首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Expression of the histidine operon of Salmonella typhimurium is increased in dnaA(Ts) mutants at 37 degrees C. This effect requires an intact his attenuator and can be suppressed by increasing the gene copy number of the hisR locus, which encodes the tRNA(His). We present data which suggest that the his deattenuation defect in dnaA(Ts) mutants results from the loss of a gene dosage gradient between the hisR locus, close to oriC, and the his operon, far from oriC. Some of the conclusions drawn here may apply to other operons as well.  相似文献   

3.
One of the pleiotropic phenotypes of mutations affecting DNA gyrase activity in Salmonella typhimurium is the constitutive deattenuation of the histidine operon. In the present work, we isolated and characterized a suppressor mutation which restores his attenuation in the presence of a defective gyrase. Such a suppressor, initially named sgdA1 (for suppressor gyrase deficiency), was found to correct additional phenotypes associated with defective gyrase function. These include the aberrant nucleoid partitioning of a gyrB mutant and the conditional lethality of a gyrA mutation. Furthermore, the sgdA1 mutation was found to confer low-level resistance to nalidixic acid. The last phenotype permitted isolation of a number of additional sgdA mutants. Genetic analysis established the recessive character of these alleles as well as the position of the sgdA locus at 57 U on the Salmonella genetic map. All of the sgdA mutants result from the same molecular event: a deletion removing three of the four tandemly repeated copies of argV, the gene which specifies tRNA(2Arg), the major arginine isoacceptor tRNA. These findings, combined with the observation of some Sgd-like phenotypes in a tRNA modification mutant (hisT mutant), lead us to propose that protein synthesis contributes, directly or indirectly, to the pathology of gyrase alterations in growing bacteria. We discuss plausible mechanisms which may be responsible for these effects.  相似文献   

4.
The spoT gene of Salmonella typhimurium has been identified. Mutations in spoT map between gltC and pyrE at 79 min. The spoT1 mutant has elevated levels of guanosine 5'-diphosphate-3'-diphosphate (ppGpp) during steady-state growth and exhibits a slower than normal decay of ppGpp after reversal of amino acid starvation. The spoT1 mutation elevates his operon expression but is distinct from known his regulatory mutations. Elevated his operon expression in spoT mutants causes resistance to the histidine analogs, 1,2,4-triazole-3-alanine and 3-amino-1,2,4-triazole. These properties of spoT mutants allowed us to identify and characterize additional spoT mutants. Approximately 40% of these mutants are temperature sensitive for growth on minimal medium, suggesting that the spoT function is essential or that excessive accumulation of ppGpp is lethal.  相似文献   

5.
The hisR locus of Salmonella: nucleotide sequence and expression   总被引:13,自引:0,他引:13  
  相似文献   

6.
A transposon Tn10 insertion in topA, the structural gene of Escherichia coli DNA topoisomerase I, behaves as an excluded marker in genetic crosses with many strains of E. coli. However, derivative strains that accept this mutant topA allele are readily selected. We show that many of these topA mutant strains contain additional mutations that compensate for the loss of DNA topoisomerase I. Genetic methods for mapping and manipulating such compensatory mutations are described. These methods include a plate-mating test for the ability of strains to accept a topA::Tn10 allele and a powerful indirect selection for transferring compensatory mutations from male strains into non-compensatory female strains. One collection of spontaneous compensatory mutants is analyzed in detail and is shown to include compensatory mutations at three distinct loci: gyrA and gyrB, the genes that encode the subunits of DNA gyrase, and a previously unidentified locus near tolC. Mutations at this third locus, referred to as toc (topoisomerase one compensatory) mutations, do not behave as point mutations in transductional crosses and do not result in lowered DNA gyrase activity. These results show that wild-type strains of E. coli require DNA topoisomerase I, and at least one class of compensatory mutations can relieve this requirement by a mechanism other than reduction of DNA gyrase activity.  相似文献   

7.
gyrB mutations in coumermycin A1-resistant Borrelia burgdorferi.   总被引:5,自引:3,他引:2       下载免费PDF全文
We have isolated and characterized mutants of Borrelia burgdorferi that are resistant to the antibiotic coumermycin A1, which targets the B subunit of DNA gyrase. Mutants had either 100- or 300-fold higher resistance to coumermycin A1 than wild-type B. burgdorferi. In each case, a single point mutation in the gyrB gene converted Arg-133 to Gly or Ile. Mutations in the homologous Arg residue of Escherichia coli DNA gyrase are also associated with resistance to coumarin antimicrobial agents.  相似文献   

8.
F'-episomes carrying the Salmonella typhimurium wild-type or attenuator-deleted histidine (his) operons were introduced into Escherichia coli strains containing relA or spoT single and double mutations known to affect guanosine 3'-diphosphate 5'-diphosphate (ppGpp) and guanosine 3'-triphosphate 5'-diphosphate (pppGpp) levels. Expression of the his operon and expression of the gene for 6-phosphogluconate dehydrogenase (gnd) were measured during balanced growth in amino acid-rich and minimal media. The data were consistent with the interpretation that ppGpp is a positive effector of his operon expression, whereas pppGpp is not an essential effector. The conclusion that his operon expression is maximally stimulated at a lower than maximum intracellular ppGpp concentration was further confirmed. Neither ppGpp nor pppGpp appeared to influence gnd gene expression. The metabolic regulation of the E. coli his operon was found to be similar to the ppGpp-meidated metabolic regulation of the S. typhimurium his operon.  相似文献   

9.
10.
Coumarins are inhibitors of the ATP hydrolysis and DNA supercoiling reactions catalysed by DNA gyrase. Their target is the B subunit of gyrase (GyrB), encoded by the gyrB gene. The exact mode and site of action of the drugs is unknown. We have identified four mutations conferring coumarin resistance to Escherichia coli: Arg-136 to Cys, His or Ser and Gly-164 to Val. In vitro, the ATPase and supercoiling activities of the mutant GyrB proteins are reduced relative to the wild-type enzyme and show resistance to the coumarin antibiotics. Significant differences in the susceptibility of mutant GyrB proteins to inhibition by either chlorobiocin and novobiocin or coumermycin have been found, suggesting wider contacts between coumermycin and GyrB. We discuss the significance of Arg-136 and Gly-164 in relation to the notion that coumarin drugs act as competitive inhibitors of the ATPase reaction.  相似文献   

11.
We isolated 142 Hir- (host inhibition of replication) mutants of an Escherichia coli K-12 Mu cts Kil- lysogen that survived heat induction and the killing effect of Mu replicative transposition. All the 86 mutations induced by insertion of Tn5 or a kanamycin-resistant derivative of Tn10 and approximately one-third of the spontaneous mutations were found by P1 transduction to be linked to either zdh-201::Tn10 or Tn10-1230, indicating their location in or near himA or hip, respectively. For a representative group of these mutations, complementation by a plasmid carrying the himA+ gene or by a lambda hip+ transducing phage confirmed their identification as himA or hip mutations, respectively. Some of the remaining spontaneously occurring mutations were located in gyrA or gyrB, the genes encoding DNA gyrase. Mutations in gyrA were identified by P1 linkage to zei::Tn10 and a Nalr gyrA allele; those in gyrB were defined by linkage to tna::Tn10 and to a gyrB(Ts) allele. In strains carrying these gyrA or gyrB mutations, pBR322 plasmid DNA exhibited altered levels of supercoiling. The extent of growth of Mu cts differed in the various gyrase mutants tested. Phage production in one gyrA mutant was severely reduced, but it was only delayed and slightly reduced in other gyrA and gyrB mutants. In contrast, growth of a Kil- Mu was greatly reduced in all gyrase mutant hosts tested.  相似文献   

12.
Characterization of the spoT gene of Escherichia coli   总被引:13,自引:0,他引:13  
  相似文献   

13.
The mukB gene is essential for the partitioning of sister chromosomes in Escherichia coli. A mukB null mutant is hypersensitive to the DNA gyrase inhibitor novobiocin. In this work, we isolated mutants suppressing the novobiocin hypersensitivity of the mukB null mutation. All suppressor mutations are localized in or near the gyrB gene, and the four tested clones have an amino acid substitution in the DNA gyrase beta subunit. We found that in the mukB mutant, the process of sister chromosome segregation is strikingly hypersensitive to novobiocin; however, the effect of novobiocin on growth, which was measured by culture turbidity, is the same as that of the wild-type strain.  相似文献   

14.
Escherichia coli deletion mutants lacking DNA topoisomerase I have been identified previously and shown to grow at a normal rate. We show that such strains grow normally only because of spontaneously arising mutations that compensate for the topoisomerase I defect. Several of these compensatory mutations have been found to map at or near the genes encoding DNA gyrase, gyrA and gyrB. DNA gyrase assays of crude extracts show that strains carrying the mutations have lower gyrase activity. Thus the mutations are in the gyrase structural genes or in nearby regulatory sequences. These results, in conjunction with DNA supercoiling measurements of others, indicate that in vivo DNA superhelicity is a result of a balance between topoisomerase I and gyrase activities. An excess of negative supercoils due to an absence of topoisomerase I is deleterious to the cell, but a moderate gyrase deficiency is not harmful.  相似文献   

15.
The Escherichia coli, strain possessing purF, deoD and add mutations converts exogenous adenine into guanine nucleotides exclusively by the pathway coupled with histidine biosynthesis. When grown on adenine, this strain demonstrated sensitivity to histidine, thus making it possible to select histidine-resistant hisGR mutants with ATP-phosphoribosyltransferase desensibilized for histidine. The hisGR mutations were obtained in two his operons introduced into the his operon-sensitive E. coli strain: his operon of Salmonella typhimurium incorporated in DNA and his operon of E. coli on the F'episome. In both cases, the hisGR mutants obtained were shown to excrete histidine.  相似文献   

16.
17.
Microcin B17 is a peptide antibiotic that inhibits DNA replication in Escherichia coli by targeting DNA gyrase. Previously, two independently isolated microcin B17-resistant mutants were shown to harbor the same gyrB point mutation that results in the replacement of tryptophan 751 by arginine in the GyrB polypeptide. We used site-directed mutagenesis to construct mutants in which tryptophan 751 was deleted or replaced by other amino acids. These mutants exhibit altered DNA gyrase activity and different levels of resistance to microcin B17.  相似文献   

18.
Plasmid pBR322 prepared from Escherichia coli strains carrying deletion of the DNA topoisomerase I gene (delta topA) with a compensatory mutation of the DNA gyrase gene (gyrA or gyrB) and from their TopA+ transductants was analyzed by agarose gel electrophoresis followed by electron microscopy, and compared with that from isogenic wild-type strains. It was found that about 1% of the plasmid DNA molecules was a knotted species in the topA+ gyr+ strains W3110 and DM4100, while strains DM750 (delta topA gyrA224), DM800 (delta topA gyrB225), SD275 (topA+ gyrA224) and SD108 (topA+ gyrB225) produced six to ten times as much knotted DNA as the topA+ gyr+ controls. The results suggest that the increased production of knotted pBR322 DNA is closely related to mutations of the gyrase genes.  相似文献   

19.
Staphylococcus aureus gyrA and gyrB genes, which encode the DNA gyrase A and B proteins, have been isolated and found to map contiguously. DNA sequence analysis revealed close homology between the S. aureus gyrase subunits and their counterparts in Bacillus subtilis and Escherichia coli, including several conserved amino acid residues whose substitution in E. coli confers resistance to 4-quinolones. These results are discussed in regard to quinolone resistance mechanisms in S. aureus.  相似文献   

20.
Gyrase is an essential topoisomerase in bacteria that introduces negative supercoils in DNA and relaxes the positive supercoils that form downstream of proteins tracking on DNA, such as DNA or RNA polymerases. Two gyrase mutants that suffer partial loss of function were used here to study the need for replication restart in conditions in which gyrase activity is affected. We show that the preprimosomal protein PriA is essential for the viability of these gyrB mutants. The helicase function of PriA is not essential. The lethality of the gyrB priA double mutants is suppressed by a dnaC809 mutation, indicating a requirement for primosome assembly in gyrB strains. The lethality of gyrB priA combination of mutations is independent of the level of DNA supercoiling, as gyrB and priA were also co-lethal in the presence of a DeltatopA mutation. Inactivation of homologous recombination did not affect the viability of gyrB mutants, indicating that replication restart does not require the formation of a recombination intermediate. We propose that the replisome is disassembled from replication forks when replication progression is blocked by the accumulation of positive supercoils in gyrase mutants, and that replication restarts via PriA-dependent primosome assembly, directly on the in-activated replication forks, without the formation of a recombination intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号