP2基因序列的测定与分析 ,确认上海地区以发病日龄早 ,发病率、死亡率高为特征的鸡传染病为超强毒型鸡传染性法氏囊病 ,病原具有鸡传染性法氏囊病病毒超强毒 (vvIBDV)的分子特征 ,为vvIBDV。  相似文献   

10.
We have identified a region related to the protease domain of bacterial and organelle ATP-dependent Lon proteases in virus protein 4 (VP4) of infectious bursal disease virus strain P2 (IBDVP2), a two-segmented double-stranded RNA virus. Unlike canonical Lons, IBDVP2 VP4 possesses a proteinase activity though it lacks an ATPase domain. Ser652 and Lys692 of IBDVP2 VP4 are conserved across the Lon/VP4 family and are essential for catalysis. Lys692 has the properties of a general base, increasing the nucleophilicity of Ser652; a similar catalytic dyad may function in the other Lons. VP4 can cleave in trans and is responsible for the interdomain proteolytic autoprocessing of the pVP2- VP4-VP3 polyprotein encoded by RNA segment A. VP2, which is later derived from pVP2, and VP3 are major capsid proteins of birnaviruses. Results of the characterization of a range of the IBDVP2 VP4 mutants in cell cultures implicate VP4 in trans-activation of the synthesis of VP1, putative RNA-dependent RNA polymerase encoded by RNA segment B, and in cleavage rate-dependent control of process(es) crucial for the generation of the infectious virus progeny.  相似文献   

11.
This study was conducted on 100 one-day-old broiler chicks to evaluate the effect of Poulvac E. coli vaccine in reduction of clinical signs and complications after concurrent infectious bronchitis virus (variant 02) and virulent E. coli O78 challenges. The birds were evaluated for clinical signs, mortality for 7?days post-infection, PM lesion score, average body weight and serological evaluation. Re-isolation and RT-PCR for the challenging infectious bronchitis virus (IBV) variant 02 were conducted thereafter. The results showed that the Poulvac E. coli at one-day old chicks in the presence of co-infection with virulent E. coli and IBV variant 02 provides better body weight gain at 35?days than the other groups. The challenge with IBV variant 02 alone in non-vaccinated birds doesn’t give any mortality; this indicated that the severity of IBV variant 02 increased by the presence of co-infection with Avian Pathogenic E. coli (APEc). The mortality percentage associated with both E. coli and IBV variant 02 infections in the none vaccinated group by Poulvac E. coli was 25% while this percentage was 10% of the vaccinated group. The Poulvac E. coli is not negatively affecting the immune response against different concurrent viral vaccines like Infectious bursal disease (IBD), and moreover, it improves the immune response against some others like Newcastle disease virus (NDV), Avian Influenza (AI) H5 and IBV.  相似文献   

12.
Myostatin is a negative regulator of skeletal muscle growth. We evaluated effects of myostatin polymorphisms in three elite commercial broiler chicken lines on mortality, growth, feed conversion efficiency, ultrasound breast depth, breast percentage, eviscerated carcass weight, leg defects, blood oxygen level, and hen antibody titer to infectious bursal disease virus vaccine. Progeny mean data adjusted for fixed and mate effects and DNA from 100 sires per line were used. Single nucleotide polymorphisms (SNPs) of the myostatin gene segregating in these lines were identified by designing specific primers, amplifying individual DNA in each line by polymerase chain reaction, cloning, sequencing and aligning the corresponding products. Individual sires were genotyped for five identified SNPs which contributed to eight haplotypes. Frequencies of SNP alleles and haplotypes differed between lines. Using the allele substitution effect model, the myostatin SNPs were found to have significant (P < 0.031) associations with growth, mortality, blood oxygen and hen antibody titer to infectious bursal disease virus vaccine, although the associations were not often consistent across lines. These results suggest that the myostatin gene has pleiotropic effects on broiler performance.  相似文献   

13.
Lai  Su-Yuan  Ho  Jin-Yi  Wang  Min-Ying 《Biotechnology Techniques》1998,12(10):733-736
A PCR strategy was developed using primers specific to an infectious bursal disease virus (IBDV) gene as well as primers flanking the polyhedrin region of baculovirus to verify the presence of IBDV gene in the recombinant baculovirus and confirm the absence of wild-type baculovirus contamination. This method can be applied to detect the presence of large genes in the recombinant baculovirus with greater sensitivity and avoid the need of modifying the typical PCR procedure provided by the manufacturer. © Rapid Science Ltd. 1998  相似文献   

14.
15.

Background

Developing a quantitative understanding of viral kinetics is useful for determining the pathogenesis and transmissibility of the virus, predicting the course of disease, and evaluating the effects of antiviral therapy. The availability of data in clinical, animal, and cell culture studies, however, has been quite limited. Many studies of virus infection kinetics have been based solely on measures of total or infectious virus count. Here, we introduce a new mathematical model which tracks both infectious and total viral load, as well as the fraction of infected and uninfected cells within a cell culture, and apply it to analyze time-course data of an SHIV infection in vitro.

Results

We infected HSC-F cells with SHIV-KS661 and measured the concentration of Nef-negative (target) and Nef-positive (infected) HSC-F cells, the total viral load, and the infectious viral load daily for nine days. The experiments were repeated at four different MOIs, and the model was fitted to the full dataset simultaneously. Our analysis allowed us to extract an infected cell half-life of 14.1 h, a half-life of SHIV-KS661 infectiousness of 17.9 h, a virus burst size of 22.1 thousand RNA copies or 0.19 TCID50, and a basic reproductive number of 62.8. Furthermore, we calculated that SHIV-KS661 virus-infected cells produce at least 1 infectious virion for every 350 virions produced.

Conclusions

Our method, combining in vitro experiments and a mathematical model, provides detailed quantitative insights into the kinetics of the SHIV infection which could be used to significantly improve the understanding of SHIV and HIV-1 pathogenesis. The method could also be applied to other viral infections and used to improve the in vitro determination of the effect and efficacy of antiviral compounds.  相似文献   

16.
Severe fever with thrombocytopenia syndrome (SFTS) caused by a species Dabie bandavirus (formerly SFTS virus [SFTSV]) is an emerging hemorrhagic infectious disease with a high case-fatality rate. One of the best strategies for preventing SFTS is to develop a vaccine, which is expected to induce both humoral and cellular immunity. We applied a highly attenuated but still immunogenic vaccinia virus strain LC16m8 (m8) as a recombinant vaccine for SFTS. Recombinant m8s expressing SFTSV nucleoprotein (m8-N), envelope glycoprotein precursor (m8-GPC), and both N and GPC (m8-N+GPC) in the infected cells were generated. Both m8-GPC- and m8-N+GPC-infected cells were confirmed to produce SFTSV-like-particles (VLP) in vitro, and the N was incorporated in the VLP produced by the infection of cells with m8-N+GPC. Specific antibodies to SFTSV were induced in mice inoculated with each of the recombinant m8s, and the mice were fully protected from lethal challenge with SFTSV at both 103 TCID50 and 105 TCID50. In mice that had been immunized with vaccinia virus strain Lister in advance of m8-based SFTSV vaccine inoculation, protective immunity against the SFTSV challenge was also conferred. The pathological analysis revealed that mice immunized with m8-GPC or m8-N+GPC did not show any histopathological changes without any viral antigen-positive cells, whereas the control mice showed focal necrosis with inflammatory infiltration with SFTSV antigen-positive cells in tissues after SFTSV challenge. The passive serum transfer experiments revealed that sera collected from mice inoculated with m8-GPC or m8-N+GPC but not with m8-N conferred protective immunity against lethal SFTSV challenge in naïve mice. On the other hand, the depletion of CD8-positive cells in vivo did not abrogate the protective immunity conferred by m8-based SFTSV vaccines. Based on these results, the recombinant m8-GPC and m8-N+GPC were considered promising vaccine candidates for SFTS.  相似文献   

17.
Infectious laryngotracheitis (ILT) is an acute, highly contagious upper-respiratory infectious disease of chickens. In this study, a real-time PCR method was developed for fast and accurate detection and quantitation of ILTV DNA of chickens experimentally infected with ILTV strain LJS09 and naturally infected chickens. The detection lower limit of the assay was 10 copies of DNA. There were no cross reactions with the DNA and RNA of infectious bursal disease virus, chicken anemia virus, reticuloendotheliosis virus, avian reovirus, Newcastle disease virus, and Marek''s disease virus. The real-time PCR was reproducible as the coefficients of variation of reproducibility of the intra-assay and the inter-assay were less than 2%. The real-time PCR was used to detect the levels of the ILTV DNA in the tissues of specific pathogen free (SPF) chickens infected with ILTV at different times post infection. ILTV DNA was detected by real-time PCR in the heart, liver, spleen, lung, kidney, larynx, tongue, thymus, glandular stomach, duodenum, pancreatic gland, small intestine, large intestine, cecum, cecal tonsil, bursa of Fabricius, and brain of chickens in the infection group and the contact-exposure group. The sensitivity, specificity, and reproducibility of the ILTV real-time PCR assay revealed its suitability for detection and quantitation of ILTV in the samples from clinically and experimentally ILTV infected chickens.  相似文献   

18.
A novel isolate of infectious bursal disease virus (IBDV) was designated GX-NN-L. The GX-NN-L IBDV was a very virulent infectious bursal disease virus (vvIBDV) isolated from broiler flocks in Guangxi province, China, in 2011. The GX-NN-L IBDV caused high mortality, immunosuppression, low weight gain, and bursal atrophy in commercial broilers. Here, we report the complete genome sequence of the GX-NN-L IBDV, a reassortment strain with segments A and B derived from very virulent strains and attenuated IBDV, respectively. These findings from this study provide additional insights into the genetic exchange between attenuated and very virulent strains of IBDV and continuous monitoring of the spread of the virus in chicken.  相似文献   

19.
Immunosuppressive Effect of the Infectious Bursal Agent in the Chicken   总被引:8,自引:0,他引:8  
IT is well established that in the chicken humoral antibody formation depends on the bursa of Fabricius, whereas delayed hypersensitivity and other manifestations of cellular immunity depend on the thymus for their development1,2. Surgical bursectomy3,4 and the administration of testosterone5–7, cortisone acetate8 or cyclophosphamide9–11 have been found to limit the bursa-dependent antibody system. Infectious bursal disease (IBD), formerly known as Gumboro disease, is a naturally occurring virus disease of young chickens12, characterized by the destruction of the lymphoid tissue in the bursa without repopulation13. The disease has been reported from many countries in Europe and in North America. The effect of IBD on the course of other infections in the chicken is therefore of interest. We report here that the primary and secondary serological responses to Newcastle disease vaccine were reduced significantly in chickens which were experimentally inoculated with the infectious bursal agent (IBA) at one day of age.  相似文献   

20.
鸡传染性法氏囊病病毒超强毒株GX8/99株的致病性   总被引:22,自引:0,他引:22  
鸡传染性法氏囊病病毒(IBDV)超强毒株GX8/99,系1999年从广西一自然发病鸡群采集到.用原始病鸡法氏囊悬液连续3次人工感染SPF鸡后,再取其法氏囊制备悬液,分装,在-70℃保存.以此悬液经卵黄囊接种10日龄SPF鸡胚,测定鸡胚的半数致死量(ELD50).随着鸡的日龄和接种剂量的不同,其致死率有很大差异.对28~30日龄SPF鸡,病毒接种量为200个ELD50时,感染后7日内死亡率最高可达73%~90.5%(11/15和19/21);感染量为20个ELD50时,死亡率亦可达53%~92%(8/15和23/25).以500个ELD50感染28~104日龄的SPF鸡,死亡率均在55.1%~67.2%;甚至113~120日龄的SPF鸡,感染后仍有10%~15%致死率.但128日龄的SPF鸡感染后既不引起死亡也不表现任何症状,但抗体全部转阳.人工接种发病死亡的鸡,其法氏囊的出血程度也随感染量和年龄而异.50日龄鸡接种2000个ELD50后,死亡的鸡100%(12/12)法氏囊严重出血;而40日龄鸡感染200个ELD50后,死亡鸡中仅17%(3/18)发生出血.在2、3、4周龄带有母源抗体的商品代蛋鸡,以2000个ELD50病毒接种后,只引起10%(2/20)、35%(7/20)和35%(7/20)的死亡率.但在5周龄商品代蛋鸡,仅接触感染的致死率可达61.3%(98/160).另一批商品代蛋鸡,在4周龄和5周龄人工接种200个ELD50病毒后,死亡率分别是81.6%~94.3%(62/76~33/35)和93.9%~94%(31/33~47/50).通过总共1200多羽鸡的试验表明,GX-8/99株是一个超强毒IBDV毒株,表现为高死亡率(最高可达94%),易感年龄延长至4月龄,中枢性免疫器官法氏囊出血严重和胸腺明显萎缩.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号