首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both molybdate and iron are metals that are required by the obligately aerobic organism Azotobacter vinelandii to survive in the nutrient-limited conditions of its natural soil environment. Previous studies have shown that a high concentration of molybdate (1 mM) affects the formation of A. vinelandii siderophores such that the tricatecholate protochelin is formed to the exclusion of the other catecholate siderophores, azotochelin and aminochelin. It has been shown previously that molybdate combines readily with catecholates and interferes with siderophore function. In this study, we found that the manner in which each catecholate siderophore interacted with molybdate was consistent with the structure and binding potential of the siderophore. The affinity that each siderophore had for molybdate was high enough that stable molybdo-siderophore complexes were formed but low enough that the complexes were readily destabilized by Fe3+. Thus, competition between Fe3+ and molybdate did not appear to be the primary cause of protochelin accumulation; in addition, we determined that protochelin accumulated in the presence of vanadate, tungstate, Zn2+, and Mn2+. We found that all five of these metal ions partially inhibited uptake of 55Fe-protochelin and 55Fe-azotochelin complexes. Also, each of these metal ions partially inhibited the activity of ferric reductase, an enzyme important in the deferration of ferric siderophores. Our results suggest that protochelin accumulates in the presence of molybdate because protochelin uptake and conversion into its component parts, azotochelin and aminochelin, are inhibited by interference with ferric reductase.  相似文献   

2.
The csbX gene of Azotobacter vinelandii was regulated in an iron-repressible manner from a divergent promoter upstream of the catecholate siderophore biosynthesis (csb) operon and was predicted to encode an efflux pump of the major facilitator superfamily. Other proteins that were most similar to CsbX were encoded by genes found in the catecholate siderophore biosynthesis operons of Aeromonas hydrophila and Stigmatella aurantiaca. Inactivation of csbX resulted in 57-100% decrease in the amount of catecholates released when compared to the wild-type in iron-limited medium. CsbX was most important for the export of the high affinity chelator protochelin with the majority of the catecholates released by csbX mutants being the protochelin intermediates azotochelin and aminochelin.  相似文献   

3.
Both molybdate and iron are metals that are required by the obligately aerobic organism Azotobacter vinelandii to survive in the nutrient-limited conditions of its natural soil environment. Previous studies have shown that a high concentration of molybdate (1 mM) affects the formation of A. vinelandii siderophores such that the tricatecholate protochelin is formed to the exclusion of the other catecholate siderophores, azotochelin and aminochelin. It has been shown previously that molybdate combines readily with catecholates and interferes with siderophore function. In this study, we found that the manner in which each catecholate siderophore interacted with molybdate was consistent with the structure and binding potential of the siderophore. The affinity that each siderophore had for molybdate was high enough that stable molybdo-siderophore complexes were formed but low enough that the complexes were readily destabilized by Fe(3+). Thus, competition between Fe(3+) and molybdate did not appear to be the primary cause of protochelin accumulation; in addition, we determined that protochelin accumulated in the presence of vanadate, tungstate, Zn(2+), and Mn(2+). We found that all five of these metal ions partially inhibited uptake of (55)Fe-protochelin and (55)Fe-azotochelin complexes. Also, each of these metal ions partially inhibited the activity of ferric reductase, an enzyme important in the deferration of ferric siderophores. Our results suggest that protochelin accumulates in the presence of molybdate because protochelin uptake and conversion into its component parts, azotochelin and aminochelin, are inhibited by interference with ferric reductase.  相似文献   

4.
The addition of manganese oxides to iron-limited medium promoted the formation of the pyoverdin siderophore azotobactin by Azotobacter vinelandii. When active-MnO2 was used, there was greatly decreased iron uptake into the cells, hyperproduction of azotobactin and the abiotic, chemical destruction or adsorbtion of the catechol siderophores azotochelin and aminochelin by this strong oxidizing agent. Although the iron content of the cells was the same as iron-limited cells, the growth of cells in medium with active-MnO2 was increased 1.5- to 2.5-fold over iron-limited controls. This growth promotion was not caused by iron contaminating the oxide or by manganese solubilized from the oxide. Soluble 0.05–4 mm Mn2+ inhibited the growth of iron-limited cells and had a minimal effect on iron uptake, but caused hyperproduction of azotobactin. This later effect was caused by the inhibition of soluble ferric reductase, in a manner identical to that previously observed for Zn2+. These results suggest that active-MnO2 may interfere with a surface-localized iron uptake site, possibly another ferric reductase. The reason for the growth promotion by active-MnO2 remains unknown, but is most likely related to decreased oxygen toxicity.  相似文献   

5.
Azotobacter vinelandii produces five siderophores with different metal binding properties, depending on the concentrations of Fe(III) and molybdate in the growth medium. The three lower protonation constants of the unusual bis(catecholamide) siderophore azotochelin (L) were determined by a simultaneous spectrophotometric and potentiometric titration as log K 5=3.65(5), log K 4=7.41(3) and log K 3=8.54(4). The metal-ligand equilibrium constant for [MoO2(L)]3– was obtained from analysis of the absorbance concentration data: at 20  °C and pH 6.6, log K eq=4(1). Based on an average log K a value of 12.1 for the two basic phenolic oxygens of azotochelin, the equilibrium formation constant was converted into the conventional formation constant K f(MoL) = [MoO2L3 ]/[MoO2 2+][L5 ] = 1035 M–1. To assess the influence of molybdenum-siderophore interactions on metal uptake in A. vinelandii, the dose-response effect of molybdate in the growth medium on siderophore biosynthesis was followed by UV-vis spectroscopy and HPLC. It could be shown that the formation of molybdenum siderophore complexes clearly reduces the concentration of free siderophores available for iron solubilization. Furthermore, in media with initial molybdate concentrations up to 100 μM, the molybdenum azotochelin complex is the predominant molybdenum species, suggesting that azotochelin might also possess sequestering activity towards molybdenum. Even higher molybdate levels result in a complete repression of the synthesis of the tetradentate siderophore azotochelin, while they initiate the alternative release of the more efficient iron chelator, the hexadentate siderophore protochelin. Received: 20 April 1998 / Accepted: 29 June 1998  相似文献   

6.
The solubilization of Fe(III) hydroxide by the naturally occurring siderophoreN,N-bis(2,3-dihydroxybenzoyl)-l-lysine has been investigated spectrophotometrically in the presence and the absence of a stoichiometric amount of molybdate in aqueous medium at pH 7. In the absence of molybdate the reaction is 50% complete after 115 min. In contrast, the addition of an equimolar amount of molybdate results in an instantaneous formation of the molybdenum siderophore complex and a significant delay in the formation of the corresponding iron complex: 50% of the iron complex is present after 44 h and equilibrium is only reached after 2 weeks. The results are discussed with regard to metal acquisition by the nitrogen fixing cells ofAzotobacter vinelandii.  相似文献   

7.
Summary Low concentrations of nalidixic acid and oxolinic acid that were just inhibitory toAzotobacter vinelandii growth promoted the production of the catechol siderophores azotochelin and aminochelin, in the presence of normally repressive concentrations of Fe3+. There was a limited effect on the pyoverdin siderophore, azotobactin, where low concentrations of Fe3+ were rendered less repressive, but the repression by higher concentrations of Fe3+ was normal. These drugs did not induce high-molecular-mass iron-repressible outer-membrane proteins and similar effects on the regulation of catechol siderophore synthesis were not produced by novobiocin, coumermycin, or ethidium bromide. The timing of nalidixic acid and Fe3+ addition to iron-limited cells was critical. Nalidixic acid had to be added before iron-repression of catechol siderophore synthesis and before the onset of iron-sufficient growth. Continued production of the catechol siderophores, however, was not due to interference with normal iron uptake. These data indicated that nalidixic acid prevented normal iron-repression of catechol siderophore synthesis but could not reverse iron repression once it had ocurred. The possible roles of DNA gyrase activity in the regulation of catechol siderophore synthesis is discussed.  相似文献   

8.
Azotobacter vinelandii was mutagenized with ethyl methanesulfonate, and colonies that did not produce the fluorescent yellow-green pigment that is characteristic of the wild type were selected. All 32 stable nonfluorescent mutants failed to secrete the siderophore azotobactin and were also impaired to some extent in the production of the second majorA. vinelandii siderophore, azotochelin. Mutants also showed differences in their capacity to grow on medium supplemented with either 200 M bipyridyl or 200 M Fe (III). In the absence of iron, an 84-kilodalton outer membrane protein, which is a major derepressed component, was missing in some of the mutants. Thus, siderophore production inA. vinelandii appears to be a highly integrated system in which the syntheses of azotobactin and azotochelin are functionally coupled.  相似文献   

9.
Azotochelin is a biscatecholate siderophore produced by the nitrogen-fixing soil bacterium Azotobacter vinelandii. The complexation properties of azotochelin with a series of oxoanions [Mo(VI), W(VI) and V(V)] and divalent cations [Cu(II), Zn(II), Co(II) and Mn(II)] were investigated by potentiometry, UV–vis and X-ray spectroscopy. Azotochelin forms a strong 1:1 complex with molybdate (log K = 7.6 ± 0.4) and with tungstate and vanadate; the stability of the complexes increases in the order Mo < V < W (log K appMo = 7.3 ± 0.4; log K appV = 8.8 ± 0.4 and log K appW = 9.0 ± 0.4 at pH 6.6). The Mo atom in the 1:1 Mo–azotochelin complex is bound to two oxo groups in a cis position and to the two catecholate groups of azotochelin, resulting in a slightly distorted octahedral configuration. Below pH 5, azotochelin appears to form polynuclear complexes with Mo in addition to the 1:1 complex. Azotochelin also forms strong complexes with divalent metals. Of the metals studied, Cu(II) binds most strongly to azotochelin , followed by Zn(II) , Mn(II) and Co(II) . Since very few organic ligands are known to bind strongly to oxoanions (and particularly molybdate) at circumneutral pH, the unusual properties of azotochelin may be used for the separation and concentration of oxoanions in the laboratory and in the field. In addition, azotochelin may prove useful for the investigation of the biogeochemistry of Mo, W and V in aquatic and terrestrial systems. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

10.
The cyclic pyrophosphate obtained fromMethanobacterium thermoautotrophicum was converted tosn-glycerol 3-phosphate by a stereospecific route. This conversion establishes the structure as cyclic-2,3-diphospho-d-glycerate. The same method was used to determine the cellular content of this metabolite under two conditions: batch culture in a medium containing 2 mM inorganic phosphate and continuous culture with 0.1 mM phosphate in the inflowing medium. The values found were 194±13 and 27.5±1.1 mol/g dry weight, respectively. Computer modeling indicated that the pyrophosphate group cannot adopt a staggered conformation.  相似文献   

11.
Vanadium is a cofactor in the alternative V-nitrogenase that is expressed by some N2-fixing bacteria when Mo is not available. We investigated the V requirements, the kinetics of V uptake, and the production of catechol compounds across a range of concentrations of vanadium in diazotrophic cultures of the soil bacterium Azotobacter vinelandii. In strain CA11.70, a mutant that expresses only the V-nitrogenase, V concentrations in the medium between 10−8 and 10−6 M sustain maximum growth rates; they are limiting below this range and toxic above. A. vinelandii excretes in its growth medium micromolar concentrations of the catechol siderophores azotochelin and protochelin, which bind the vanadate oxoanion. The production of catechols increases when V concentrations become toxic. Short-term uptake experiments with the radioactive isotope 49V show that bacteria take up the V-catechol complexes through a regulated transport system(s), which shuts down at high V concentrations. The modulation of the excretion of catechols and of the uptake of the V-catechol complexes allows A. vinelandii to precisely manage its V homeostasis over a range of V concentrations, from limiting to toxic.  相似文献   

12.
The influence of some ions in pre-growth culture medium on chromate reduction by resting cells of Agrobacterium radiobacter strain EPS-916 was investigated. The reduction was dependent on the Fe2+ content of the culture medium: the higher the iron content, the lower the reduction rate. The cells showed maximum chromate reduction when pre-grown in the presence of 0.243 m Mg2+, 20 m Ca2+ and 3.6 m Mn2+. Chromate reduction was not affected by the addition of MgCl2, CdCl2, ZnCl2, MnCl2, Na2SO4 (1000 m), and Na2MoO4 (100 m) to the activity assays. However, activity was inhibited by the presence of Na2SO4 (10 mm), Na2MoO4 (200 m) and ferric citrate.  相似文献   

13.
Life on Earth depends on N2-fixing microbes to make ammonia from atmospheric N2 gas by the nitrogenase enzyme. Most nitrogenases use Mo as a cofactor; however, V and Fe are also possible. N2 fixation was once believed to have evolved during the Archean-Proterozoic times using Fe as a cofactor. However, δ15N values of paleo-ocean sediments suggest Mo and V cofactors despite their low concentrations in the paleo-oceans. This apparent paradox is based on an untested assumption that only soluble metals are bioavailable. In this study, laboratory experiments were performed to test the bioavailability of mineral-associated trace metals to a model N2-fixing bacterium Azotobacter vinelandii. N2 fixation was observed when Mo in molybdenite, V in cavansite, and Fe in ferrihydrite were used as the sole sources of cofactors, but the rate of N2 fixation was greatly reduced. A physical separation between minerals and cells further reduced the rate of N2 fixation. Biochemical assays detected five siderophores, including aminochelin, azotochelin, azotobactin, protochelin, and vibrioferrin, as possible chelators to extract metals from minerals. The results of this study demonstrate that mineral-associated trace metals are bioavailable as cofactors of nitrogenases to support N2 fixation in those environments that lack soluble trace metals and may offer a partial answer to the paradox.  相似文献   

14.
Although siderophores are generally viewed as biological iron uptake agents, recent evidence has shown that they may play significant roles in the biogeochemical cycling and biological uptake of other metals. One such siderophore that is produced by A. vinelandii is the triscatecholate protochelin. In this study, we probe the solution chemistry of protochelin and its complexes with environmentally relevant trace metals to better understand its effect on metal uptake and cycling. Protochelin exhibits low solubility below pH 7.5 and degrades gradually in solution. Electrochemical measurements of protochelin and metal–protochelin complexes reveal a ligand half-wave potential of 200 mV. The Fe(III)Proto3− complex exhibits a salicylate shift in coordination mode at circumneutral to acidic pH. Coordination of Mn(II) by protochelin above pH 8.0 promotes gradual air oxidation of the metal center to Mn(III), which accelerates at higher pH values. The Mn(III)Proto3− complex was found to have a stability constant of log β110 = 41.6. Structural parameters derived from spectroscopic measurements and quantum mechanical calculations provide insights into the stability of the Fe(III)Proto3−, Fe(III)H3Proto, and Mn(III)Proto3− complexes. Complexation of Co(II) by protochelin results in redox cycling of Co, accompanied by accelerated degradation of the ligand at all solution pH values. These results are discussed in terms of the role of catecholate siderophores in environmental trace metal cycling and intracellular metal release.  相似文献   

15.
Summary Suspensions of log phase cells ofRhodospirillum rubrum at pH 5.5 show a light-induced decrease in the pH of the medium which is reversed during the subsequent dark period. The velocity and magnitude of the pH change were the same whether the cells were bubbled with air, CO2-free air or N2 during experimentation. The pH response is temperature dependent. Phenazine methyl sulfate (PMS) at concentrations above 0.05mm stimulates the light-induced pH change. PMS at 1mm gives a 2-fold increase in the initial rate upon illumination and a 1.5-fold increase in the total change in pH after 2 min of illumination. The inhibition of the proton transport by 10 g/ml antimycin A or 20 m 2-n-heptyl-4-hydroxyquinoline-N-oxide can be partially relieved by PMS. However, inhibition of the light-induced proton transport with 0.5mm 2,4-dinitrophenol or 3 m carbonylcyanide-m-chlorophenylhydrazone (CCCP) cannot be overcome by addition of PMS. Valinomycin, at a concentration of 3 m, caused a slight stimulation of the light-induced proton transport in the presence of 200mm KCl. The inhibition of proton transport by 3 m CCCP was partially relieved with 3 m valinomycin in the presence of 200mm KCl, but the antibiotic was without effect when the cells were suspended in 200mm NaCl. The results are discussed in terms of current theories of the action of PMS, antimycin A, valinomycin, and uncouplers on the light-induced electron flow and photophosphorylation inR. rubrum.  相似文献   

16.
The sialidase secreted byClostridium chauvoei NC08596 was purified to apparent homogeneity by ion-exchange chromatography, gel filtration, hydrophobic interaction-chromatography, FPLC ion-exchange chromatography, and FPLC gel filtration. The enzyme was enriched about 10 200-fold, reaching a final specific activity of 24.4 U mg–1. It has a relatively high molecular mass of 300 kDa and consists of two subunits each of 150 kDa. The cations Mn2+, Mg2+, and Ca2+ and bovine serum albumin have a positive effect on the sialidase activity, while Hg2+, Cu2+, and Zn2+, chelating agents and salt decrease enzyme activity. The substrate specificity, kinetic data, and pH optimum of the enzyme are similar to those of other bacterial sialidases.Abbreviations FPLC fast protein liquid chromatography - NCTC National Collection of Type Cultures - ATCC American Type Culture Collection - MU-Neu5Ac 4-methylumbelliferyl--d-N-acetylneuraminic acid - buffer A 0.02m piperazine, 0.01m CaCl2, pH 5.5 - buffer B 0.02m piperazine, 0.01m CaCl2, 1.0m NaCl, pH 5.5 - buffer C 0.1m sodium acetate, 0.01m CaCl2, pH 5.5 - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - Neu5Ac N-acetylneuraminic acid - BSM bovine submandibular gland mucin - GD1a IV3Neu5Ac, II3Neu5Ac-GgOse4Cer - GM1 II3Neu5Ac-GgOse4Cer - MU-Neu4,5Ac2 4-methylumbelliferyl--d-N-acetyl-4-O-acetylneuraminic acid - TLC thin-layer chromatography - HPTLC high performance thin-layer chromatography - EDTA ethylenediamine tetraacetic acid - EGTA ethylene glycol bis(2-aminoethyl-ethen)-N,N,N,N-tetraacetic acid - BSA bovine serum albumin - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid - IEF isoelectric focusing - IEP isoelectric point  相似文献   

17.
When treated with retinoic acidin vivo, C6 glioma cells show an enhancement of CMP-Neu5Ac:Gal 1–3 GalNAc-R -2,3 sialyltransferase activity. A 300kDa glycoprotein was detected by lectin affinoblotting in retinoic acid-treated C6 cells which stained weakly or not at all in control cells. Comparative studies with different lectins demonstrated that this glycoprotein contains 2,3 Neu5Ac Gal-GalNAc O-glycan moieties. Cultures in the presence of an inhibitor of O-glycan synthesis (N-acetylgalactosaminide -O-benzyl) demonstrated that enhancement of staining of the 300 kDa glycoprotein was not due to the increase of the 2,3 sialyltransferase but to thede novo synthesis of the polypeptide chain of this glycoprotein.Abbreviations RA retinoic acid - Neu5Ac N-acetylneuraminic acid - CMP-Neu5Ac cytidine 5 monophosphosialate - 2,3 ST CMP-Neu5Ac:Gal 1–3 GalNAc-R -2,3 sialyltransferase - GalNAc-O-benzyl N-acetylgalactosaminide -O-benzyl - Gal1-3GalNAc-O-benzyl Galactosyl 1-3N-acetylgalactosaminide -O-benzyl - TBS Tris-HCl buffer 50mm pH 7.5 containing NaCl 0.15m and Tween 20 0.05% - B1 buffer TBS containing MgCl2 1mm, MnCl2 1mm and CaCl2 1mm  相似文献   

18.
Sialidase secreted by the urease-positiveClostridium sordellii strain G12 was isolated from culture medium and purified to apparent homogeneity as estimated by Fast Protein Liquid Chromatography (FPLC) and sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE). For this purpose, ion-exchange chromatography, gel filtration, isoelectric focusing, and FPLC on ion-exchange resin and gel filtration materials were used. The sialidase was purified 159 300-fold from 5 l of culture medium, yielding 9 g of enzyme protein with a specific activity of 480 U/mg. For the denatured (SDS-PAGE) and native (FPLC) sialidase relative molecular masses of 40 000 and 38 500 Da, respectively, were estimated. The substrate specificity, kinetic data, and pH-optimum of the enzyme are similar to those of other bacterial sialidases. The influences of salt or serum proteins on enzyme activity are of interest.Abbreviations MU-Neu5Ac 4-methylumbelliferyl -d-N-acetylneuraminic acid - Ganglioside GD1a IV3NeuAc, ll3NeuAc-GgOse4Cer - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid  相似文献   

19.
Summary Transport of the nucleoside analog cytosine-arabinoside (CAR) in transformed hamster cells in culture has been studied in conditions of minimal metabolic conversion. Uptake (zero-trans in) properties at 20°C over a limited range of CAR concentrations were characterized by aK m of 350 m and a maximal velocity (V) of 780 m·min–1 (V/K m =2.28 min–1). Equilibrium exchange at 20°C over a wider range of concentrations was best described by a saturable component with aK m of 500 m and av of 1230 m·min–1 (V/K m =2.26 min–1) and either a saturable component of highK m or a nonsaturable component ofk=0.3 min–1. For the saturable component, thev/K m values were similar in both procedures.CAR transport was inhibited by various metabolizable nucleosides. Uptake of some of these nucleosides was inhibited by CAR. CAR transport and uridine uptake were inhibited in a reversible but partially competitive fashion by high affinity probes like S-(p-nitrobenzyl-6-mercaptoinosine (NBMI) (K i <0.5nm) and in an irreversible fashion by SH reagents such as N-ethylmaleiimide (NEM). The organomercurialp-hydroxymercuribenzene sulfonate (pMBS) markedly stimulated transport of these nucleosides, but also markedly potentiated the inhibitory effects of either NBMI or NEM. These effects are interpreted either in terms of models which invoke allosteric properties or in terms of two transport systems which display distinct chemical susceptibilities to externally added probes.  相似文献   

20.
The primary structure of the peptidoglycan and the teichoic acids of two coryneform isolates from the surface flora of French cooked cheeses, CNRZ 925 and CNRZ 926, have been determined. In the peptidoglycan, meso-diaminopimelic acid was localized in position three of the peptide subunit. It contained an d-glutamyl-d-aspartyl interpeptide bridge, connecting meso-diaminopimelic acid and d-alanine residues of adjacent peptide subunits. The -carboxyl group of d-glutamic acid in position two of peptide subunits was substituted with glycine amide. The teichoic acid pattern and composition differed between the strains: both contained an erythritol teichoic acid and strain CNRZ 925 also contained an N-acetylglucosaminylphosphate polymer. The erythritol teichoic acids differed in terms of the quality and quantity of substituents, but they both had N,N-diacetyl-2,3-diamino-2,3-dideoxyglucuronic acid in common.Abbreviations DNP dinitrophenyl - Ery erythritol - Gal galactose - GlcN glucosamine - GlcNAc N-acetylglucosamine - GlcUANAc2 N,N-diacetyl-2,3-diamino-2,3-dideoxyglucuronic acid - Hex UANAc2 N,N-diacetyl-2,3-diamino-2,3-dideoxyhexuronic - acid m-Dpm, meso-diaminopimelic acid - Mur muramic acid - MurNAc N-acetylmuramic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号