首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. The accumulation of cadmium in the liver, kidney and gills of rainbow trout and stone loach was measured during exposure of the fish to the metal at 3 smg/l in their aquarium water. The pattern of accumulation of the toxic metal in the individual organs was different between the two species.2. The tissue concentrations of metallothionein-specific mRNA and metallothionein protein were also determined in these organs from the same fish. In rainbow trout, the induction of metallothionein gene expression resulted in a gradual increase in metallothionein concentration in gill over the course of the experiment whereas increases in metallothionein in the liver and kidney were detected only at the later time points of analysis (beyond 19 weeks). By contrast, in the same tissues from stone loach, relatively minor changes were quantified in specific mRNA and metallothionein concentrations.3. Throughout the experimental period, tissue concentrations of zinc and copper were determined in the liver, kidney and gills of the rainbow trout and stone loach. Subtle decreases were observed in the zinc concentration of gills in rainbow trout and substantial increases were observed in the hepatic copper concentrations in both species at the later time points of analysis.4. The ability of cadmium to induce metallothionein gene expression and its subsequent ability to compete for the sequestration sites on the newly-synthesized protein is discussed with regard to the relative levels of cadmium, zinc and copper in the organs studied and differing regimes of cadmium administration.  相似文献   

2.
The accumulation of cadmium, copper and lead and their effects on aspartate and alanine aminotransferases in digestive gland, gills, foot and soft body in the clam Ruditapes philippinarum were examined. The animals were exposed to different concentrations: Cd (200–600 μg·l−1), Pb (350–700 μg·l−1) and Cu (10–20 μg·l−1) for 7 days. The highest concentrations were found in digestive gland for cadmium and copper, and in gills for lead, and the lowest values were observed in the foot. Aspartate aminotransferase activity (AST), in general, was not inhibited by cadmium, lead or copper during the exposure. Only in clams exposed to cadmium (600 μg·l−1, 7 days) and copper (20 μg·l−1, 5 days) were observed significant differences (P<0.05) in foot and gills, respectively, with respect to control. In the case of alanine aminotransferase activity (ALT), significant differences were observed for cadmium and lead in treated animals with respect to control. With regard to copper, a decrease in ALT was observed in gills and foot exposed to 20 μg·l−1. A significant correlation (P<0.05) was observed between ALT and metal accumulation for cadmium, copper and lead in gills. In the case of soft body, only cadmium and lead showed a significant correlation. In summary, R. philippinarum can be considered a bioindicator species for cadmium and lead accumulation and ALT could be useful as biomarker of sublethal stress for these metals in soft tissues and gills. Only gills can be considered an adequate target tissue for copper.  相似文献   

3.
Although the metabolic and toxicological interactions between essential element selenium (Se) and toxic element cadmium (Cd) have been reported for a long time, the experimental studies explored mostly acute, high-dose interactions. Limited data are available regarding the effects of Se-deficiency on toxicokinetics of cadmium, as well as on the levels of key trace elements—copper, zinc, and iron. In the present study, male and female Wistar weanling rats (n = 40/41) were fed either Se-deficient or Se-adequate diet (<0.06 or 0.14 mg Se per kilogram diet, respectively) for 12 weeks, and from week 9 were drinking water containing 0 or 50 mg Cd/l as cadmium chloride. At the end of the 12-week period, trace element concentrations were estimated by AAS. Selenium-deficient rats of both genders showed significantly lower accumulation of cadmium in the liver, compared to Se-adequate rats. Zinc and iron hepatic levels were not affected by Se-deficiency. However, a significant elevation of copper was found in the liver of Se-deficient rats of both genders. Cadmium supplementation increased zinc and decreased iron hepatic level, regardless of Se status and decreased copper concentration in Se-adequate rats. Se-deficiency was also found to influence the effectiveness of cadmium mobilization in male rats.  相似文献   

4.
BackgroundMost trace elements are inhibited by Helicobacter pylori-infection, and variations in specific element levels are linked to the development of stomach cancer. This is the first study to show the relationship between serum and tissue concentrations of twenty-five trace elements and H. pylori infection status. This study purposed to define serum and tissue trace element levels of 25 healthy individuals with Helicobacter pylori-positive gastritis and Helicobacter pylori-negative gastritis and to reveal their relationship with the disease.MethodsStudy groups consisted of sixty-two patients with Helicobacter pylori-positive, thirty-seven patients with Helicobacter pylori-negative, and thirty healthy individuals. Serum and tissue concentrations of twenty-five elements (aluminum, boron, arsenic, barium, calcium, beryllium, copper, cadmium, iron, chromium, mercury, lithium, potassium, magnesium, sodium, manganese, nickel, phosphorus, lead, scandium, strontium, selenium, tellurium, titanium, zinc) were defined by inductively coupled plasma optical emission spectrometry.ResultsExcept for copper, lithium, and strontium elements in serum samples, other trace elements differed significantly between the groups (p < 0.05). The serum chromium (p = 0.002), mercury (p = 0.001), boron (p < 0.001), and cadmium (p < 0.001) levels of H. pylori-negative gastritis and H. pylori-positive gastritis participants were significantly different, and their serum concentrations were less than 0.5 µ/l. Boron, barium, beryllium, chromium, lithium, phosphorus and strontium elements in tissue samples did not differ significantly between the groups (p > 0.05). Manganese, nickel, tellurium and titanium elements were not detected in tissue and serum samples. The mean concentrations of calcium, beryllium, chromium, iron, potassium, lithium, magnesium, scandium, and selenium were higher in the tissues of patients with H. pylori gastritis compared to healthy control tissues. Also, cadmium could not be detected in tissue samples. There was a significant difference between H. pylori-infected tissue and serum chromium levels (p = 0.001), with lower levels detected in tissue samples.ConclusionThis is the first study that we are knowledgeable of that reports the concentrations of twenty five elements in both serum and tissue samples, as well as the relationship between trace elements and Helicobacter pylori-infection status. Dietary adjustment is indicated as an adjunct to medical therapy to stabilize trace elements because Helicobacter pylori bacteria cause inflammation and impair element absorption in gastritis patients. We also think that this study will shed light on studies on the relationship between Helicobacter pylori-trace elements and serum-tissue/healthy serum-tissue trace element levels of patients with Helicobacter pylori gastritis.  相似文献   

5.
Preeclampsia complicates 2–8 % of all pregnancies and it is one of the leading causes of maternal mortality and pre-term delivery in the world. Unfortunately, there is scarcity of document discussing the circulating level of several essential trace elements in preeclampsia patients in Bangladesh. The present study was designed to evaluate the serum concentration of four trace elements, namely zinc, copper, manganese, and iron, in preeclamptic pregnant women. The study was conducted as a case–control study with 50 preeclamptic pregnant women as cases and 58 normotensive pregnant women as controls. Obstetric, anthropometric, and clinical data were collected at routine obstetric visits. Serum trace elements were determined by flame atomic absorption spectroscopy. Independent sample t test and Pearson’s correlation test were done for the statistical analysis using the statistical software package SPSS, version 16.0 (SPSS Inc., Chicago, IL). We observed significant differences for gestational age, body mass index, and systolic and diastolic blood pressure between patient and control groups (p?<?0.05). Analysis of serum trace elements explored significantly lower level of all the four elements in preeclampsia patients in comparison to the control group (p?<?0.05). Pearson’s correlation analysis explored that the correlation between serum level of different trace elements was statistically insignificant (p?>?0.05) except the correlation between zinc and iron in preeclampsia patients (p?<?0.05). Establishment of inter-element relationship strongly supports that there was a disturbance in the element homeostasis in patient with preeclampsia. In conclusion, our study suggests that preeclampsia patients have considerably lower level of serum zinc, copper, manganese, and iron compared to the healthy pregnant women.  相似文献   

6.
The concentrations of iron, copper, zinc, manganese, cadmium, and mercury in tissues and organs of Pacific herring, Far Eastern navaga, and spotted flounder from Amurskii Bay, Sea of Japan, were determined using an atom-absorption method. The distribution of these elements has been studied in organisms of the fish. The greatest concentration of iron, copper, cadmium, and mercury is found in the liver of the fish, manganese is mostly accumulated in the bone tissue, and zinc is found in the skin. Some specific features of metal accumulation in the fish of Amurskii Bay have been revealed. For example, the concentration of iron in the liver of herring and flounder significantly increased the mean concentration known from other areas. A sanitary–hygienic evaluation is provided for the recent levels of metal concentrations in these three species of commercially important fish.  相似文献   

7.
The interaction is reported of selected chemical elements (cadmium, calcium, copper, iron, magnesium, manganese, strontium, and zinc) in cultured sea water, with soft tissues, prismatic calcite of the right valve, and foliated calcite of right and left valves of genetically similar American oysters, Crassostrea virginica (Gmelin) grown in a natural habitat and in two environmentally controlled experimental systems (flow-through and recycle). The addition of trace elements as algal nutrients in ambient sea water was reflected in higher concentrations of trace metals in shells and soft tissues of oysters grown in experimental systems. Calcium was relatively uniformly distributed in major regions of valves from the three habitats, even though its concentration fluctuated widely in sea water in experimental systems. Magnesium and strontium were most concentrated in valves of oysters grown in the recycle system (magnesium in the prismatic layer of the shell and strontium in the foliated calcite). Iron was uniformly distributed. Cadmium, copper, manganese, and zinc were most concentrated in the prismatic calcite of valves from the flow-through system. In soft tissues, calcium was more concentrated in oysters from experimental systems than in those from the natural habitat. Manganese was about equally distributed in soft tissues from the three habitats, whereas copper and iron were more concentrated in soft tissues in experimental systems than in the natural habitat, and were many times more concentrated in soft tissues than in valves from all three habitats. As concentrations of magnesium, strontium, mangenese, zinc, and cadmium increased in valves in experimental systems, pigmentation of valves decreased. The study confirmed the capacity of oysters to concentrate several elements in their valves as concentration of these elements increased in ambient sea water and disclosed the heterogeneous distribution of these elements in major regions of the valves.  相似文献   

8.
The effect of repeated parenteral administration of cadmium (0.75, 1.5 and 3.0 mg/kg) on tissue disposition and urinary excretion of cadmium, zinc, copper and iron has been studied in the male rat. Cadmium, zinc and copper accumulated in liver and kidney, but the concentration of iron did not alter significantly. The kidney weight relative to body weight showed a dose-related increase in weight of 25--65%. Excretion of cadmium in the urine increased directly with dosage and the increase was most significant when kidney damage had probably occurred. Administration of cadmium also resulted in dose-related increases in the urinary excretion of zinc, copper and iron. The cadmium concentration of blood increased with dosage of cadmium, and the plasma concentrations of zinc and copper were also raised but plasma iron concentration was diminished.  相似文献   

9.
The effect of long-term dietary cadmium treatment upon the distribution of the metals copper, iron and zinc has been compared in various organs of male and female rats. The renal accumulation of cadmium was similar in both sexes without a plateau being reached. In contrast, the hepatic accumulation of cadmium was higher in the female than in the male rat and a plateau was observed after 30–35 weeks of dietary cadmium treatment. Most of the cadmium which accumulated in these organs was recovered in the metallothionein fraction and the concentration of hepatic cadmiumthionein in the female rat was correspondingly higher than in the male rat. Accumulation of cadmium was associated with an increased zinc concentration in the liver and an increased copper concentration in the kidney; these increases were correlated with increases in liver and kidney metallothioneins induced by cadmium. Uptake of cadmium into organs other than liver and kidney occurred to a small extent but was not associated with changes in the concentration of copper and zinc. Cadmium also accumulated in the intestinal mucosa where it could be recovered in a fraction corresponding to metallothionein. A loss of iron from the liver and kidney was also observed following dietary cadmium treatment and involved mainly a loss of iron from ferritin.  相似文献   

10.
The levels of seven trace elements such as copper, iron, zinc, selenium, cadmium, chromium, and nickel were determined by graphite furnace-atomic absorption spectrometry in the cervical mucus of 45 women residing in Taiwan, Republic of China. These women were in good health and had no precancerous or cancerous lesions on their cervix. The women were separated into four age groups to establish if there was a relationship between the age of the subjects and the values of these elements in the cervical mucus. By one-way analysis of variance, significant differences in the selenium and nickel concentrations were found among the four age groups (p<0.05). The mean concentration of selenium in each age group was significantly higher for the older women. A significant correlation between age and selenium concentration was found by linear regression (r=0.23, p=0.00048). No significant differences among the concentrations of copper, iron, zinc, cadmium, and chromium were found among these four age groups (p>0.05). The results presented in this work may be considered as baseline values for these elements in the cervical mucus of healthy Taiwanese women for use as reference in studies on cervical diseases and tissue damage.  相似文献   

11.
We analyzed interactions of concentrations of 11 essential and nonessential elements, including toxic metals within and between internal organs (liver, kidney and lung), muscles and bones of nestling rooks Corvus frugilegus with acute cadmium contamination and elevated level of lead. The number of statistically significant (P ≤ 0.05) metal-metal relationships (positive/negative) within particular tissues was the highest in the kidney (7/6), following in the bone (9/2), liver (6/4), lung (5/2) and muscle (5/2). We found eight significant interactions of lead with other metals, and only two of cadmium (only with lead and cobalt, which probably mirrored a greater ability of lead (than in the case of cadmium) to functional and kinetic interaction with other metals, and/or inhibiting effect of lead or cadmium in co-accumulation. Furthermore, a positive relationship between concentration of cadmium and lead in the kidney could hint at the key importance of this organ in detoxification of both toxic metals. Analyses of relationships of individual metals between examined tissues show only positive results in the case of copper (n = 8), following potassium (n = 3), zinc and iron (in both cases n = 2) and a single ones for calcium and magnesium. We concluded that the lack of significant relationships of individual toxic metals (cadmium or lead) between analyzed tissues could result from high levels of these metals, which destroyed detoxifying capacity of kidney, and ultimately enabled a rapid bioaccumulation of these inorganic contaminations in all tissues of examined nestlings. An explanation of concentration of toxic metals in tissues of animals, especially in the case of their high level, require an identification of the actual level of essential elements associated with physiological status of organism.  相似文献   

12.
This study reports age-related changes in 7 element (iron, copper, zinc, manganese, mercury, cadmium and lead) concentrations in the liver, kidney and brain of male and female Sprague-Dawley rats from 1 to 364 days of age. Atomic absorption spectrometry was used for the measurements. Copper, mercury and cadmium in the male and female kidneys increased from weaning until 127 days of age, as did iron concentrations in the female liver and kidney. After 127 days, especially, the copper concentration in the female kidney and cadmium concentration in the male and female kidney increased further. Consistent and statistically significant (P less than 0.05) sex differences in element concentrations were found for three elements (iron, copper and zinc). Except for the zinc concentration in the liver from 50 to 72 days, iron (in liver and kidney), zinc (in kidney) and copper (in liver, kidney and brain) concentrations in female rats during the adult stage, were all higher than those of male rats. Isolated differences for other elements (manganese, mercury and cadmium) were also found. The data will be helpful when setting up long-term animal investigations of the biological effect of elements.  相似文献   

13.
In September 2014, a pod of seven sperm whales (Physeter macrocephalus) was stranded along the Adriatic coast of Southern Italy. Concentrations of 20 essential and non-essential trace elements were quantified in the brain, muscle, liver and kidneys of three female sperm whales, which died in this event.The essential elements copper, iron, manganese and zinc showed low ranges of variability, suggesting a homeostatic physiological control, while selenium concentrations were associated with age. Molybdenum, nickel and chromium showed low ranges of concentrations and no evidence of preferential accumulation in selected organs. Very low concentrations of the non-essential elements cadmium, lead, tin and vanadium were detected in all tissues, suggesting a minor impact of these pollutants on the sperm whale populations of the Mediterranean Sea. Aluminum was revealed to have relatively high concentrations, together with a high variability between tissues and individuals, reaching the highest values in the kidneys and muscle of the oldest female, which was pregnant; the rare earth elements – lanthanum and cerium – were also detected in the kidneys of this female, indicating that pregnancy probably influenced metal concentrations in body tissues.  相似文献   

14.
Few studies have been performed on trace elements in tissues and serum in cardiovascular disease and none in aortic aneurysm. In this study the concentrations of 10 trace elements were determined in serum and aneurysmatic aortic tissue from 23 patients undergoing thoracic surgery. Macroscopically, normal thoracic aortic tissue specimens from 10 forensic autopsies and serum from 23 healthy blood donors served as controls. DNA from the intracellular respiratory pathogen Chlamydophila pneumoniae (C. pneumoniae), which may be involved in the pathogenesis of atherosclerosis, was found in 26% (6/23) of the patients but in none of the controls. The serum copper/zinc ratio, a well-known marker of ongoing infection and/or inflammation, was higher (26%, p<0.001) in aneurysm patients. C. pneumoniae requires iron for its growth. In our aneurysm patients iron was higher in serum (by 54%, p<0.001) and aneurysmal tissue (by 60%, p<0.001). Although calcium was lower in patient sera (by 8%, p<0.001), it tended to be higher (by 20%, ns) in aneurysmatic tissue. In addition, mercury concentrations in serum and aneurysmatic tissue were positively correlated (r=0.51, p<0.05). Moreover, C. pneumoniae-positive aneurysmatic tissues had lower concentrations of manganese (46%, p<0.05) and zinc (26%, ns) but a higher concentration of mercury (50%, p<0.05) than C. pneumoniae-negative aneurysmatic tissues. In conclusion, aneurysm patients showed a shift in trace element levels in serum and in the diseased part of the aorta, the pattern being partly different in C. pneumoniae-positive compared with C. pneumoniae-negative patients. The results are compatible with active infection and/or inflammation, possibly initiated by C. pneumoniae.  相似文献   

15.
The interaction between dietary copper and zinc as determined by tissue concentrations of trace elements was investigated in male Sprague-Dawley rats. Animals were fed diets in a factorial design with two levels of copper (0.5, 5 μg/g) and five levels of zinc (1, 4.5, 10, 100, 1000 μg/g) for 42 d. In rats fed the low copper diet, as dietary zinc concentration increased, the level of copper decreased in brain, testis, spleen, heart, liver, and intestine. There was no significant effect of dietary copper on tissue zinc levels. In the zinc-deficient groups, the level of iron was higher in most tissues than in tissues from controls (5 μg Cu, 100 μg Zn/g diet). In the copper-deficient groups, iron concentration was higher than control values only in the liver. These data show that dietary zinc affected tissue copper levels primarily when dietary copper was deficient, that dietary copper had no effect on tissue zinc, and that both zinc deficiency and copper deficiency affected tissue iron levels.  相似文献   

16.
Trace elements are essential components of biological structures, but alternatively, they can be toxic at concentrations beyond those necessary for their biological functions. Changes in the concentration of essential trace elements and heavy metals may affect acute hemorrhagic stroke. The aim of this study was to measure serum levels of essential trace elements [iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), and magnesium (Mg)] and heavy metals [cobalt (Co), cadmium (Cd), and lead (Pb)] in patients with acute hemorrhagic stroke. Twenty-six patients with acute hemorrhagic stroke and 29 healthy controls were enrolled. Atomic absorption spectrophotometry (UNICAM-929) was used to measure serum Fe, Cu, Pb, Cd, Zn, Co, Mn and Mg concentrations. Serum Cd, Pb and Fe levels were significantly higher in patients with acute hemorrhagic stroke than controls (p < 0.001), while serum Cu, Zn, Mg and Mn levels were significantly lower (all p < 0.001). However, there was no significant difference between the groups with respect to serum Co levels (p > 0.05). We first demonstrate increased Cd, Pb, and Fe levels; and decreased Cu, Zn, Mg, and Mn levels in patients with acute hemorrhagic stroke. These findings may have diagnostic and prognostic value for acute hemorrhagic stroke. Further studies are required to elucidate the roles of trace elements and heavy metals in patients with acute hemorrhagic stroke.  相似文献   

17.
The influence of long-term exposure to cadmium (Cd) on essential minerals was investigated using a Caco-2 TC7 cells and a multi-analytical tool: microwave digestion and inductively coupled plasma mass spectrometry. Intracellular levels, effects on cadmium accumulation, distribution, and reference concentration ranges of the following elements were determined: Na, Mg, Ca, Cr, Fe, Mn, Co, Ni, Cu, Zn, Mo, and Cd. Results showed that Caco-2 TC7 cells incubated long-term with cadmium concentrations ranging from 0 to 10 μmol Cd/l for 5 weeks exhibited a significant increase in cadmium accumulation. Furthermore, this accumulation was more marked in cells exposed long-term to cadmium compared with controls, and that this exposure resulted in a significant accumulation of copper and zinc but not of the other elements measured. Interactions of Cd with three elements: zinc, copper, and manganese were particularly studied. Exposed to 30 μmol/l of the element, manganese showed the highest inhibition and copper the lowest on cadmium intracellular accumulation but Zn, Cu, and Mn behave differently in terms of their mutual competition with Cd. Indeed, increasing cadmium in the culture medium resulted in a gradual and significant increase in the accumulation of zinc. There was a significant decrease in manganese from 5 μmol Cd/l exposure, and no variation was observed with copper.  相似文献   

18.
The amount of trace elements present in edible bovine tissues is of importance for both animal health and human nutrition. This study presents data on trace element concentrations in semitendinosus and cardiac muscles, livers and kidneys of 60 zebu (Bos indicus) bulls, sampled at Jimma, Ethiopia. From 28 of these bulls, blood samples were also obtained. Deficient levels of copper were found in plasma, livers, kidneys and semitendinosus muscles. Suboptimal selenium concentrations were found in plasma and semitendinosus muscles. Semitendinosus muscles contained high iron concentrations. Trace elements were mainly stored in the liver, except for iron and selenium. Cardiac muscles generally contained higher concentrations of trace elements than semitendinous muscles except for zinc. A strong association was found between liver and kidney concentrations of copper, iron, cobalt and molybdenum. Liver storage was well correlated with storage in semitendinosus muscle for selenium and with cardiac muscle for cobalt and selenium. Plasma concentrations of copper, selenium, cobalt were well related with their respective liver concentrations and for cobalt and selenium, also with cardiac muscle concentrations. The data suggest multiple trace element deficiencies in zebu cattle in South-West Ethiopia, with lowered tissue concentrations as a consequence. Based on the comparison of our data with other literature, trace element concentrations in selected edible tissues of Bos indicus seem quite similar to those in Bos taurus. However, tissue threshold values for deficiency in Bos taurus cattle need to be refined and their applicability for Bos indicus cattle needs to be evaluated.  相似文献   

19.
Bedding, environmental enrichment materials and disinfectant powders in pig farming are meant to ensure a hygienic bedding environment or allow pigs to perform explorative behaviour. To our knowledge, no legal regulation exists, that established maximum contents for undesirable substances, such as toxic metals, dioxins or trace elements in these materials, although oral ingestion could be expected. In the present study, a total of 74 materials (disinfectant powders [n = 51], earth/peat [n = 12], biochar [n = 8], recycled manure solids [n = 3]) were analysed for their content of various toxic metals, trace elements, dioxins and polychlorinated biphenyls. The data suggest that, in some samples, trace elements like iron, copper and zinc might have been added intentionally in order to induce physiological effects (iron supply to piglets, copper and zinc as growth promoter in pigs). Moreover, some materials contained high levels of lead, cadmium or arsenic. Consequently, if farm animals repeatedly consume environmental enrichment and bedding materials or disinfectant powders in considerable amounts and these quantities are added to the daily ration, the amount of ingested undesirable substances and trace elements might exceed the maximum levels set for complete feedstuffs, and an elevated transfer into food of animal origin might occur. Future studies are required to address the possible quantitative contribution in the light of feed and food safety. Finally, the excretion of undesirable substances with manure needs to be considered due to their possible accumulation in soils.  相似文献   

20.
Changes in essential trace elements and heavy metals may affect the atherosclerotic state of patients on maintenance hemodialysis (HD). The aim of the study was to evaluate the relation between the serum levels of some trace elements and heavy metals (iron, zinc, manganese, copper, magnesium, cobalt, cadmium, lead, and copper/zinc ratio) and carotid artery intima-media thickness (CIMT) in HD patients. Fifty chronic HD patients without known atherosclerotic disease and 48 age- and sex-matched healthy individuals were included in the study. The serum levels of trace elements (iron, zinc, manganese, copper, and magnesium) and heavy metals (cobalt, cadmium, and lead) were measured by Atomic Adsorption Spectrophotometer (UNICAM-929). CIMT was assessed by carotid artery ultrasonography. The serum levels of iron, zinc, and manganese were lower; levels of copper, magnesium, cobalt, cadmium, lead, and copper/zinc ratio were higher in HD patients compared to controls. CIMT in HD patients were higher than the control group (0.64?±?0.11 vs 0.42?±?0.05, p?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号