首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chimeras are organisms composed of at least two genetically distinct cell lineages originating from different zygotes. In the laboratory, mouse chimeras can be produced experimentally; various techniques allow combining different early stage mouse embryos with each other or with pluripotent stem cells. Identification of the progeny of the different lineages in chimeras permits to follow cell fate and function, enabling correlation of genotype with phenotype. Mouse chimeras have become a tool to investigate critical developmental processes, including cell specification, differentiation, patterning, and the function of specific genes. In addition, chimeras can also be generated to address biological processes in the adult, including mechanisms underlying diseases or tissue repair and regeneration. This review summarizes the different types of chimeras and how they have been generated and provides examples of how mouse chimeras offer a unique and powerful system to investigate questions pertaining to cell and tissue function in the developing and adult organism.  相似文献   

2.
If organogenesis were a completely deterministic process, then the amount of information required to store the spatial position and fate of every cell in vertebrate organisms would be larger than the total information that could be contained in their genomes. This suggests that the instructions of developmental mechanisms involved in organogenesis, coded in DNA, must be at least in part procedural or algorithmically based. Chimeric mosaic patterns in rat livers have been shown to be isotropic and to have fractal profiles (D approximately 1.3) whereas adrenal gland mosaics show a less irregular radial pattern, with lower fractal dimension (D approximately 1.2) than in the liver. These findings suggested a possible model of parenchyma generation. We propose that during organogenesis in both liver and adrenal cortex, the same basic mechanism is directed to organ mass enlargement, whereas the differences observed in mosaic patterns between the organs could be due to the control of a single parameter, namely, a form of contact inhibition. Computer simulations in two dimensions returned comparable results in both the fractal dimension value of mosaic patches and appearance of the mosaic 'tissues', as observed histologically in chimeras. This suggests that position information and locomotion of cells would not be required to produce the mosaic pattern observed in chimeras.  相似文献   

3.
Chimeras are organisms composed of at least two genetically distinct cell lineages originating from different zygotes. In the laboratory, mouse chimeras can be produced experimentally; various techniques allow combining different early stage mouse embryos with each other or with pluripotent stem cells. Identification of the progeny of the different lineages in chimeras permits to follow cell fate and function, enabling correlation of genotype with phenotype. Mouse chimeras have become a tool to investigate critical developmental processes, including cell specification, differentiation, patterning and the function of specific genes. In addition, chimeras can also be generated to address biological processes in the adult, including mechanisms underlying diseases or tissue repair and regeneration. This review summarizes the different types of chimeras and how they have been generated and provides examples of how mouse chimeras offer a unique and powerful system to investigate questions pertaining to cell and tissue function in the developing and adult organism.Key words: chimera, developmental chimera, aggregation, blastocyst injection, embryonic stem cells, induced pluripotent stem cells, complementation, regeneration  相似文献   

4.
5.
KCNJ11-encoded Kir6.2 assembles with ATP-binding cassette sulphonylurea receptors to generate ATP-sensitive K+ (KATP) channel complexes. Expressed in tissues with dynamic metabolic flux, these evolutionarily conserved yet structurally and functionally unique heteromultimers serve as high-fidelity rheostats that adjust membrane potential-dependent cell functions to match energetic demand. Genetic defects in channel subunits disrupt the cellular homeostatic response to environmental stress, compromising organ tolerance in the adult. As maladaptation characterizes malignant KATP channelopathies, establishment of platforms to examine progression of KATP channel-dependent adaptive behaviour is warranted. Chimeras provide a powerful tool to assay the contribution of genetic variance to stress intolerance during prenatal or post-natal development. Here, KCNJ11 KATP channel gene knockout<-->wild-type chimeras were engineered through diploid aggregation. Integration of wild-type embryonic stem cells into zona pellucida-denuded morula derived from knockout embryos achieved varying degrees of incorporation of stress-tolerant tissue within the KATP channel-deficient background. Despite the stress-vulnerable phenotype of the knockout, ex vivo derived mosaic blastocysts tolerated intrauterine transfer and implantation, followed by full-term embryonic development in pseudopregnant surrogates to produce live chimeric offspring. The development of adult chimerism from the knockout<-->wild-type mosaic embryo offers thereby a new paradigm to probe the ecogenetic control of the KATP channel-dependent stress response.  相似文献   

6.
Human-animal chimeras in biomedical research   总被引:1,自引:0,他引:1  
Chimeras are individuals with tissues derived from more than one zygote. Interspecific chimeras have tissues derived from different species. The biological consequences of human-animal chimeras have become an issue of ethical debate. Ironically, human-animal chimeras with human blood, neurons, germ cells, and other tissues have been generated for decades. This has facilitated human biological studies and therapeutic strategies for disease.  相似文献   

7.
Chimeras were made from parthenogenetic and fertilized cleavage-stage mouse embryos. The perinatal mortality was high. The parthenogenetic contributions to different tissues at birth ranged from 0 to 50%. No selection of parthenogenetic cells was observed in the pigmentation of the coat, but this does not exclude that such selection could act in other tissues. The weight of chimeras at birth negatively correlated to the average contribution of the parthenogenetic part. The growth rate of chimeras was lower than that of nonchimeric animals. The data presented demonstrated that, although parthenogenetic cells are not cell lethals and they can participate to some degree in normal development of most tissues, their extensive presence reduces the viability of chimeras and retards the postnatal development.  相似文献   

8.
Mammalian chimeras have been used in a number of developmental studies over the years. A major limitation in these studies has been the lack of in situ procedures for establishing mosaic pattern in the tissues of these animals. Recently, a number of procedures have become available for the histochemical demonstration of mosaicism in chimeras. These include the elucidation of various enzymes, receptors, or surface antigens, which have variant expression between strains. The observation of pattern in organs of mosaic animals can suggest possible modes of organogenesis and organ maintenance. Experimentation with such animals can be used to establish some mechanisms of pathogenesis as well.  相似文献   

9.
J. Szabad  V. A. Jursnich    P. J. Bryant 《Genetics》1991,127(3):525-533
Genes that are required for cell proliferation control in Drosophila imaginal discs were tested for function in the female germ-line and follicle cells. Chimeras and mosaics were produced in which developing oocytes and nurse cells were mutant at one of five imaginal disc overgrowth loci (fat, lgd, lgl, c43 and dco) while the enveloping follicle cells were normal. The chimeras were produced by transplantation of pole cells and the mosaics were produced by X-ray-induced mitotic recombination using the dominant female-sterile technique. The results show that each of the genes tested plays an essential role in the development or function of the female germ line. The fat, lgl and c43 homozygous germ-line clones fail to produce eggs, indicating a germ-line requirement for the corresponding genes. Perdurance of the fat+ gene product in mitotic recombination clones allows the formation of a few infertile eggs from fat homozygous germ-line cells. The lgd homozygous germ-line clones give rise to a few eggs with abnormal chorionic appendages, a defect thought to result from defective cell communication between the mutant germ-line and the nonmutant follicle cells. One allele of dco (dcole88) prevents egg development when homozygous in the germ line, whereas the dco18 allele has no effect on germ-line development. Fs(2)Ugra, a recently described follicle cell-dependent dominant female-sterile mutation, allowed the analysis of egg primordia in which fat, lgd or lgl homozygous mutant follicle cells surrounded normal oocytes. The results show that the fat and lgd genes are not required for follicle cell functions, while absence of lgl function in follicles prevents egg development.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
R S Stowers  T L Schwarz 《Genetics》1999,152(4):1631-1639
The genetic analysis of a gene at a late developmental stage can be impeded if the gene is required at an earlier developmental stage. The construction of mosaic animals, particularly in Drosophila, has been a means to overcome this obstacle. However, the phenotypic analysis of mitotic clones is often complicated because standard methods for generating mitotic clones render mosaic tissues that are a composite of both mutant and phenotypically normal cells. We describe here a genetic method (called EGUF/hid) that uses both the GAL4/UAS and FLP/FRT systems to overcome this limitation for the Drosophila eye by producing genetically mosaic flies that are otherwise heterozygous but in which the eye is composed exclusively of cells homozygous for one of the five major chromosome arms. These eyes are nearly wild type in size, morphology, and physiology. Applications of this genetic method include phenotypic analysis of existing mutations and F(1) genetic screens to identify as yet unknown genes involved in the biology of the fly eye. We illustrate the utility of the method by applying it to lethal mutations in the synaptic transmission genes synaptotagmin and syntaxin.  相似文献   

11.
In order to determine the place of action of the mutant gene waved alopecia (wal), we have obtained chimeric wal/wal c/c Gpi-1aa<-->+/+ C/C Gpi-1bb animals by aggregation of eight-cellular embryos of BALB/c-wal/wal mice and CBA (+/+) mice. The presence or absence of the chimeric structure was determined from the mosaic nature of fur color and hair structure, as well as on the basis of the presence of electrophoretically distinct variants of glucosephosphate isomerase in blood. Chimeras had alternating transverse patches of different lengths and widths consisting of curly (genotype wal/wal) or straight (genotype +/+) hairs. The percentage of cells with wal/wal mutant genotype in chimeras established on the basis of glucosephosphate isomerase isozymes varied from 10 to 80%. A higher percentage of the parental wal/wal component in chimeras correlated with the number of patches having wavy hairs. Analysis of the fur pattern represented by the alternation of transverse patches of wavy or straight hairs in chimeric wal/wal (+/+ mice has shown that mutant gene wal acts in ectodermal cells of hair follicles.  相似文献   

12.
遗传修饰小鼠胚胎干细胞种系嵌合体小鼠的研制   总被引:2,自引:0,他引:2  
利用显微注射的方法,分别将三株不同类型的经过遗传修饰的中靶ES细胞注射到C57BL/6J小鼠的囊胚中,通过胚胎移植将注射后的囊胚引入受体小鼠子宫中,分别获得了不同整合度的嵌合体小鼠,将高碳合度小鼠与C57BL/6J小鼠杂交,对这些仔鼠进行PCR及Southern鉴定的结果表明,三株修饰后的ES细胞均能整合入生殖系,得到了棕褐色子代鼠,表明获得了种系嵌合体小鼠。  相似文献   

13.
Pedro Ripoll 《Genetics》1977,86(2):357-376
The behavior in genetic mosaics of 86 EMS-induced sex-linked lethals has been studied. Seventy-five percent of them are autonomous in gynandromorphs. Forty-three lethals nonviable in sex mosaics have been analyzed in X-ray-induced spots in the abdominal tergites and the imaginal wing derivatives. Of the lethals, 90.7% are homozygous viable in mosaic spots, and only 9.3% have been classified as epidermal cell lethal. Thus, the fraction of the Drosophila genome essential for cell viability has been estimated to be about 420 genes. The phenotypes at the cellular level of some cell-viable mutations altering cell parameters (mitotic orientation, differentiation, etc.) are described.  相似文献   

14.
The production of mouse chimeras is a common step in the establishment of genetically modified animal strains. Chimeras also provide a powerful experimental tool for following cell behavior during both prenatal and postnatal development. This protocol outlines a simple and economical technique for the production of large numbers of mouse chimeras using traditional diploid morula<-->diploid embryonic stem (ES) cell aggregations. Additional steps are included to describe the procedures necessary to produce specialized tetraploid chimeras using tetraploid morula<-->diploid ES cell aggregations. This increasingly popular form of chimera produces embryos of nearly complete ES cell derivation that can be used to speed transgenic production or ask developmental questions. Using this protocol, mouse chimeras can be generated and transferred to pseudopregnant surrogate mothers in a 5-d period.  相似文献   

15.
Of the several known Dictyostelium G protein subunits, the Galpha4 and Galpha5 subunits are the most closely related pair based on phylogenetic analysis and expression patterns, but these subunits perform different roles during development. To investigate potential relationships between these subunits with respect to cell differentiation, chimeric organisms composed of strains lacking or overexpressing either subunit were created and examined for developmental morphogenesis and spore production. Chimeras of galpha4 null and galpha5 null strains or Galpha4 and Galpha5 overexpression strains displayed compensatory morphogenesis, implying that the subunits promote complementary developmental processes. However, chimeras composed of galpha4 null and Galpha5 overexpression strains or galpha5 null and Galpha4 overexpression strains displayed distorted tip morphogenesis, suggesting the strains of these chimeras share common developmental deficiencies. Cells lacking the Galpha5 subunit localized to the prespore region of chimeras similar to the pattern observed for cells overexpressing the Galpha4 subunit, and cells overexpressing the Galpha5 subunit displayed localization patterns similar to galpha4 null mutants. A strain overexpressing both subunits displayed a partial suppression of morphology, gene expression, and cell localization phenotypes associated with the overexpression of the individual Galpha subunit genes, suggesting that each Galpha subunits can inhibit signaling mediated by the other subunit. Overexpression of the Galpha5 subunit inhibited chemotaxis and cGMP accumulation in response to folic acid, indicating that the Galpha5 subunit can inhibit early steps in the Galpha4-mediated signal transduction pathway. The contrasting phenotypes of the Galpha mutants suggest the Galpha4 and Galpha5 subunits provide opposing functions in cell differentiation, localization, and chemotactic responses to folic acid.  相似文献   

16.
17.
Parasite local adaptation in a geographic mosaic   总被引:2,自引:0,他引:2  
A central prediction of the geographic mosaic theory of coevolution is that coevolving interspecific interactions will show varying degrees of local maladaptation. According to the theory, much of this local maladaptation is driven by selection mosaics and spatially intermingled coevolutionary hot and cold spots, rather than a simple balance between gene flow and selection. Here I develop a genetic model of host-parasite coevolution that is sufficiently general to incorporate selection mosaics, coevolutionary hot and cold spots, and a diverse array of genetic systems of infection/resistance. Results from this model show that the selection mosaics experienced by the interacting species are an important determinant of the sign and magnitude of local maladaptation. In some cases, this effect may be stronger than a previously described effect of relative rates of parasite and host gene flow. These results provide the first theoretical evidence that selection mosaics and coevolutionary hot and cold spots per se determine the magnitude and sign of local maladaptation. At the same time, however, these results demonstrate that coevolution in a geographic mosaic can lead to virtually any pattern of local adaptation or local maladaptation. Consequently, empirical studies that describe only patterns of local adaptation or maladaptation do not provide evidence either for or against the theory.  相似文献   

18.
Summary Genetic eye mosaics ofDrosophila melanogaster have been studied by means of anatomical techniques. Using different cell markers it was found that the ommatidia at the boundaries between phenotypes are composed of cells belonging to different clones. Therefore, the formation of an individual ommatidium does not obey a mechanism based on a common clonal origin of its constituent elements. A statistical analysis of mosaic ommatidia shows that there is a significant tendency for the receptor cellsR2-R5 on the one hand and the receptor cellsR1, R6 andR7 on the other to belong to the same cell clone. The implications of these findings are discussed.  相似文献   

19.
This study was performed to investigate whether the embryonic somatic cells are capable of reconstituting and participating in the embryonic development of chickens to produce chimeras. In order to track the migration behavior of the donor cells, a cell line, originally isolated from an Indian peafowl embryo, was fluorescent-labeled by transfection of the cells with enhanced Green Fluorescent Protein (GFP) and Neomycin resistant (Neo) genes prior to injection into the stage X blastoderm of White Leghorn chickens. The injection was performed with a medium in the presence of 1-5% polyethylene glycol. The development of putative chimeric embryos between the stages three and 24 was examined for GFP expression under fluorescent light. To trace the peafowl cells in the developing chicken embryos, both a species-specific genetic marker originating from the mitochondrial DNA cytochrome b (cyt b) gene and a DNA fragment of GFP gene were used. Of the 185 fertile eggs manipulated, 173 developed into embryos. Fifty-five of them showed positive GFP patches in extra-embryonic tissues, and 15 expressed GFP in intra-embryonic tissues such as those of the head, heart, and gonad. PCR analysis revealed that PCR fragments for the peafowl mitochondrial DNA cyt b and GFP genes were detected in the samples of the GFP positive extra- and intra-embryonic tissues of the chimeras. The present results provide evidence that fluorescent-labeled peafowl embryonic cells carrying GFP and Neo genes are able to participate in the development of chicken embryos to generate chimeras.  相似文献   

20.
Kirsch DG 《Radiation research》2011,176(3):275-279
The laboratory mouse has been used for many decades as a model system for radiation research. Recent advances in genetic engineering now allow scientists to delete genes in specific cell types at different stages of development. The ability to manipulate genes in the mouse with spatial and temporal control opens new opportunities to investigate the role of genes in regulating the response of normal tissues and tumors to radiation. Currently, we are using the Cre-loxP system to delete genes, such as p53, in a cell-type specific manner in mice to study mechanisms of acute radiation injury and late effects of radiation. Our results demonstrate that p53 is required in the gastrointestinal (GI) epithelium to prevent radiation-induced GI syndrome and in endothelial and/or hematopoietic cells to prevent late effects of radiation. We have also used these genetic tools to generate primary tumors in mice to study tumor response to radiation therapy. These advances in genetic engineering provide a powerful model system to dissect both the mechanisms of normal tissue injury after irradiation and the mechanisms by which radiation cures cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号