首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The proteins of the mitochondrial intermembrane space (IMS) are encoded by nuclear genes and synthesized on cytosolic ribosomes. While some IMS proteins are imported by the classical presequence pathway that involves the membrane potential deltapsi across the inner mitochondrial membrane and proteolytic processing to release the mature protein to the IMS, the import of numerous small IMS proteins is independent of a deltapsi and does not include proteolytic processing. The biogenesis of small IMS proteins requires an essential mitochondrial IMS import and assembly protein, termed Mia40. Here, we show that Erv1, a further essential IMS protein that has been reported to function as a sulfhydryl oxidase and participate in biogenesis of Fe/S proteins, is also required for the biogenesis of small IMS proteins. We generated a temperature-sensitive yeast mutant of Erv1 and observed a strong reduction of the levels of small IMS proteins upon shift of the cells to non-permissive temperature. Isolated erv1-2 mitochondria were selectively impaired in import of small IMS proteins while protein import pathways to other mitochondrial subcompartments were not affected. Small IMS precursor proteins remained associated with Mia40 in erv1-2 mitochondria and were not assembled into mature oligomeric complexes. Moreover, Erv1 associated with Mia40 in a reductant-sensitive manner. We conclude that two essential proteins, Mia40 and Erv1, cooperate in the assembly pathway of small proteins of the mitochondrial IMS.  相似文献   

2.
The thiol oxidase Erv1 and the redox-regulated receptor Mia40/Tim40 are components of a disulfide relay system which mediates import of proteins into the intermembrane space (IMS) of mitochondria. Here we report that Erv1 requires Mia40 for its import into mitochondria. After passage across the translocase of the mitochondrial outer membrane Erv1 interacts via disulfide bonds with Mia40. Erv1 does not contain twin “CX3C” or twin “CX9C” motifs which are crucial for import of typical substrates of this pathway and it does not need two “CX2C” motifs for import into mitochondria. Thus, Erv1 represents an unusual type of substrate of the Mia40-dependent import pathway.  相似文献   

3.
Native-state structures and conformations of ferrocytochrome c, nitrosylcytochrome c, and carbonmonoxycytochrome c are very similar. They are, however, immensely different from each other in terms of thermodynamic stability. The dramatic destabilization of ferrocytochrome c to the extent of 12 kcal mol(-1) produces no effect on the folding rate, and this is so in spite of the fact that all three test-tube variants fold in an apparent two-state manner. For all three proteins the folding barrier is early in time, sizable in energy, and is of the same magnitude (approximately 6.5 kcal mol(-1)). These results raise some challenges to the "new view" of protein folding. An early transition state, the search for which consumes most of the observed folding time, is suggested.  相似文献   

4.
We have investigated the folding energy landscape of cytochrome c by exploiting the widely different electron-transfer (ET) reactivities of buried and exposed Zn(II)-substituted hemes. An electronically excited Zn-porphyrin in guanidine hydrochloride denatured Zn-substituted cytochrome c (Zn-cyt c) reduces ruthenium(III) hexaammine about ten times faster than when embedded in the fully folded protein. Measurements of ET kinetics during Zn-cyt c folding reveal a burst intermediate in which one-third of the ensemble has a protected Zn-porphyrin and slow ET kinetics; the remaining fraction exhibits fast ET characteristic of a solvent-exposed redox cofactor. The ET data show that, under solvent conditions favoring the folded protein, collapsed non-native structures are not substantially more stable than extended conformations, and that the two populations interchange rapidly. Most of the folding free energy, then, is released when compact structures evolve into the native fold.  相似文献   

5.
The import of cytochrome c into the mitochondrial intermembrane space is not understood at a mechanistic level. While the precursor apocytochrome c can insert into protein-free lipid bilayers, the purified translocase of the outer membrane (TOM) complex supports the translocation of apocytochrome c into proteoliposomes. We report an in organello analysis of cytochrome c import into yeast mitochondria from wild-type cells and different mutants cells, each defective in one of the seven Tom proteins. The import of cytochrome c is not affected by removal of the receptor Tom20 or Tom70. Moreover, neither the transfer protein Tom5 nor the assembly factors Tom6 and Tom7 are needed for import of cytochrome c. When the general import pore (GIP)-protein Tom40 is blocked, the import of cytochrome c is moderately affected. Mitochondria lacking the central receptor and organizing protein Tom22 contain greatly reduced levels of cytochrome c. We conclude that up to two components of the TOM complex, Tom22 and possibly the GIP, are involved in the biogenesis of cytochrome c.  相似文献   

6.
In Desulfovibrio metabolism, periplasmic hydrogen oxidation is coupled to cytoplasmic sulfate reduction via transmembrane electron transfer complexes. Type II tetraheme cytochrome c3 (TpII-c3), nine-heme cytochrome c (9HcA) and 16-heme cytochrome c (HmcA) are periplasmic proteins associated to these membrane-bound redox complexes and exhibit analogous physiological function. Type I tetraheme cytochrome c3 (TpI-c3) is thought to act as a mediator for electron transfer from hydrogenase to these multihemic cytochromes. In the present work we have investigated Desulfovibrio africanus (Da) and Desulfovibrio vulgaris Hildenborough (DvH) TpI-c3/TpII-c3 complexes. Comparative kinetic experiments of Da TpI-c3 and TpII-c3 using electrochemistry confirm that TpI-c3 is much more efficient than TpII-c3 as an electron acceptor from hydrogenase (second order rate constant k = 9 x 10(8) M(-1) s(-1), K(m) = 0.5 microM as compared to k = 1.7 x 10(7) M(-1) s(-1), K(m) = 40 microM, for TpI-c3 and TpII-c3, respectively). The Da TpI-c3/TpII-c3 complex was characterized at low ionic strength by gel filtration, analytical ultracentrifugation and cross-linking experiments. The thermodynamic parameters were determined by isothermal calorimetry titrations. The formation of the complex is mainly driven by a positive entropy change (deltaS = 137(+/-7) J mol(-1) K(-1) and deltaH = 5.1(+/-1.3) kJ mol(-1)) and the value for the association constant is found to be (2.2(+/-0.5)) x 10(6) M(-1) at pH 5.5. Our thermodynamic results reveal that the net increase in enthalpy and entropy is dominantly produced by proton release in combination with water molecule exclusion. Electrostatic forces play an important role in stabilizing the complex between the two proteins, since no complex formation is detected at high ionic strength. The crystal structure of Da TpI-c3 has been solved at 1.5 angstroms resolution and structural models of the complex have been obtained by NMR and docking experiments. Similar experiments have been carried out on the DvH TpI-c3/TpII-c3 complex. In both complexes, heme IV of TpI-c3 faces heme I of TpII-c3 involving basic residues of TpI-c3 and acidic residues of TpII-c3. A secondary interacting site has been observed in the two complexes, involving heme II of Da TpII-c3 and heme III of DvH TpI-c3 giving rise to a TpI-c3/TpII-c3 molar ratio of 2:1 and 1:2 for Da and DvH complexes, respectively. The physiological significance of these alternative sites in multiheme cytochromes c is discussed.  相似文献   

7.
The Trans-activator protein (Tat) of human immunodeficiency virus (HIV) is a pleiotropic protein involved in different aspects of AIDS pathogenesis. As a number of viral proteins Tat is suspected to disturb mitochondrial function. We prepared pure synthetic full-length Tat by native chemical ligation (NCL), and Tat peptides, to evaluate their direct effects on isolated mitochondria. Submicromolar doses of synthetic Tat cause a rapid dissipation of the mitochondrial transmembrane potential (ΔΨm) as well as cytochrome c release in mitochondria isolated from mouse liver, heart, and brain. Accordingly, Tat decreases substrate oxidation by mitochondria isolated from these tissues, with oxygen uptake being initially restored by adding cytochrome c. The anion-channel inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) protects isolated mitochondria against Tat-induced mitochondrial membrane permeabilization (MMP), whereas ruthenium red, a ryanodine receptor blocker, does not. Pharmacologic inhibitors of the permeability transition pore, Bax/Bak inhibitors, and recombinant Bcl-2 and Bcl-XL proteins do not reduce Tat-induced MMP. We finally observed that Tat inhibits cytochrome c oxidase (COX) activity in disrupted mitochondria isolated from liver, heart, and brain of both mouse and human samples, making it the first described viral protein to be a potential COX inhibitor.  相似文献   

8.
Hydrogen exchange experiments under slow exchange conditions show that an omega loop in cytochrome c (residues 40-57) acts as a cooperative unfolding/refolding unit under native conditions. This unit behavior accounts for an initial step on the unfolding pathway, a final step in refolding, and a number of other structural, functional and evolutionary properties.  相似文献   

9.
The alkaline transition of cytochrome c is a model for protein structural switching in which the normal heme ligand is replaced by another group. Stopped flow data following a jump to high pH detect two slow kinetic phases, suggesting two rate-limiting structure changes. Results described here indicate that these events are controlled by the same structural unfolding reactions that account for the first two steps in the reversible unfolding pathway of cytochrome c. These and other results show that the cooperative folding-unfolding behavior of protein foldons can account for a variety of functional activities in addition to determining folding pathways.  相似文献   

10.
The assembly of cytochrome c oxidase (CcO) in yeast mitochondria is shown to be dependent on a new assembly factor designated Coa1 that associates with the mitochondrial inner membrane. Translation of the mitochondrial-encoded subunits of CcO occurs normally in coa1Delta cells, but these subunits fail to accumulate. The respiratory defect in coa1Delta cells is suppressed by high-copy MSS51, MDJ1 and COX10. Mss51 functions in Cox1 translation and elongation, whereas Cox10 participates in the biosynthesis of heme a, a key cofactor of CcO. Respiration in coa1Delta and shy1Delta cells is enhanced when Mss51 and Cox10 are coexpressed. Shy1 has been implicated in formation of the heme a3-Cu(B) site in Cox1. The interaction between Coa1 and Cox1, and the physical and genetic interactions between Coa1 and Mss51, Shy1 and Cox14 suggest that Coa1 coordinates the transition of newly synthesized Cox1 from the Mss51:Cox14 complex to the heme a cofactor insertion involving Shy1. coa1Delta cells also display a mitochondrial copper defect suggesting that Coa1 may have a direct link to copper metallation of CcO.  相似文献   

11.
Multi-step assembly pathway of the cbb3-type cytochrome c oxidase complex   总被引:1,自引:0,他引:1  
The cbb3-type cytochrome c oxidases as members of the heme-copper oxidase superfamily are involved in microaerobic respiration in both pathogenic and non-pathogenic proteobacteria. The biogenesis of these multisubunit enzymes, encoded by the ccoNOQP operon, depends on the ccoGHIS gene products, which are proposed to be specifically required for co-factor insertion and maturation of cbb3-type cytochrome c oxidases. Here, the assembly of the cbb3-type cytochrome c oxidase from the facultative photosynthetic model organism Rhodobacter capsulatus was investigated using blue-native polyacrylamide gel electrophoresis. This process involves the formation of a stable but inactive 210 kDa sub-complex consisting of the subunits CcoNOQ and the assembly proteins CcoH and CcoS. By recruiting monomeric CcoP, this sub-complex is converted into an active 230 kDa CcoNOQP complex. Formation of these complexes and the stability of the monomeric CcoP are impaired drastically upon deletion of ccoGHIS. In a ccoI deletion strain, the 230 kDa complex was absent, although monomeric CcoP was still detectable. In contrast, neither of the complexes nor the monomeric CcoP was found in a ccoH deletion strain. In the absence of CcoS, the 230 kDa complex was assembled. However, it exhibited no enzymatic activity, suggesting that CcoS might be involved in a late step of biogenesis. Based on these data, we propose that CcoN, CcoO and CcoQ assemble first into an inactive 210 kDa sub-complex, which is stabilized via its interactions with CcoH and CcoS. Binding of CcoP, and probably subsequent dissociation of CcoH and CcoS, then generates the active 230 kDa complex. The insertion of the heme cofactors into the c-type cytochromes CcoP and CcoO precedes sub-complex formation, while the cofactor insertion into CcoN could occur either before or after the 210 kDa sub-complex formation during the assembly of the cbb3-type cytochrome c oxidase.  相似文献   

12.
Native state hydrogen exchange experiments have shown that the cytochrome c (Cyt c) protein consists of five cooperative folding-unfolding units, called foldons. These are named, in the order of increasing unfolding free energy, the nested-Yellow, Red, Yellow, Green, and Blue foldons. Previous results suggest that these units unfold in a stepwise sequential way so that each higher energy partially unfolded form includes all of the previously unfolded lower free energy units. If this is so, then selectively destabilizing any given foldon should equally destabilize each subsequent unfolding step above it in the unfolding ladder but leave the lower ones before it unaffected. To perform this test, we introduced the mutation Glu62Gly, which deletes a salt link in the Yellow unit and destabilizes the protein by 0.8 kcal/mol. Native state hydrogen exchange and other experiments show that the stability of the Yellow unit and the states above it in the free energy ladder are destabilized by about the same amount while the lower lying states are unaffected. These results help to confirm the sequential stepwise nature of the Cyt c unfolding pathway and therefore a similar refolding pathway. The steps in the pathway are dictated by the concerted folding-unfolding property of the individual unit foldons; the order of steps is determined by the sequential stabilization of progressively added foldons in the native context. Much related information for Cyt c strongly conforms with this mechanism. Its generality is supported by available information for other proteins.  相似文献   

13.
Fago A  Mathews AJ  Moens L  Dewilde S  Brittain T 《FEBS letters》2006,580(20):4884-4888
Previously identified, potentially neuroprotective reactions of neuroglobin require the existence of yet unknown redox partners. We show here that the reduction of ferric neuroglobin by cytochrome b(5) is relatively slow (k=6 x 10(2)M(-1)s(-1) at pH 7.0) and thus is unlikely to be of physiological significance. In contrast, the reaction between ferrous neuroglobin and ferric cytochrome c is very rapid (k=2 x 10(7)M(-1)s(-1)) with an apparent overall equilibrium constant of 1 microM. Based on this data we propose that ferrous neuroglobin may well play a role in preventing apoptosis.  相似文献   

14.
Two synthetic genes coding for human and Arabidopsis cytochrome c, respectively, have been designed and constructed, and the recombinant proteins have been over-expressed in Escherichia coli cells. Thus a comparative analysis of the two heme proteins, including horse cytochrome c as a reference, has been performed. In addition to their physico-chemical properties, the redox behavior of the three proteins has been analyzed by following the kinetics of both their reduction by flavin semiquinones (lumiflavin, riboflavin, and FMN) and oxidation by cytochrome c oxidase. The resulting data indicate that the accessibility and electrostatic charge of the active site do not differ in a significant way among the three proteins, but human cytochrome c exhibits some intriguing differences when interacting with cytochrome c oxidase that could be related to the amino acid changes underwent by the latter along evolution.  相似文献   

15.
Saccharomices cerevisiae (yeast iso-1) cytochrome c has been investigated in the presence of 100 mM SDS in order to simulate the interaction of cytochrome c with membrane. Under these circumstances, a high spin species with detached methionine axial ligand is observed through NMR, in analogy to findings on the horse heart protein. However, at variance with the latter system, for the yeast protein also a low spin species is detected, which appears to be present with a concentration of about 40% with respect to that of the high spin species. The R(1), R(2), [1H]-15N NOE of backbone amides which are not affected by paramagnetism are homogeneous and allow a simultaneous analysis of the data for the two species. The result is that the rotational correlation time is larger than in water and larger than expected on the basis of viscosity of the SDS-containing solution. This finding suggests interactions of cytochrome c with SDS. Furthermore, it appears that there is subnanosecond backbone mobility, which also accounts for the decreased intensity of NOE cross-peaks and may be associated with equilibria between helical and random coil structure. The dynamic behavior appears to be a common feature of the high spin and low spin species and is consistent with the presence of a molten globule state. The molten globule nature of the protein could account for the presence of the different axial coordination of the heme iron. Such findings are meaningful with respect to the physiology of cytochrome c as electron transfer protein and as promoter of apoptosis.  相似文献   

16.
To investigate the character and role of misfolded intermediates in protein folding, a recombinant cytochrome c without the normally blocking histidine to heme misligation was studied. Folding remains heterogeneous as in the wild-type protein. Half of the population folds relatively rapidly to the native state in a two-state manner. The other half collapses (fluorescence quenching) and forms a full complement of helix (CD) with the same rate and denaturant dependence as the fast folding fraction but then is blocked and reaches the native structure (695nm absorbance) much more slowly. The factors that transiently block folding are not intrinsic to the folding process but depend on ambient conditions, including protein aggregation (f(concentration)), N terminus to heme misligation (f(pH)), and proline mis-isomerization (f(U state equilibration time)). The misfolded intermediate populated by the slowly folding fraction was characterized by hydrogen exchange pulse labeling. It is very advanced with all of the native-like elements fairly stably formed but not the final Met80-S to heme iron ligation, similar to a previously studied molten globule form induced by low pH. To complete final native state acquisition, some small back unfolding is required (error repair) but the misfolded intermediate does not revisit the U state before proceeding to N. These properties show that the intermediate is a normal on-pathway form that contains, in addition, adventitious misfolding errors that transiently block its forward progress. Related observations for other proteins (partially misfolded intermediates, pathway heterogeneity) might be similarly explained in terms of the optional insertion of error-dependent barriers into a classical folding pathway.  相似文献   

17.
Analyses of unionoidean bivalve male-transmitted (M) mtDNA genomes revealed an approximately 555 bp 3' coding extension to cox2. An antibody was generated against this predicted C-terminus extension to determine if the unique cox2 protein is expressed. Western blot and immunohistochemistry analyses demonstrated that the protein was predominantly expressed in testes. Weak expression was detected in other male tissues but the protein was not detected in female tissues. This is the first report documenting the expression of a cox2 protein with a long C-terminus in animals. Its universal presence in unionoidean bivalve testes suggests a functional significance for the protein.  相似文献   

18.
Copper has an important role in the life cycle of many streptomycetes, stimulating the developmental switch between vegetative mycelium and aerial hyphae concomitant with the production of antibiotics. In streptomycetes, a gene encoding for a putative Sco-like protein has been identified and is part of an operon that contains two other genes predicted to handle cellular copper. We report on the Sco-like protein from Streptomyces lividans (ScoSl) and present a series of experiments that firmly establish a role for ScoSl as a copper metallochaperone as opposed to a role as a thiol-disulphide reductase that has been assigned to other bacterial Sco proteins. Under low copper concentrations, a Δsco mutant in S. lividans displays two phenotypes; the development switch between vegetative mycelium and aerial hyphae stalls and cytochrome c oxidase (CcO) activity is significantly decreased. At elevated copper levels, the development and CcO activity in the Δsco mutant are restored to wild-type levels and are thus independent of ScoSl. A CcO knockout reveals that morphological development is independent of CcO activity leading us to suggest that ScoSl has at least two targets in S. lividans. We establish that one ScoSl target is the dinuclear CuA domain of CcO and it is the cupric form of ScoSl that is functionally active. The mechanism of cupric ion capture by ScoSl has been investigated, and an important role for a conserved His residue is identified.  相似文献   

19.
We have analyzed the role of individual heme-ligating histidine residues for assembly of holo-cytochrome b6, and we show that the two hemes bL and bH bind in two subsequent steps to the apo-protein. Binding of the low-potential heme bL is a prerequisite for binding the high-potential heme bH. After substitution of His86, which serves as an axial ligand for heme bL, the apo-protein did not bind heme, while substitution of the heme bL-ligating residue His187 still allowed binding of both hemes. Similarly, after replacement of His202, one axial ligand to heme bH, binding of only heme bL was observed, whereas replacement of His100, the other heme bH ligand, resulted in binding of both hemes. These data indicate sequential heme binding during formation of the holo-cytochrome, and the two histidine residues, which serve as axial ligands to the same heme molecule (heme bL or heme bH), have different importance during heme binding and cytochrome assembly. Furthermore, determination of the heme midpoint potentials of the various cytochrome b6 variants indicates a cooperative adjustment of the heme midpoint potentials in cytochrome b6.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号