首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-voltage (1.0 MV) electron microscopy and stereomicroscopy, electron probe microanalysis, electron diffraction and three-dimensional computer reconstruction, have been used to examine the spatial relationship between the inorganic crystals of calcium phosphate and the collagen fibrils of pickerel and herring bone. High-voltage stereo electron-micrographs were obtained of cross-sections of the cylinder-shaped intramuscular bones in uncalcified regions, in regions where only one or only several crystals had been deposited in some of the fibrils, and in successive sections containing progressively more mineral crystals until the stage of full mineralization was reached. High-resolution electron probe microanalysis confirmed that the electron-dense particles contained calcium and phosphorus. In the earliest stages of mineralization and progressing throughout the mineralization process, the crystals are located only within the collagen fibrils; crystals are not observed free in the extracellular spaces between collagen fibrils. The progressive increase in the mass of mineral deposited in the bone tissue with time occurs, essentially, completely within the collagen fibrils including the stage of full mineralization. At this stage, cross-sectional profiles of collagen fibrils are completely obliterated by mineral. A small number of crystals that are located on or close to the surface of the fibrils appear to extend a very short distance into the spaces between the fibrils. These ultrastructural observations of the very onset of calcification in which nucleation of the calcium phosphate crystals is clearly shown to begin within specific volumes of collagen fibrils, and of the subsequent temporal and spatial sequences of this phenomenon, which shows that calcification continues wholly within the collagen fibrils until maximum calcification is achieved, add important information on the basic physical chemical mechanism of the calcification and the structural elements that are involved. The spatial and temporal independence of the sites where mineralization is initiated establishes that such ultrastructural locations within individual collagen fibrils represent independent, physical chemical nucleation loci. The findings are totally inconsistent with the proposal that crystals must first be deposited in matrix vesicles, or other components such as mitochondria, and subsequently released and propagated in the interfibrillar space, until they eventually reach and impregnate the hole zone regions of the collagen fibrils. Three-dimensional computer reconstruction of serial transverse and longitudinal sections demonstrates periodic swellings along the collagen fibrils, corresponding to the hole zone region of their axial period as mineralization proceeds.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The data on ultrastructural organization of the ground substance in the human dermis obtained electron histochemically are represented. Five types of ruthenium positive structures of polysaccharide origin are detected: retinal structure (I), amorfous substance (II), membranes of collagen fibrils (III) and elastic fibres (V), fine ruthenium positive streakness of collagen fibrils (IV). These structures, except fine streakness, form a united polysaccharide system of the dermis participating in maintenance of structural-functional integrity of the connective tissue (collagen-elastic) carcass of the dermis. Two mechanisms, interconnected and oppositely directed, perform this function: the buffer mechanism preventing the connective tissue fibers and collagen fibrils to approach each other, and the binding mechanism preventing the fibrils and fibers to dissociate. The reticular structure performs mainly this function at the level of fibers, and the amorphous substance does it at the level of fibrils.  相似文献   

3.
The histological aspects of the true vocal cord mucosa change in the anterior third compared with the posterior two thirds. The anterior third is characterized by an epithelium where the ridges, marked in the posterior two thirds, are very slight or even absent. The underlying basement membrane, which is thin in the posterior two thirds, here appears particularly thick. At the ultrastructural level in this area, beneath a normally thickened basal lamina, a thick layer of finely granulated electron-dense material, interspersed with thin and randomly scattered collagen fibrils and proteoglycan filaments, is detectable. Beneath this thickened basement membrane, a layer of small undulated collagen fibril bundles with very numerous interspersed oxytalan fibres is found. The collagen fibrils, small in diameter (30-40 nm), seem to continue with the collagen fibrils of the basement membrane. In this layer numerous blood vessels with a very thick, delaminated basement membrane are also observed. The underlying area is characterized by the vocal cord ligament, composed by large compact collagen fibril bundles with interspersed elastic fibres. The particular features of the thick basement membrane, the thick-walled and delaminated vessels and the modular distribution of the elastic system together may well form the basic structure enabling the functional integration of the vocal ligament into the overlying mucosa and the underlying vocal muscle.  相似文献   

4.
The different types of fibres of the collagenous and elastic systems can be demonstrated specifically in tissue sections by comparing the typical ultrastructural picture of each of the fibre types with studies using selective staining techniques for light microscopy. A practicalmodus operandi, which includes the recommended staining procedures and interpretation of the results, is presented. Micrographs and tables are provided to summarize the differential procedures. Reticulin fibres display a distinct argyrophilia when studied by means of silver impregnation techniques, and show up as a thin meshwork of weakly birefringent, greenish fibres when examined with the aid of the Picrosirius-polarization method. In addition, electron-microscopic studies showed that reticulin fibres are composed of a small number of thin collagen fibrils, contrasting with the very many thicker fibrils that could be localized ultrastructurally to the sites where non-argyrophilic, coarse collagen fibres had been characterized by the histochemical methods used. The three different fibre types of the elastic system belong to a continuous series: oxytalan—elaunin—elastic (all of the fibre types comprising collections of microfibrils with, in the given sequence, increasing amounts of elastin). The three distinct types of elastic system fibres have different staining characteristics and ultrastructural patterns. Ultrastructurally, a characteristic elastic fibre consists of two morphologically different components: a centrally located solid cylinder of amorphous and homogeneous elastin surrounded by tubular microfibrils. An oxytalan fibre is composed of a bundle of microfibrils, identical to the elastic fibre microfibrils, without amorphous material. In elaunin fibres, dispersed amorphous material (elastin) is intermingled among the microfibrils.  相似文献   

5.
Specimens of abdomen skin, comprising alternate areas of striae albae and healthy skin, were removed during surgical lipectomy from multiparous and obese women between the ages of 24 and 53 years. A flattening and thinning of the striae albae surface and the almost complete disappearance of dermal papillae was observed in paraffin and thin sections. The papillary dermis was found to be almost completely replaced by straight bundles of collagen fibres running parallel to the skin surface. Immunofluorescence data revealed in these bundles high positivity for type I collagen. The underlying reticular dermis was also found to contain large densely packed bundles of collagen fibres running parallel to the skin surface. Both papillary and reticular dermis collagen fibres were mainly arranged orthogonally to the main axis of the stria. Furthermore, the density of the collagen fibre bundles and the diameter of the collagen fibrils was found to be greater than that of the clinically healthy skin. A larger number of elastic fibres, which presented an abnormal ultrastructural appearance, were visible in pathological papillary and reticular dermis.  相似文献   

6.
Summary The injury of dental pulp tissue, following caries, is accompanied by the deposit of a typical hard scar tissue known as reparative dentine which should be regarded as the mineralization of a new organic matrix. Highly purified antibodies were used in combination with immunoperoxidase or immunogold technique at the ultrastructural level to reveal the distribution and synthesis of types I and III collagen and fibronectin elaborated by typical matrix-forming cells in the new tissue.Specific immunoperoxidase labelling, on demineralized teeth, clearly demonstrated that type I collagen represents the main type of collagen (88%). It is associated with bundles of fine striated fibrils of type III collagen and in close vicinity with fibronectin and constituted, at least, the new organic matrix of reparative dentine.Immunogold staining gave precise localization mainly over Golgi apparatus for the 3 components, thus suggesting that the cells concerned should not be considered as new odontoblasts but rather as pulpal cells in the process of differentiation participating in the formation of new dentine. Moreover, these events are very similar to those observed during wound healing in other tissues.  相似文献   

7.
The injury of dental pulp tissue, following caries, is accompanied by the deposit of a typical hard scar tissue known as reparative dentine which should be regarded as the mineralization of a new organic matrix. Highly purified antibodies were used in combination with immunoperoxidase or immunogold technique at the ultrastructural level to reveal the distribution and synthesis of types I and III collagen and fibronectin elaborated by typical matrix-forming cells in the new tissue. Specific immunoperoxidase labelling, on demineralized teeth, clearly demonstrated that type I collagen represents the main type of collagen (88%). It is associated with bundles of fine striated fibrils of type III collagen and in close vicinity with fibronectin and constituted, at least, the new organic matrix of reparative dentine. Immunogold staining gave precise localization mainly over Golgi apparatus for the 3 components, thus suggesting that the cells concerned should not be considered as new odontoblasts but rather as pulpal cells in the process of differentiation participating in the formation of new dentine. Moreover, these events are very similar to those observed during wound healing in other tissues.  相似文献   

8.
It has been reported that the Mg-insufficient bone is fragile upon mechanical loading, despite its high bone mineral density, while vitamin K2 (MK-4: menatetrenone) improved the mechanical strength of Mg-insufficient bone. Therefore, we aimed to elucidate the ultrastructural properties of bone in rats with dietary Mg insufficiency with and without MK-4 supplementation. Morphological examinations including histochemistry, transmission electron microscopy, electron probe microanalysis (EPMA) and X-ray diffraction were conducted on the femora and tibiae of 4-week-old Wistar male rats fed with 1) a normal diet (control group, 0.09% Mg), 2) a Mg-insufficient diet (low Mg group, 0.006% Mg), or 3) a Mg-insufficient diet supplemented with MK-4 (MK-4 group, 0.006% Mg, 0.03% MK-4). MK-4 appeared to inhibit the osteoclastic bone resorption that is stimulated by Mg insufficiency. EPMA analysis, however, revealed an increased concentration of Ca paralleling Mg reduction in the low Mg group. Assessment by X-ray diffraction revealed an abundance of a particular synthetic form of hydroxyapatite in the low Mg group, while control bones featured a variety of mineralized crystals. In addition, Mg-deficient bones featured larger mineral crystals, i.e., crystal overgrowth. This crystalline aberration in Mg-insufficient bones induced collagen fibrils to mineralize easily, even in the absence of mineralized nodules, which therefore led to an early collapse of the fibrils. MK-4 prevented premature collagen mineralization by normalizing the association of collagen fibrils with mineralized nodules. Thus, MK-4 appears to rescue the impaired collagen mineralization caused by Mg insufficiency by promoting a re-association of the process of collagen mineralization with mineralized nodules.  相似文献   

9.
In the present work, we have studied the effect of the piezoelectricity of elastically deformed cortical bone collagen on surface using a biomimetic approach. The mineralization process induced as a consequence of the piezoelectricity effect was evaluated using scanning electron microscopy (SEM), thermally stimulated depolarization current (TSDC), and differential scanning calorimetry (DSC). SEM micrographs showed that mineralization occurred predominantly over the compressed side of bone collagen, due to the effect of piezoelectricity, when the sample was immersed in the simulated body fluid (SBF) in a cell-free system. The TSDC method was used to examine the complex collagen dielectric response. The dielectric spectra of deformed and undeformed collagen samples with different hydration levels were compared and correlated with the mineralization process followed by SEM. The dielectric measurements showed that the mineralization induced significant changes in the dielectric spectra of the deformed sample. DSC and TSDC results demonstrated a reduction of the collagen glass transition as the mineralization process advanced. The combined use of SEM, TSDC, and DSC showed that, even without osteoblasts present, the piezoelectric dipoles produced by deformed collagen can produce the precipitation of hydroxyapatite by electrochemical means, without a catalytic converter as occurs in classical biomimetic deposition.  相似文献   

10.
A newly defined chick calvariae osteoblast culture system that undergoes a temporal sequence of differentiation of the osteoblast phenotype with subsequent mineralization (Gerstenfeld, L. C., S. Chipman, J. Glowacki, and J. B. Lian. 1987. Dev. Biol. 122:49-60) has been examined for the regulation of collagen synthesis, ultrastructural organization of collagen fibrils, and extracellular matrix mineralization. Collagen gene expression, protein synthesis, processing, and accumulation were studied in this system over a 30-d period. Steady state mRNA levels for pro alpha 1(I) and pro alpha 2 collagen and total collagen synthesis increased 1.2- and 1.8-fold, respectively, between days 3 and 12. Thereafter, total collagen synthesis decreased 10-fold while mRNA levels decreased 2.5-fold. In contrast to the decreasing protein synthesis after day 12, total accumulated collagen in the cell layers increased sixfold from day 12 to 30. Examination of the kinetics of procollagen processing demonstrated that there was a sixfold increase in the rate of procollagen conversion to alpha chains from days 3 to 30 and the newly synthesized collagen was more efficiently incorporated into the extracellular matrix at later culture times. The macrostructural assembly of collagen and its relationship to culture mineralization were also examined. High voltage electron microscopy demonstrated that culture cell layers were three to four cells thick. Each cell layer was associated with a layer of well developed collagen fibrils orthogonally arranged with respect to adjacent layers. Fibrils had distinct 64-70-nm periodicity typical of type I collagen. Electron opaque areas found principally associated with the deepest layers of the fibrils consisted of calcium and phosphorus determined by electron probe microanalysis and were identified by electron diffraction as a very poorly crystalline hydroxyapatite mineral phase. These data demonstrate for the first time that cultured osteoblasts are capable of assembling their collagen fibrils into a bone-specific macrostructure which mineralizes in a manner similar to that characterized in vivo. Further, this matrix maturation may influence the processing kinetics of the collagen molecule.  相似文献   

11.
Summary The distribution of decorin and biglycan was investigated at the light and electron microscopical level in adult human articular cartilage. In general, the amount of decorin and biglycan was found to decrease with the depth of the layer of the cartilage. Decorin was found in the interterritorial matrix where most of the collagen is located. This fits in well with the assumption that decorin may modulate collagen metabolism. Biglycan was found next to the chondrocytes in the pericellular matrix and is assumed to be responsible for cellular activities. At the ultrastructural level, decorin was localized in the interterritorial matrix and in vesicles in chondrocytes. Biglycan was found, usually though not exclusively in the pericellular matrix. Both small proteoglycans were detected close to and on the collagen fibres and also associated with the more globular structures of the matrix between the fibrils. A double-staining approach revealed that the two molecules could be located along the same collagen fibril. However, staining for biglycan and decorin was not observed simultaneously within the same region of the fibre.  相似文献   

12.
Earlier biochemical investigations of cultured 3T6 fibroblasts have shown that ascorbate deficiency has no effect on the synthesis of collagen protein quantitatively but does produce inhibition of the critical post-translational hydroxylation of collagen essential for normal fibrogenesis and of formation of hydroxylysine-derived cross-links. This ultrastructural study on the same 3T6 fibroblast system demonstrates that ascorbate deficiency does not affect the cell morphology, particularly that of the protein synthetic or secretory apparatus, but does prevent the deposition of typical 640A degrees banded collagen fibres; instead, finer, unbanded fibrils--presumably collagenous--are deposited extracellularly. This confirms the earlier biochemical findings as wll as presenting a new finding--the inability of ascorbate-deficient cells to lay down normal collagen fibrils; possible mechanisms are considered in terms of the known biochemical lesions. The tissue culture findings are also compared with those observed in vivo in the scorbutic guinea-pig, where other workers have reported biochemical and ultrastructural evidence that collagen synthesis is inhibited. The apparently paradoxical observations in the two systems are considered; we conclude that the tissue culture system demonstrates the primary collagenous lesion which is perhaps obscured in vivo by secondary effects--nevertheless the two approaches are complementary.  相似文献   

13.
B Zimmermann 《Acta anatomica》1992,145(3):277-282
Mineralization at collagen fibrils is regulated by glycosaminoglycans (GAG). Alterations in proteoglycan composition during mineralization as well as inhibition of mineralization by GAGs are well documented. Collagen-GAG interactions during desmoid osteogenesis in fetal rat calvariae were investigated ultrastructurally by means of different fixation techniques. Mineralization was restricted to the collagen of the osteoid at the ectocranial side. Beyond the osteoid, one layer containing degenerated cells was found, followed by sheets of healthy osteoblasts with nonmineralized collagen fibrils. These fibrils were ordered in bundles, but were irregularly arranged in the mineralized osteoid. After fixation in glutaraldehyde-ruthenium red (GA-RR), small RR-positive granules were periodically attached to the fibrils of the nonmineralized collagen. These granules were absent at collagen in the mineralized osteoid. Periodically bound granules (periodicity of 62 nm) could clearly be demonstrated along collagen fibrils by pretreatment with the positively charged protamine sulfate and subsequent fixation in GA-RR in the nonmineralized collagen. In the mineralized osteoid, however, these granules were present, but periodic binding was missing. Heparin pretreatment followed by fixation in GA-RR revealed periodically bound fine strands between collagen fibrils running parallel in the nonmineralized collagen; these threads were absent in the mineralizing osteoid. Restriction of mineralization to osteoid at the mineralization border may be reflected by the observed changes in GAG binding to collagen fibrils within the osteoid of developing fetal calvariae in contrast to binding to collagen in nonmineralized areas.  相似文献   

14.
Mineralized collagen fibrils are the basic building blocks of bone tissue at the supramolecular level. Several disease states, manipulation of the expression of specific proteins involved in biomineralization, and treatment with different agents alter the extent of mineralization as well as the morphology of mineral crystals which in turn affect the mechanical function of bone tissue. An experimental assessment of mineralized fibers' mechanical properties is challenged by their small size, leaving analytical and computational models as a viable alternative for investigation of the fibril-level mechanical properties. In the current study the variation of the elastic stiffness tensor of mineralized collagen fibrils with changing mineral volume fraction and mineral aspect ratios was predicted via a micromechanical model. The partitioning of applied stresses between mineral and collagen phases is also predicted for normal and shear loading of fibrils. Model predictions resulted in transversely isotropic collagen fibrils in which the modulus along the longer axis of the fibril was the greatest. All the elastic moduli increased with increasing mineral volume fraction whereas Poisson's ratios decreased with the exception of v12 (=v21). The partitioning of applied stresses were such that the stresses acting on mineral crystals were about 1.5, 15, and 3 times greater than collagen stresses when fibrils were loaded transversely, longitudinally, and in shear, respectively. In the overall the predictions were such that: (a) greatest modulus along longer axis; (b) the greatest mineral/collagen stress ratio along the longer axis of collagen fibers (i.e., greatest relief of stresses acting on collagen); and (c) minimal lateral contraction when fibers are loaded along the longer axis. Overall, the pattern of mineralization as put forth in this model predicts a superior mechanical function along the longer axis of collagen fibers, the direction which is more likely to experience greater stresses.  相似文献   

15.
The microscopic and submicroscopic structures of perichondrial tissues in the head cartilages of Octopus vulgaris were studied by polarized light and transmission electron microscopy. The orbital cartilages possess a birefringent layer parallel to the surface of the cartilage; ultrastructurally, this layer, which may be considered perichondrial tissue, has the typical organisation of connective tissue but does not possess the stratification of collagen laminae found in vertebrate perichondria. Perichondrial extracellular matrix is clearly distinct from that of cartilage because its collagen fibrils are of a larger diameter than collagen fibrils from cartilage. In addition, perichondrial fibroblasts are characteristically located at the center of collagen fibers. In the cerebral cartilage, the perichondrium is absent or discontinuous in relation to complex interconnections between cartilage and connective fibres, muscle fibres, blood vessels and nerve. Distinctive cartilage-lining cells, rich in electron dense cytoplasmatic granules, are stratified either along the cartilage surface or along vessels and muscle fibres that penetrate within the cartilage. The perichondrium of cephalopod cartilage, whose structure varies according to the location and function of its skeletal segments, mimics that of vertebrate perichondrium, exemplifying the high level of tissue differentiation attained by cephalopods.  相似文献   

16.
During bone and dentin mineralization, the crystal nucleation and growth processes are considered to be matrix regulated. Osteoblasts and odontoblasts synthesize a polymeric collagenous matrix, which forms a template for apatite initiation and elongation. Coordinated and controlled reaction between type I collagen and bone/dentin-specific noncollagenous proteins are necessary for well defined biogenic crystal formation. However, the process by which collagen surfaces become mineralized is not understood. Dentin matrix protein 1 (DMP1) is an acidic noncollagenous protein expressed during the initial stages of mineralized matrix formation in bone and dentin. Here we show that DMP1 bound specifically to type I collagen, with the binding region located at the N-telopeptide region of type I collagen. Peptide mapping identified two acidic clusters in DMP1 responsible for interacting with type I collagen. The collagen binding property of these domains was further confirmed by site-directed mutagenesis. Transmission electron microscopy analyses have localized DMP1 in the gap region of the collagen fibrils. Fibrillogenesis assays further demonstrated that DMP1 accelerated the assembly of the collagen fibrils in vitro and also increased the diameter of the reconstituted collagen fibrils. In vitro mineralization studies in the presence of calcium and phosphate ions demonstrated apatite deposition only at the collagen-bound DMP1 sites. Thus specific binding of DMP1 and possibly other noncollagenous proteins on the collagen fibril might be a key step in collagen matrix organization and mineralization.  相似文献   

17.
Collagen types I, III, and V in human embryonic and fetal skin   总被引:3,自引:0,他引:3  
The dermis of human skin develops embryonically from lateral plate mesoderm and is established in an adult-like pattern by the end of the first trimester of gestation. In this study the structure, biochemistry, and immunocytochemistry of collagenous matrix in embryonic and fetal dermis during the period of 5 to 26 weeks of gestation was investigated. The dermis at five weeks contains fine, individual collagen fibrils draped over the surfaces of mesenchymal cells. With increasing age, collagen matrix increases in abundance in the extracellular space. The size of fibril diameters increases, and greater numbers of fibrils associate into fiber bundles. By 15 weeks, papillary and reticular regions are recognized. Larger-diameter fibrils, larger fibers, denser accumulations of collagen, and fewer cells distinguish the deeper reticular region from the finer, more cellular papillary region located beneath the epidermis. The distribution of collagen types I, III, and V were studied at the light microscope level by immunoperoxidase staining and at the ultrastructural level by transmission (TEM) and scanning electron microscopy (SEM) with immunogold labeling. By immunoperoxidase, types I and III were found to be evenly distributed, regardless of fetal age, throughout the dermal and subdermal connective tissue with an intensification of staining at the dermal-epidermal junction (DEJ). Staining for types III and V collagen was concentrated around blood vessels. Type V collagen was also localized in basal and periderm cells of the epidermis. By immuno-SEM, types I and III were found associated with collagen fibrils, and type V was localized to dermal cell surfaces and to a more limited extent with fibrils. The results of biochemical analyses for relative amounts of types I, III, and V collagen in fetal skin extracts were consistent with immunoperoxidase data. Type I collagen was 70-75%, type III collagen was 18-21%, and type V was 6-8% of the total of these collagens at all gestational ages tested, compared to 85-90% type I, 8-11% type III, and 2-4% type V in adult skin. The enrichment of both types III and V collagen in fetal skin may reflect in part the proportion of vessel- and nerve-associated collagen versus dermal fibrillar collagen. The accumulation of dermal fibrillar collagen with increasing age would enhance the estimated proportion of type I collagen, even though the ratios of type III to I in dermal collagen fibrils may be similar at all ages.  相似文献   

18.
Extracellular matrix organization and the spatial relationship between collagen fibrils, vesicular structures, and the first deposits of mineral in the calcifying leg tendon from the domestic turkey, Meleagris gallopavo, have been investigated by high voltage electron microscopy and three-dimensional computer graphic imaging of serial thick tissue sections. The work demonstrates that the tendon extracellular matrix is a complex assembly of somewhat flexible, highly aligned collagen fibrils with different diameters and occasionally opposite directionality. Smaller collagen fibrils appear to branch from larger fibrils or to aggregate to form those of greater size. While the matrices are dominated by fibrils, space exists between adjacent packed fibrils. The three-dimensional perspective indicates that approximately 60% of the total tendon volume is extrafibrillar over the regions examined. The first observable mineral in this tissue is extrafibrillar and appears to derive from vesicles. This view of three-dimensional matrix-mineral spatial relations supports earlier two-dimensional results that mineral is initially associated with membrane-invested vesicles and is deposited between collagen fibrils, but it is distinct in showing the mineral at different depths in the matrix rather than at a single depth as deduced from two-dimensional conventional electron microscopy. These results are important in the onset and development of tendon calcification in that they suggest, first, that collagen fibrils appear to be aligned three-dimensionally such that their hole zones are in contiguous arrangement. This situation may create channels or grooves within the collagen volume to accommodate extensive mineral deposition in association with the fibrils. Second, the results indicate that there are widely dispersed sites of vesicle-mediated mineralization in the tendon matrix, that the bulk of mineralization in this tissue is collagen-mediated, and that, while vesicles may possibly exert some local influence temporally on mineralization of neighboring collagen, vesicle- and collagen-mediated mineralization arise at spatially and structurally distinct sites by independent nucleation phenomena. Such concepts are fundamental in considerations of possible mechanisms of mineralization of tendon and potentially of other normally calcifying vertebrate tissues in general.  相似文献   

19.
Summary A modification of the tannic acid-metal salt method was applied as an ultrastructural stain for elastin. Thin sections of glutaraldehyde-fixed, embedded rat aorta and rabbit elastic cartilage, with and without osmication, were examined. Raising the pH of the tannic acid solution from 2.7 to 9.0 progressively increased the electron-density of elastic fibres and collagen fibrils in osmicated and unosmicated specimens. The maximum tannic acid staining of elastic fibres was observed in the pH range 7.0–9.0. Collagen staining, although less intense than that of elastic fibres, was also greatest in this pH range. Elastic fibres in osmicated specimens demonstrated the strongest tannic acid staining with a minimal increase in density of collagen and cell nuclei when compared to the unosmicated specimens. Sequential treatments of osmicated specimens with tannic acid pH 7.0–9.0, and uranyl acetate, pH 4.1, enhanced the density of the elastin intensely, increased collagen staining moderately, but hardly increased the density of nuclei and microfibrils. In elastase-digested osmicated specimens, all tannic acid (pH 7.0)-uranyl acetate-reactive elastin was selectively removed. These results demonstrate that all the neutral and alkaline tannic acid-uranyl acetate methods can be used as a postembedment stain for elastin specimens fixed in glutaraldehyde and osmium tetroxide.  相似文献   

20.
Nikolov S  Raabe D 《Biophysical journal》2008,94(11):4220-4232
We model the elastic properties of bone at the level of mineralized collagen fibrils via step-by-step homogenization from the staggered arrangement of collagen molecules up to an array of parallel mineralized fibrils. A new model for extrafibrillar mineralization is proposed, assuming that the extrafibrillar minerals are mechanically equivalent to reinforcing rings coating each individual fibril. Our modeling suggests that no more than 30% of the total mineral content is extrafibrillar and the fraction of extrafibrillar minerals grows linearly with the overall degree of mineralization. It is shown that the extrafibrillar mineralization considerably reinforces the fibrils’ mechanical properties in the transverse directions and the fibrils’ shear moduli. The model predictions for the elastic moduli and constants are found to be in a good agreement with the experimental data reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号