首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Components of promyelocytic leukaemia (PML) nuclear bodies (ND10) are recruited to sites associated with herpes simplex virus type 1 (HSV-1) genomes soon after they enter the nucleus. This cellular response is linked to intrinsic antiviral resistance and is counteracted by viral regulatory protein ICP0. We report that the SUMO interaction motifs of PML, Sp100 and hDaxx are required for recruitment of these repressive proteins to HSV-1 induced foci, which also contain SUMO conjugates and PIAS2β, a SUMO E3 ligase. SUMO modification of PML and elements of its tripartite motif (TRIM) are also required for recruitment in cells lacking endogenous PML. Mutants of PML isoform I and hDaxx that are not recruited to virus induced foci are unable to reproduce the repression of ICP0 null mutant HSV-1 infection mediated by their wild type counterparts. We conclude that recruitment of ND10 components to sites associated with HSV-1 genomes reflects a cellular defence against invading pathogen DNA that is regulated through the SUMO modification pathway.  相似文献   

12.
Induction of local photosensitised DNA damage has been used to study recruitment of repair factors, spatial organisation and subsequent stages of the repair processes. However, the damage induced by a focused laser beam interacting with a photosensitiser may not fully reflect the types of damage and repair encountered in cells of an animal under typical conditions in vivo. We report on two characteristic stages of recruitment of XRCC1 (a protein engaged in BER and SSB repair pathways), in response to low level DNA damage induced by visible light. We demonstrate that, when just a few DNA breaks are induced in a small region of the nucleus, the recruited XRCC1 is initially distributed uniformly throughout this region, and rearranges into several small stationary foci within minutes. In contrast, when heavy damage of various types (including oxidative damage) is induced in cells pre-sensitized with a DNA-binding drug ethidium bromide, XRCC1 is also recruited but fails to rearrange from the stage of the uniform distribution to the stage of several small foci, indicating that this heavy damage interferes with the progress and completion of the repair processes. We hypothesize that that first stage may reflect recruitment of XRCC1 to poly(ADP-ribose) moieties in the region surrounding the single-strand break, while the second-binding directly to the DNA lesions. We also show that moderate damage or stress induces formation of two types of XRCC1-containing foci differing in their mobility. A large subset of DNA damage-induced XRCC1 foci is associated with a major component of PML nuclear bodies - the Sp100 protein.  相似文献   

13.
14.
15.
16.
The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO–SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss.  相似文献   

17.
18.
EBNA-5 is one of the Epstein-Barr virus (EBV)-encoded nuclear proteins required for immortalization of human B lymphocytes. In the nuclei of EBV-transformed lymphoblastoid cell lines EBNA-5 is preferentially targetted to distinct nuclear foci. Previously we have shown (W.Q. Jiang, L. Szekely, V. Wendel-Hansen, N. Ringertz, G. Klein, and A. Rosen, Exp. Cell Res. 197:314-318, 1991) that the same foci also contained the retinoblastoma (Rb) protein. Using a similar double immunofluorescence technique, we now show that these foci colocalize with nuclear bodies positive for PML, the promyelocytic leukemia-associated protein. Artificial spreading of the chromatin by exposure to the forces of fluid surface tension disrupts this colocalization gradually, suggesting that the bodies consist of at least two subcomponents. Heat shock or metabolic stress induced by high cell density leads to the release of EBNA-5 from the PML-positive nuclear bodies and induces it to translocate to the nucleoli. In addition to their presence in nuclear bodies, both proteins are occasionally present in nuclear aggregates and doughnut-like structures in which PML is concentrated in an outer shell. Nuclear bodies with prominent PML staining are seen in resting B lymphocytes. This staining pattern does not change upon EBV infection. In freshly infected cells EBNA-5 antigens are first distributed throughout the nucleoplasm. After a few days intensely staining foci develop. These foci coincide with PML-positive nuclear bodies. At a later stage and in established lymphoblastoid cell lines EBNA-5 is almost exclusively present in the PML-positive nuclear foci. The colocalization is restricted to EBV-infected human lymphoblasts. The data presented indicate that the distinct EBNA-5 foci are not newly formed structures but the result of translocation of the viral protein to a specialized domain present already in the nuclei of uninfected cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号