首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Thraustochytrids are large-celled marine heterokonts and classified as oleaginous microorganisms due to their production of docosahexaenoic (DHA) and eicosapentaenoic (EPA) ω-3-fatty acids. The applications of microbial DHA and EPA for human health are rapidly expanding, and a large number of clinical trials have been carried out to verify their efficacy. The development of refined isolation and identification techniques is important for the cultivation of thraustochytrids. With a high proportion of lipid biomass, thraustochytrids are also amenable to various production strategies which increase omega-3 oil output. Modifications to the existing lipid extraction methods and utilisation of sophisticated analytical instruments have increased extraction yields of DHA and EPA. Other metabolites such as enzymes, carotenoids and extracellular polysaccharides can also be obtained from these marine protists. Approaches such as the exploration for more diverse isolates having fast growth rates, metabolic engineering including gene cloning, and growing thraustochytrids on alternate low cost carbon source, will further enhance the biotechnological potential of thraustochytrids.  相似文献   

2.
Seven strains of marine microbes producing a significant amount of docosahexaenoic acid (DHA; C22:6, n-3) were screened from seawater collected in coastal areas of Japan and Fiji. They accumulate their respective intermediate fatty acids in addition to DHA. There are 5 kinds of polyunsaturated fatty acid (PUFA) profiles which can be described as (1) DHA/docosapentaenoic acid (DPA; C22:5, n-6), (2) DHA/DPA/eicosapentaenoic acid (EPA; C20:5, n-3), (3) DHA/EPA, (4) DHA/DPA/EPA/arachidonic acid (AA; C20:4, n-6), and (5) DHA/DPA/EPA/AA/docosatetraenoic acid (C22:4, n-6). These isolates are proved to be new thraustochytrids by their specific insertion sequences in the 18S rRNA genes. The phylogenetic tree constructed by molecular analysis of 18S rRNA genes from the isolates and typical thraustochytrids shows that strains with the same PUFA profile form each monophyletic cluster. These results suggest that the C20-22 PUFA profile may be applicable as an effective characteristic for grouping thraustochytrids.  相似文献   

3.
破囊壶菌由于具备生产多种高值天然活性物质的能力,如二十碳五烯酸(eicosapentaenoic acid, EPA)、二十二碳六烯酸(docosahexaenoic acid, DHA)、角鲨烯和类胡萝卜素等,目前已被视为商业脂质生产的优质来源。本文首先对破囊壶菌的生态作用和生物技术价值进行介绍,并概述了脂肪酸的两条生物合成途径;其次重点阐述了NaCl、温度、溶氧和pH这4种环境胁迫因子对破囊壶菌生长、脂质积累、脂肪酸组成和DHA生产的影响;随后总结了当前利用环境胁迫因子的渗透调节策略、分段发酵策略和缓解氧化应激策略提升破囊壶菌DHA生物合成能力的研究现状;最后指出了破囊壶菌在环境胁迫的分子调控机制、分段式发酵策略、菌株进化及代谢工程等方面存在的问题,并对如何改进这些问题以及未来可能的发展方向进行了展望。该综述旨在为破囊壶菌实现高效工业化生产DHA提供有效的参考。  相似文献   

4.
5.
We isolated a putative desaturase gene from a marine alga, Pinguiochrysis pyriformis MBIC 10872, which is capable of accumulating eicosapentaenoic acid (C20:5(Δ5,8,11,14,17)). The gene possessed an open reading frame of 1,314 bp encoding a putative 437 amino acid residues showing high sequence identity (37-48%) with fungal and nematode Δ12-fatty acid desaturases. Yeast cells transformed with the gene converted endogenous oleic acid (C18:1(Δ9)) to linoleic acid (C18:2(Δ9,12)). However, no double bonds were introduced into other endogenous fatty acids or exogenously added fatty acids. Flag-tagged enzyme was recovered in the micosome fraction when expressed in yeast cells. To express the gene in thraustochytrids, a construct driven by the thraustochytrid-derived ubiquitin promoter was used. Interestingly, exogenously added oleic acid was converted to linoleic acid in the gene transformants but not mock transformants of Aurantiochytrium limacinum mh0186. These results clearly indicate that the gene encodes a microsomal Δ12-fatty acid desaturase and was expressed functionally in not only yeasts but also thraustochytrids. This is the first report describing the heterozygous expression of a fatty acid desaturase in thraustochytrids, and could facilitate a genetic approach towards fatty acid synthesis in thraustochytrids which are expected to be an alternative source of polyunsaturated fatty acids.  相似文献   

6.
Thraustochytrids, marine protists known to accumulate polyunsaturated fatty acids (PUFAs) in lipid droplets, are considered an alternative to fish oils as a source of PUFAs. The major fatty acids produced in thraustochytrids are palmitic acid (C(16:0)), n - 6 docosapentaenoic acid (DPA) (C(22:5)(n) (- 6)), and docosahexaenoic acid (DHA) (C(22:6)(n) (- 3)), with eicosapentaenoic acid (EPA) (C(20:5)(n) (- 3)) and arachidonic acid (AA) (C(20:4)(n) (- 6)) as minor constituents. We attempted here to alter the fatty acid composition of thraustochytrids through the expression of a fatty acid Δ5 desaturase gene driven by the thraustochytrid ubiquitin promoter. The gene was functionally expressed in Aurantiochytrium limacinum mh0186, increasing the amount of EPA converted from eicosatetraenoic acid (ETA) (C(20:4)(n) (- 3)) by the Δ5 desaturase. The levels of EPA and AA were also increased by 4.6- and 13.2-fold in the transgenic thraustochytrids compared to levels in the mock transfectants when ETA and dihomo-γ-linolenic acid (DGLA) (C(20:3)(n) (- 6)) were added to the culture at 0.1 mM. Interestingly, the amount of EPA in the transgenic thraustochytrids increased in proportion to the amount of ETA added to the culture up to 0.4 mM. The rates of conversion and accumulation of EPA were much higher in the thraustochytrids than in baker's yeasts when the desaturase gene was expressed with the respective promoters. This report describes for the first time the finding that an increase of EPA could be accomplished by introducing the Δ5 desaturase gene into thraustochytrids and indicates that molecular breeding of thraustochytrids is a promising strategy for generating beneficial PUFAs.  相似文献   

7.
Thraustochytrids, the heterotrophic, marine, straminipilan protists, are now established candidates for commercial production of the omega-3 polyunsaturated fatty acid (ω-3 PUFA), docosahexaenoic acid (DHA), that is important in human health and aquaculture. Extensive screening of cultures from a variety of habitats has yielded strains that produce at least 50% of their biomass as lipids, and DHA comprising at least 25% of the total fatty acids, with a yield of at least 5 g L−1. Most of the lipids occur as triacylglycerols and a lesser amount as phospholipids. Numerous studies have been carried out on salinity, pH, temperature, and media optimization for DHA production. Commercial production is based on a fed batch method, using high C/N ratio that favors lipid accumulation. Schizochytrium DHA is now commercially available as nutritional supplements for adults and as feeds to enhance DHA levels in larvae of aquaculture animals. Thraustochytrids are emerging as a potential source of other PUFAs such as arachidonic acid and oils with a suite of PUFA profiles that can have specific uses. They are potential sources of asataxanthin and carotenoid pigments, as well as other lipids. Genes of the conventional fatty acid synthesis and the polyketide-like PUFA synthesis pathways of thraustochytrids are attracting attention for production of recombinant PUFA-containing plant oils. Future studies on the basic biology of these organisms, including biodiversity, environmental adaptations, and genome research are likely to point out directions for biotechnology explorations. Potential areas include enzymes, polysaccharides, and secondary metabolites.  相似文献   

8.
Thraustochytrids are ubiquitous marine osmo-heterotrophic fungi-like microorganisms with only about 40 identified species till now. In this study, a total of 60 thraustochytrid strains were isolated from marine coastal habitats. Analysis of 18S rRNA gene sequences revealed that they belonged to three genera, i.e., Schizochytrium, Aurantiochytrium, and Thraustochytrium. All of the isolates were found to show considerable cellulolytic and lipolytic activities. Strains of Aurantiochytrium sp. and Thraustochytrium sp. were found to produce the highest levels of extracellular polysaccharides (EPS), which reached 345 μg ml?1 in the growth media. Fourier transform infrared (FTIR) spectra of the EPS samples derived from two thraustochytrids (PKU#Sed1 and #SW1) displayed peaks for carbohydrates, proteins, lipids, uronic acids, and nucleic acids. Fatty acid profiles of four thraustochytrids comprised of palmitic acid (C16:0) and docosahexaenoic acid (DHA) as their major constituents. Schizochytrium sp. demonstrated the highest DHA production at 44 % of total fatty acids (TFA) with biomass and DHA yield of 7.1 and 1.6 g l?1, respectively, on the fourth day of growth. All the four isolates exhibited considerable production of palmitic acid (16:0) in their fatty acid profiles ranging from 35 to 50 % TFA. This is the first report on extracellular enzymes, EPS, and DHA production from thraustochytrids isolated from the coastal habitats of China.  相似文献   

9.
It is now accepted that omega-3 polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA; 20:5Δ5,8,11,14,17) and docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19) play important roles in a number of aspects of human health, with marine fish rich in these beneficial fatty acids our primary dietary source. However, over-fishing and concerns about pollution of the marine environment indicate a need to develop alternative, sustainable sources of very long chain polyunsaturated fatty acids (VLC-PUFAs) such as EPA and DHA. A number of different strategies have been considered, with one of the most promising being transgenic plants “reverse-engineered” to produce these so-called fish oils. Considerable progress has been made towards this goal and in this review we will outline the recent achievements in demonstrating the production of omega-3 VLC-PUFAs in transgenic plants. We will also consider how these enriched oils will allow the development of nutritionally-enhanced food products, suitable either for direct human ingestion or for use as an animal feedstuff. In particular, the requirements of aquaculture for omega-3 VLC-PUFAs will act as a strong driver for the development of such products. In addition, biotechnological research on the synthesis of VLC-PUFAs has provided new insights into the complexities of acyl-channelling and triacylglycerol biosynthesis in higher plants.  相似文献   

10.
ABSTRACT: Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provide significant health benefits and this has led to an increased consumption as dietary supplements. Omega-3 fatty acids EPA and DHA are found in animals, transgenic plants, fungi and many microorganisms but are typically extracted from fatty fish, putting additional pressures on global fish stocks. As primary producers, many marine microalgae are rich in EPA (C20:5) and DHA (C22:6) and present a promising source of omega-3 fatty acids. Several heterotrophic microalgae have been used as biofactories for omega-3 fatty acids commercially, but a strong interest in autotrophic microalgae has emerged in recent years as microalgae are being developed as biofuel crops. This paper provides an overview of microalgal biotechnology and production platforms for the development of omega-3 fatty acids EPA and DHA. It refers to implications in current biotechnological uses of microalgae as aquaculture feed and future biofuel crops and explores potential applications of metabolic engineering and selective breeding to accumulate large amounts of omega-3 fatty acids in autotrophic microalgae.  相似文献   

11.
In marine bacteria and some thraustochytrids (marine stramenopiles) long-chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are produced de novo by PUFA synthases. These large, multi-domain enzymes carry out the multitude of individual reactions required for conversion of malonyl-CoA to the final LC-PUFA products. Here we report on the release of fatty acids from the PUFA synthase found in Schizochytrium, a thraustochytrid that has been developed as a commercial source for DHA-enriched biomass and oil. Data from in vitro activity assays indicate that the PUFAs are released from the enzyme as free fatty acids (FFAs). Addition of ATP and Mg2+ to in vitro assays facilitates appearance of radiolabel from 14C-malonyl-CoA in a triacylglycerol fraction, suggesting the involvement of acyl-CoA synthetases (ACS). Furthermore, addition of triascin C, an inhibitor of ACSs, to the assays blocks this conversion. When the Schizochytrium PUFA synthase is expressed in Escherichia coli, the products of the enzyme accumulate as FFAs, suggesting that the thioesterase activity required for fatty acid release is an integral part of the PUFA synthase.  相似文献   

12.
破囊壶菌因具有高产脂肪酸的特性而受到广泛关注,然而传统的培养方式需要的原料成本很高,很大程度上阻碍了破囊壶菌的工业化进程,因此,寻找可被破囊壶菌高效利用、来源广泛并且廉价易得的生产原料成为该领域的研究重点。本文以破囊壶菌及其生产脂肪酸为切入点,综述了近年来破囊壶菌利用工农业废弃物生产脂肪酸的研究现状,总结并提出了其发展前景,以期对今后的研究有所启发。  相似文献   

13.
Thraustochytrids have recently emerged as a promising source for docosahexaenoic acid (DHA) production due to their high growth rate and oil content. In this study, two thraustochytrid isolates, Aurantiochytrium sp. PKU#SW7 and Thraustochytriidae sp. PKU#Mn16 were used for DHA production. Following growth parameters were optimized to maximize DHA production: temperature, pH, salinity, and glucose concentration. Both isolates achieved the highest DHA yield at the cultivation temperature of 28 °C, pH 6, 100 % seawater, and 2 % glucose. A DHA yield of 1.395 g/l and 1.426 g/l was achieved under the optimized culture conditions. Further investigation revealed that both isolates possess simple fatty acids profiles with palmitic acid and DHA as their dominant constituents, accounting for ~79 % of total fatty acids. To date, very few studies have focused on the DHA distribution in various lipid fractions which is an important factor for identifying strains with a potential for industrial DHA production. In the present study, the lipids profiles of each strain both revealed that the majority of DHA was distributed in neutral lipids (NLs), and the DHA distribution in NLs of PKU#SW7 was exclusively in the form of triacylglycerols (TAGs) which suggest that PKU#SW7 could be utilized as an alternative source of DHA for dietary supplements. The fermentation process established for both strains also indicating that Aurantiochytrium sp. PKU#SW7 was more suitable for cultivation in fermenter. In addition, the high percentage of saturated fatty acids produced by the two thraustochytrids indicates their potential application in biodiesel production. Overall, our findings suggest that two thraustochytrid isolates are suitable candidates for biotechnological applications.  相似文献   

14.
Following an isolation programme for thraustochytrids (marine fungoid protists) from three different locations, 57 isolates were screened for biomass, oil and docosahexaenoic acid production (DHA). Although a common fatty acid profile for the thraustochytrid isolates emerged, there was considerable variation in the DHA content of the oil. In some isolates from a cold temperate environment, DHA represented almost 50% of the total fatty acids present. Although isolates from a sub-tropical environment produced higher levels of biomass, with up to 37% (w/w) oil, the DHA fraction of the fatty acids was low. Cool temperate isolates gave intermediate values. Studies to optimise biomass and DHA production by manipulation of growth medium composition were carried out on a tropical strain. Results indicated that medium with a high C:N ratio stimulated DHA production. The use of such media in bioreactor cultivations gave maximum biomass, lipid and DHA content of 14 g l−1, 78 and 25% (w/w), respectively. Optimum DHA production was 2.17 g l−1 after 107 h cultivation.  相似文献   

15.
Marine microheterotrophs thraustochytrids are emerging as a potential source for commercial production of polyunsaturated fatty acids (PUFA) that have nutritional and pharmacological values. With prospective demand for PUFAs increasing, biotechnological companies are looking for potential increases in those valuable products. However, high levels of NaCl in the culture media required for optimal thraustochytrid growth and PUFA production poses a significant problem to the biotechnological industry due to corrosion of fermenters calling for a need to reduce the amount of NaCl in the culture media, without imposing penalties on growth and yield of cultured organisms. Earlier, as reported by Shabala et al. (Environ Microbiol 11:1835–1843, 2009), we have shown that thraustochytrids use sodium predominantly for osmotic adjustment purposes and, as such, can be grown in low-salt environment without growth penalties, providing the media osmolality is adjusted. In this study, we verify if that conclusion, made for one specific strain and osmolyte only, is applicable to the larger number of strains and organic osmotica, as well as address the issue of yield quality (e.g., PUFA production in low-saline media). Using mannitol and sucrose for osmotic adjustment of the growth media enabled us to reduce NaCl concentration down to 1 mM; this is 15–100-fold lower than any method proposed so far. At the same time, the yield of essential PUFAs was increased by 15 to 20 %. Taken together, these results suggest that the proposed method can be used in industrial fermenters for commercial PUFA production.  相似文献   

16.
Heterotrophic growth of thraustochytrids has potential in co-producing a feedstock for biodiesel and long-chain (LC, ≥C20) omega-3 oils. Biodiscovery of thraustochytrids from Tasmania (temperate) and Queensland (tropical), Australia, covered a biogeographic range of habitats including fresh, brackish, and marine waters. A total of 36 thraustochytrid strains were isolated and separated into eight chemotaxonomic groups (A–H) based on fatty acid (FA) and sterol composition which clustered closely with four different genera obtained by 18S rDNA molecular identification. Differences in the relative proportions (%FA) of long-chain C20, C22, omega-3, and omega-6 polyunsaturated fatty acids (PUFA), including docosahexaenoic acid (DHA), docosapentaenoic acid, arachidonic acid, eicosapentaenoic acid (EPA), and saturated FA, as well as the presence of odd-chain PUFA (OC-PUFA) were the major factors influencing the separation of these groups. OC-PUFA were detected in temperate strains of groups A, B, and C (Schizochytrium and Thraustochytrium). Group D (Ulkenia) had high omega-3 LC-PUFA (53% total fatty acids (TFA)) and EPA up to 11.2% TFA. Strains from groups E and F (Aurantiochytrium) contained DHA levels of 50–61% TFA after 7 days of growth in basal medium at 20 °C. Groups G and H (Aurantiochytrium) strains had high levels of 15:0 (20–30% TFA) and the sum of saturated FA was in the range of 32–51%. β,β-Carotene, canthaxanthin, and astaxanthin were identified in selected strains. Phylogenetic and chemotaxonomic groupings demonstrated similar patterns for the majority of strains. Our results demonstrate the potential of these new Australian thraustochytrids for the production of biodiesel in addition to omega-3 LC-PUFA-rich oils.  相似文献   

17.
A versatile transformation system for thraustochytrids, a promising producer for polyunsaturated fatty acids and fatty acid-derived fuels, was established. G418, hygromycin B, blasticidin, and zeocin inhibited the growth of thraustochytrids, indicating that multiple selectable marker genes could be used in the transformation system. A neomycin resistance gene (neo(r)), driven with an ubiquitin or an EF-1α promoter-terminator from Thraustochytrium aureum ATCC 34304, was introduced into representatives of two thraustochytrid genera, Aurantiochytrium and Thraustochytrium. The neo(r) marker was integrated into the chromosomal DNA by random recombination and then functionally translated into neo(r) mRNA. Additionally, we confirmed that another two genera, Parietichytrium and Schizochytrium, could be transformed by the same method. By this method, the enhanced green fluorescent protein was functionally expressed in thraustochytrids. Meanwhile, T. aureum ATCC 34304 could be transformed by two 18S ribosomal DNA-targeting vectors, designed to cause single- or double-crossover homologous recombination. Finally, the fatty acid Δ5 desaturase gene was disrupted by double-crossover homologous recombination in T. aureum ATCC 34304, resulting in an increase of dihomo-γ-linolenic acid (C(20:3n-6)) and eicosatetraenoic acid (C(20:4n-3)), substrates for Δ5 desaturase, and a decrease of arachidonic acid (C(20:4n-6)) and eicosapentaenoic acid (C(20:5n-3)), products for the enzyme. These results clearly indicate that a versatile transformation system which could be applicable to both multiple transgene expression and gene targeting was established for thraustochytrids.  相似文献   

18.
The Biotechnological Potential of Thraustochytrids   总被引:4,自引:0,他引:4  
Thraustochytrids are common marine microheterotrophs, taxonomically aligned with heterokont algae. Recent studies have shown that some thraustochytrid strains can be cultured to produce high biomass, containing substantial amounts of lipid rich in polyunsaturated fatty acid (PUFA). It is also evident that cell yield and PUFA production by some thraustochytrid strains can be varied by manipulation of physical and chemical parameters of the culture. At present, fish oils and cultured phototrophic microalgae are the main commercial sources of PUFA. The possible decline of commercial fish stocks and the relatively complex technology required to commercially produce microalgae have prompted research into possible alternative sources of PUFA. The culture of thraustochytrids and other PUFA-producing microheterotrophs is seen as one such alternative. Indeed, several thraustochytrid-based products are already on the market, and research into further applications is continuing. Many fish and microalgal oils currently available have relatively complex PUFA profiles, increasing the cost of preparation of high-purity PUFA oils. In contrast, some of the thraustochytrids examined to date have simpler PUFA profiles. If these or other strains can be grown in sufficient quantities and at an appropriate cost, the use of thraustochytrid-derived oils may decrease the high expense currently involved with producing high-purity microbial oils. As more is learned about the health and nutritional benefits of PUFA, demand for PUFA-rich products is expected to increase. Results to date suggest that thraustochytrids could form an important part in the supply of such products. Received February 17, 1999; accepted June 25, 1999  相似文献   

19.
20.
Marine heterotrophic microbes are capable of accumulating large amounts of lipids, omega-3 fatty acids, carotenoids, and have potential for biodiesel production. Pollen baiting using Pinus radiata pollen grain along with direct plating techniques were used in this study as techniques for the isolation of oil-producing marine thraustochytrid species from Queenscliff, Victoria, Australia. Thirteen isolates were obtained using either direct plating or using pine pollen, with pine pollen acting as a specific substrate for the surface attachment of thraustochytrids. The isolates obtained from the pollen baiting technique showed a wide range of docosahexaenoic acid (DHA) accumulation, from 11 to 41 % of total fatty acid content (TFA). Direct plating isolates showed a moderate range of DHA accumulation, from 19 to 25 % of TFA. Seven isolates were identified on the basis of 18S rRNA sequencing technique as Thraustochytrium species, Schizochytrium species, and Ulkenia species. Although both methods appear to result in the isolation of similar strains, pollen baiting proved to be a simpler method for the isolation of these relatively slow-growing organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号