首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe phalanges of the KNM-BG 35250 Nacholapithecus kerioi skeleton from the Middle Miocene of Kenya. Phalanges of N. kerioi display similarities to those of Proconsul heseloni despite their enhanced robusticity. They do not show highly specialized features as in living suspensory primates. However, N. kerioi manifests several distinctive features that are observed in neither living arboreal quadrupeds nor P. heseloni or P. nyanzae. The most remarkable of them is its phalangeal elongation. N. kerioi phalanges (particularly pedal) are as long as those of Pan despite its much smaller body size. While lengthened digits enable a secure grip of supports and are especially adaptive for grasping large vertical trunks, the skeletal and soft tissues are subjected to greater stress. Probably, strong selective pressures favored powerful hallucal/pollical assisted grips. Although this functional adaptation does not exclude the possible use of the terrestrial environment, arboreal behavioral modes must have been crucial in its positional repertoire. N. kerioi is distinguished from P. heseloni in the greater size of its manual phalanges over its pedal phalanges. These derived features of N. kerioi suggest positional modes supporting more weight on the forelimb, and which occur more frequently on vertical supports. If Proconsul is referred to as an "above-branch arboreal quadruped" with a deliberate and effective climbing capability, N. kerioi may be thought of as an "orthograde climber". While living apes are powerful orthograde climbers, they are also more or less suspensory specialists. Suspensory behavior (plus climbing) and pronograde quadrupedalism (plus climbing) are the two main arboreal behavioral adaptations in living anthropoids. Thus, N. kerioi is an unusual fossil primate in that it cannot be incorporated into this dichotomy. It is plausible that a N. kerioi-like orthograde climber with large forelimbs and cheiridia was a precursor of suspensory living apes, and N. kerioi may demonstrate what an initial hominoid of this grade might have looked like.  相似文献   

2.
3.
4.
This paper describes the morphology of the vertebral remains of the KNM-BG 35250 Nacholapithecus kerioi individual from the Middle Miocene of Kenya. Cervical vertebrae are generally large relative to presumed body mass, suggesting a heavy head with large jaws and well-developed neck muscles. The atlas retains the lateral and posterior bridges over the vertebral artery. The axis has a robust dens and a large angle formed by superior articular surfaces. The thoracic vertebral specimens include the diaphragmatic vertebra and one post-diaphragmatic vertebra. The thoracic vertebral bodies are much smaller that those of male Papio cynocephalus, whereas many of the dorsal elements are large and robust, exceeding those of male P. cynocephalus. Lumbar vertebral bodies are small relative to body mass, craniocaudally moderately long, and have a median ventral keel. The transverse process is craniocaudally long and arises from the widest part of the body cranially and the pedicle above the inferior vertebral notch caudally. Anapophyses are present in one of the preserved lumbar vertebrae. The postzygapophyses are thick dorsoventrally. These lumbar features are broadly shared with Proconsul. However, the base of the spinous process is longer and more caudally positioned in N. kerioi compared to Proconsul, and is more similar to the condition in Pongo. They are not dorsally (or moderately caudally) directed as is seen in P. nyanzae, Pan, and most other extant primates. A caudally directed spinous process does not permit a broad range of spinal dorsiflexion. The presumed stiff back in N. kerioi suggests a different locomotor repertoire than in Proconsul. Morotopithecus bishopi, although not possessing the same features, exhibits another morphological suite of characters for lumbar stiffness. Diverse functional adaptations of the lumbar spine were present in African hominoids during the Early to Middle Miocene.  相似文献   

5.
Traditionally, analogising comparative anatomical approaches, working on features of individual bony elements, have led to the Miocene hominoids Proconsul heseloni and P. nyanzae being described as arboreal, with a variety of possible locomotion modes. Whilst most researchers seemingly agree that quadrupedal was one of the most frequently adopted modes, any deeper knowledge about the kinematical characteristics of such quadrupedalism is very limited. Based on the previous studies and a computer simulation technique developed in our laboratory, a set of alternative models for Proconsul quadrupedalism was created. The body measurements and initial properties for the different models were held constant, using data from published literature if available, or otherwise estimated from data for Pan. Judged by the power output of joints, the results of computer simulation indicate that the style of quadrupedal locomotion typical of living macaques fits the body proportions of Proconsul better than that of Canis domesticus, Varecia variegata, Cebus albifrons or Pan troglodytes. It may reasonably be assumed that Proconsul's quadrupedal mode was similar to that of living macaques.  相似文献   

6.
The relationship between locomotor behavior and long bone structural proportions is examined in 179 individuals and 13 species of hominoids and cercopithecoids. Articular surface areas, estimated from linear caliper measurements, and diaphyseal section moduli (strengths), determined from CT scans, were obtained for the femur, tibia, humerus, radius, and ulna. Both within-bone (articular to shaft) and between-bone (forelimb to hindlimb) proportions were calculated and compared between taxa. It was hypothesized that: 1) species emphasizing slow, cautious movement and/or more varied limb positioning (i.e., greater joint excursion) would exhibit larger articular to cross-sectional shaft proportions, and 2) species with more forelimb suspensory behavior would have relatively stronger/larger forelimbs, while those with more leaping would have relatively stronger/larger hindlimbs. The results of the analysis generally confirm both hypotheses. Several partial exceptions can be explained on the basis of more detailed structural-functional considerations. Associations between locomotion and structural proportions can be demonstrated both across major groupings (hominoids and cercopithecoids) and between relatively closely related taxa, e.g., mountain and lowland gorillas, siamangs and gibbons, and Trachypithecus and other colobines. Furthermore, structure and function do not always covary with taxonomy. For example, compared to cercopithecoids, mountain gorillas have relatively larger joints, like other hominoids, but do not have relatively stronger forelimbs, unlike other hominoids. This is consistent with a locomotor repertoire emphasizing relatively slow movement but with very little forelimb suspension. Proportions of Proconsul nyanzae, Proconsul heseloni, Morotopithecus bishopi, and Theropithecus oswaldi are compared with modern distributions to illustrate the application of the techniques to fossil taxa.  相似文献   

7.
The palatofacial morphology of Proconsul africanus, P. nyanzae, P. major and Sivapithecus meteai is compared to extant catarrhines. The early Miocene hominoids (Proconsul) are unlike modern great apes, but retain a primitive catarrhine pattern more similar to some extant cercopthecoids. By middle Miocene times the typical hominoid palatofacial morphology can be recognized in at least one species (S. meteai) and this corresponds to the evolution of the postcranium in which the hominoid pattern is also only recognizable by the middle Miocene.  相似文献   

8.
The crushed palate and lower face of the holotype of Proconsul nyanzae has been prepared using the acetic acid technique. The prepared and conserved fragments have been restored to their natural positions using a synthetic cement and polyethylene glycol wax (Carbowax 4000) to fill the gaps. Preparation revealed the inferior margin of the right orbit, the inferior border of the nasal bones, and a posterior divergence of the palate which has now been corrected. The restored face of P. nyanzae shows the orbits to have been wider apart than those of Proconsul major, both absolutely and relatively, and that it had a long narrow nose and palate. It differs from Proconsul africanus, which has the shortest and broadest face of all Proconsul species, and from P. major which has a much longer narrower face.  相似文献   

9.
In an analysis of hominoid postcranial variation, 'Evol. Anthrop. 6 (1998) 87' argued that many purportedly unique features of the hominoid postcranium are actually much more variable than previously reported and in many instances overlap with both suspensory (Ateles) and non-suspensory primates. Based on these results, it was concluded that parallelism in the living ape postcranium was a plausible and even likely possibility given the Miocene hominoid postcranial record. However, this analysis did not distinguish whether within-hominoid variability or overlap with non-hominoids involved one or all ape taxa, a distinction which has potentially important effects on the interpretation of results. To address this issue, primate postcranial morphometric data from the trunk and forelimb were reanalyzed using three techniques: cladistic analysis, principle components analysis, and cluster analysis. Results reveal that these postcranial characters distinguish not only suspensory and quadrupedal primates but also discriminate hominoids and Ateles from all other taxa, great apes from lesser apes and Ateles, cercopithecines from colobines, and cercopithecoids from platyrrhines. The majority of hominoid variability and overlap with Ateles occurs with Hylobates humeral head and shoulder joint characters related to brachiation. This suggests that Hylobates' specializations may skew analyses of hominoid postcranial uniqueness and variability, and that great apes are relatively similar in their postcranium.  相似文献   

10.
Remains of what appears to be a single, subadult Hadropithecus stenognathus were recovered from a previously unexcavated site at Andrahomana Cave (southeastern Madagascar). Specimens found comprise isolated teeth and cranial fragments (including the frontal processes of the orbits), as well as a partial postcranial skeleton. They include the first associated fore- and hind-limb bones, confirming the hind-limb attributions made by Godfrey and co-workers in 1997, and refuting earlier attributions by Lamberton in 1937/1938. Of particular interest here are the previously unknown elements, including a sacrum, other vertebrae and ribs, some hand bones, and the distal epiphysis of a femur. We briefly discuss the functional implications of previously unknown elements. Hadropithecus displayed a combination of characters reminiscent of lemurids, others more like those of the larger-bodied Old World monkeys, and still others more like those of African apes. Yet other characteristics appear unique. Lemurid-like postcranial characteristics may be primitive for the Archaeolemuridae. Hadropithecus diverges from the Lemuridae in the direction of Archaeolemur, but more extremely so. Thus, for example, it exhibits a stronger reduction in the size of the hamulus of the hamate, greater anteroposterior compression of the femoral shaft, and greater asymmetry of the femoral condyles. Nothing in its postcranial anatomy signals a close relationship to either the Indriidae or the Palaeopropithecidae.  相似文献   

11.
A nearly complete skeleton of a juvenile sauropod from the Lower Morrison Formation (Late Jurassic, Kimmeridgian) of the Howe Ranch in Bighorn County, Wyoming is described. The specimen consists of articulated mid-cervical to mid-caudal vertebrae and most appendicular bones, but cranial and mandibular elements are missing. The shoulder height is approximately 67 cm, and the total body length is estimated to be less than 200 cm. Besides the body size, the following morphological features indicate that this specimen is an early juvenile; (1) unfused centra and neural arches in presacral, sacral and first to ninth caudal vertebrae, (2) unfused coracoid and scapula, (3) open coracoid foramen, and (4) relatively smooth articular surfaces on the limb, wrist, and ankle bones. A large scapula, short neck and tail and elongate forelimb bones relative to overall body size demonstrate relative growth. A thin-section of the mid-shaft of a femur shows a lack of annual growth lines, indicating an early juvenile individual possibly younger than a few years old. Pneumatic structures in the vertebral column of the specimen SMA 0009 show that pneumatisation of the postcranial skeleton had already started in this individual, giving new insights in the early ontogenetic development of vertebral pneumaticity in sauropods.

The specimen exhibits a number of diplodocid features (e.g., very elongate slender scapular blade with a gradually dorsoventrally expanded distal end, a total of nine dorsal vertebrae, presence of the posterior centroparapophyseal lamina in the posterior dorsal vertebrae). Although a few diplodocid taxa, Diplodocus, cf. Apatosaurus, and cf. Barosaurus, are known from several fossil sites near the Howe Ranch, identification of this specimen, even at a generic level, is difficult due to a large degree of ontogenetic variation.  相似文献   

12.
13.
We describe the postcranial anatomy of the Miocene puma-sized ailurid Simocyon batalleri , discussing some aspects of its biomechanics and inferring a probable life style. The postcranial anatomy of S. batalleri was previously unknown due the fragmentary nature of its fossil record, and most of the available fossils corresponded to cranial and dental material. With the discovery of a rich sample from the Late Miocene natural trap of Batallones-1, to the south of Madrid (Spain), including the remains of at least two individuals of S. batalleri , it is possible to study for the first time the anatomy of the cervical and lumbar vertebrae, complete forelimb and partial hind limb. The morphology of the forelimb, the lumbar region and the unexpected presence of a false-thumb are strongly suggestive of arboreal capabilities. Such locomotor abilities are consistent with a palaeobiological model of a generalized carnivore that foraged mainly on the ground but could readily climb to trees for safety if faced with the threat of larger competing carnivores.  © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 152 , 593–621.  相似文献   

14.
The postcranial axial skeleton exhibits considerable morphological and functional diversity among living primates. Particularly striking are the derived features in hominoids that distinguish them from most other primates and mammals. In contrast to the primitive catarrhine morphotype, which presumably possessed an external (protruding) tail and emphasized more pronograde trunk posture, all living hominoids are characterized by the absence of an external tail and adaptations to orthograde trunk posture. Moreover, modern humans evolved unique vertebral features that satisfy the demands of balancing an upright torso over the hind limbs during habitual terrestrial bipedalism. Our ability to identify the evolutionary timing and understand the functional and phylogenetic significance of these fundamental changes in postcranial axial skeletal anatomy in the hominoid fossil record is key to reconstructing ancestral hominoid patterns and retracing the evolutionary pathways that led to living apes and modern humans. Here, we provide an overview of what is known about evolution of the hominoid vertebral column, focusing on the currently available anatomical evidence of three major transitions: tail loss and adaptations to orthograde posture and bipedal locomotion.  相似文献   

15.
16.
We investigated allometric relationships between vertebral centrum cranial surface areas and body weight and skeletal lumbar length in extant platyrrhine and cercopithecid species. Platyrrhines have smaller lumbar vertebral centra regarding the cranial surface area relative to their body weight than extant catarrhines. However, the stress to the spine of quadrupeds is not only influenced by the body weight but also its length, which contributes to the amount of bending moment. Our results indicated that platyrrhines and cercopithecids have similar lumbar vertebral centrum surface areas when they are scaled on the product of the body weight and skeletal lumbar length. Platyrrhines generally tend to have relatively short lumbar columns for a given body weight. As a result of this tendency, their vertebral centra appear relatively small if only body weight is taken into account. The centrum surface area is rather constant relative to the product of the body weight and skeletal lumbar length within platyrrhines or cercopithecids, despite the fact that skeletal lumbar length is in itself rather variable relative to body weight. This result indicates that the vertebral centrum articular area, the lumbar column length and the body weight are strongly correlated with each other and that such relationships are similar between platyrrhines and cercopithecids. These relationships were observed using both the zygapophyseal and rib definitions of the lumbar vertebrae. However, they were more clearly observed when the zygapophyseal definition was adopted. It appeared that lumbar vertebrae of Proconsul nyanzae (KNM−MW 13142) had distinctively smaller surface areas relative to its body weight and lumbar length than for platyrrhines and cercopithecids, differing from extant hominoids, which have comparatively larger lumbar vertebrae. In the case of Morotopithecus, the lumbar vertebral surface area seems to be as large as in extant platyrrhines and cercopithecids if it had a reduced number of lumbar vertebrae. It is uncertain whether its lumbar vertebral surface area was as large as in extant hominoids. Electronic Publication  相似文献   

17.
Macrauchenia patachonica Owen, 1838 was among the last and largest litopterns, an extinct order of South American native ungulates. Macrauchenia patachonica had anatomical peculiarities as extremely retracted nasals, enlarged cervical vertebrae, and limb bones proportions without good living analogs that lead to asking about its paleobiology. To quantitatively assess the strange combination of limb bone features in M. patachonica, we constructed an indicator of differences in anatomical adaptations for efficient running between forelimb and hind limb (IDFH). We also made a multivariate analysis using data on osteological ratios of living mammals and two other litopterns. We discuss several biomechanical and paleobiological implications of the striking differences between hind limb and forelimb design in M. patachonica. Our main suggestion is that M. patachonica, during fast locomotion, probably used a posture with the neck in a horizontal position.  相似文献   

18.
Afropithecus turkanensis, a 17-17.5 million year old large-bodied hominoid from Kenya, has previously been reported to be the oldest known thick-enamelled Miocene ape. Most investigations of enamel thickness in Miocene apes have been limited to opportunistic or destructive studies of small samples. Recently, more comprehensive studies of enamel thickness and microstructure in Proconsul, Lufengpithecus, and Dryopithecus, as well as extant apes and fossil humans, have provided information on rates and patterns of dental development, including crown formation time, and have begun to provide a comparative context for interpretation of the evolution of these characters throughout the past 20 million years of hominoid evolution. In this study, enamel thickness and aspects of the enamel microstructure in two A. turkanensis second molars were quantified and provide insight into rates of enamel apposition, numbers of cells actively secreting enamel, and the time required to form regions of the crown. The average value for relative enamel thickness in the two molars is 21.4, which is a lower value than a previous analysis of this species, but which is still relatively thick compared to extant apes. This value is similar to those of several Miocene hominoids, a fossil hominid, and modern humans. Certain aspects of the enamel microstructure are similar to Proconsul nyanzae, Dryopithecus laietanus, Lufengpithecus lufengensis, Graecopithecus freybergi and Pongo pygmaeus, while other features differ from extant and fossil hominoids. Crown formation times for the two teeth are 2.4-2.6 years and 2.9-3.1 years respectively. These times are similar to a number of extant and fossil hominoids, some of which appear to show additional developmental similarities, including thick enamel. Although thick enamel may be formed through several developmental pathways, most Miocene hominoids and fossil hominids with relatively thick enamel are characterized by a relatively long period of cuspal enamel formation and a rapid rate of enamel secretion throughout the whole cusp, but a shorter total crown formation time than thinner-enamelled extant apes.  相似文献   

19.
A new archaeocete whale from the late middle or early late Eocene of South Carolina, Chrysocetus healyorum gen. et sp. nov., is described on the basis of a single subadult specimen. This individual includes: a partial skull; hyoid apparatus; lower jaws; teeth; all cervical, some thoracic and some lumbar vertebrae; ribs and sternum; left forelimb elements; and pelves. The specimen includes portions of much of the body, but while some of the bones are fairly complete, others are damaged, particularly the skull. The pelves resemble those of Basilosaurus , documenting a similar stage of hind limb reduction in dorudontines and suggesting that Chrysocetus was not able to support its body on land. The acetabulum for articulation of the femur is well formed and indicates that the hip joint was functional. Chrysocetus is distinguishable from other described dorudontines based on body size, characteristics of the teeth, and forelimb elements. Absence of deciduous teeth in a subadult individual of Chrysocetus may be indicative of an early stage of the evolution of monophyodonty.  相似文献   

20.
The extinct dryopithecine Hispanopithecus (Primates: Hominidae), from the Late Miocene of Europe, is the oldest fossil great ape displaying an orthograde body plan coupled with unambiguous suspensory adaptations. On the basis of hand morphology, Hispanopithecus laietanus has been considered to primitively retain adaptations to above-branch quadrupedalism-thus displaying a locomotor repertoire unknown among extant or fossil hominoids, which has been considered unlikely by some researchers. Here we describe a partial skeleton of H. laietanus from the Vallesian (MN9) locality of Can Feu 1 (Vallès-Penedès Basin, NE Iberian Peninsula), with an estimated age of 10.0-9.7 Ma. It includes dentognathic and postcranial remains of a single, female adult individual, with an estimated body mass of 22-25 kg. The postcranial remains of the rib cage, shoulder girdle and forelimb show a mixture of monkey-like and modern-hominoid-like features. In turn, the proximal morphology of the ulna-most completely preserved in the Can Feu skeleton than among previously-available remains-indicates the possession of an elbow complex suitable for preserving stability along the full range of flexion/extension and enabling a broad range of pronation/supination. Such features, suitable for suspensory behaviors, are however combined with an olecranon morphology that is functionally related to quadrupedalism. Overall, when all the available postcranial evidence for H. laietanus is considered, it emerges that this taxon displayed a locomotor repertoire currently unknown among other apes (extant or extinct alike), uniquely combining suspensory-related features with primitively-retained adaptations to above-branch palmigrady. Despite phylogenetic uncertainties, Hispanopithecus is invariably considered an extinct member of the great-ape-and-human clade. Therefore, the combination of quadrupedal and suspensory adaptations in this Miocene crown hominoid clearly evidences the mosaic nature of locomotor evolution in the Hominoidea, as well as the impossibility to reconstruct the ancestral locomotor repertoires for crown hominoid subclades on the basis of extant taxa alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号