首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
So far multiple differences in prostate cancer-specific amino acids metabolism have been discovered. Moreover, attempts to utilize these alterations for prostate cancer diagnosis and treatment have been made. The prostate cancer metabolism and biosynthesis of amino acids are particularly focused on anaplerosis more than on energy production. Other crucial requirements on amino acids pool come from the serine, one?carbon cycle, glycine synthesis pathway and folate metabolism forming major sources of interproducts for synthesis of nucleobases necessary for rapidly proliferating cells. Considering the lack of some amino acids biosynthetic pathways and/or their extraordinary importance for prostate cancer cells, there is a widespread potential for targeted therapeutic applications with no effect on non-malignant cells. This review summarizes the up-to-date knowledge of the importance of amino acids for prostate cancer pathogenesis with a special emphasis on potential applications of metabolic variabilities in the new oncologic paradigm of precision medicine.  相似文献   

2.
乳腺癌已经成为全球第一大癌症,其发病机制及治疗方法的探索越来越受到人们重视。脂质代谢异常是癌细胞中最突出的代谢改变之一,探索乳腺癌细胞中脂质代谢的改变,以寻找新的诊断指标和治疗靶点是至关重要的。本文从脂肪酸代谢、甘油三酯代谢、胆固醇代谢和脂质代谢信号通路4个方面介绍脂质代谢异常在乳腺癌中的研究进展,为靶向脂质代谢治疗乳腺癌提供新思路和新方法。  相似文献   

3.
脂肪酸代谢紊乱容易导致癌症的发生。长链脂酰辅酶A合成酶家族(long chain acyl-coenzyme A synthetase family,ACSLs)负责激活长链脂肪酸,在脂肪酸代谢中发挥重要作用。但在癌细胞中,其调控作用经常被解除,细胞内脂肪酸的分布、种类和数量发生改变,进而导致癌症和其他代谢性疾病的发生。ACSLs 在哺乳动物中包括5种亚型,分别为ACSL1、3、4、5和6。ACSL1在甘油三脂的合成和分配中发挥重要作用;ACSL3有助于脂滴的形成,脂滴对维持脂质稳态具有重要作用;ACSL4的表达与类固醇激素相关,在铁死亡途径中发挥重要作用;ACSL5可以催化外源性脂肪酸的代谢,但不能催化从头合成脂肪酸的代谢;ACSL6在脑内的脂肪酸代谢及生殖器官中精子发生和卵巢功能维持等方面发挥重要作用。ACSLs的调控因子包括转录因子、共激活因子、激素受体、蛋白激酶和小的非编码RNA等。它们通过介导脂肪酸代谢,广泛参与线粒体介导的能量代谢,内质网应激和肿瘤炎性微环境等。此外,ACSLs还作为独立预后因素,成为各种癌症临床诊断和治疗的生物标志物和治疗靶点。近年来,越来越多的研究表明,ACSL家族在癌症的发生发展进程中发挥重要作用。本文从ACSL基因家族,ACSLs与恶性肿瘤及基于ACSLs脂代谢的肿瘤治疗方面进行阐述,为后续ACSL基因家族的研究及肿瘤的靶向治疗提供理论依据和候选分子靶标。  相似文献   

4.
The incidence of pancreatic cancer is increasing in both developed and developing Nations. In recent years, various research evidence suggested that reprogrammed metabolism may play a key role in pancreatic cancer tumorigenesis and development. Therefore, it has great potential as a diagnostic, prognostic and therapeutic target. Amino acid metabolism is deregulated in pancreatic cancer, and changes in amino acid metabolism can affect cancer cell status, systemic metabolism in malignant tumor patients and mistakenly involved in different biological processes including stemness, proliferation and growth, invasion and migration, redox state maintenance, autophagy, apoptosis and even tumor microenvironment interaction. Generally, the above effects are achieved through two pathways, energy metabolism and signal transduction. This review aims to highlight the current research progress on the abnormal alterations of amino acids metabolism in pancreatic cancer, how they affect tumorigenesis and development of pancreatic cancer and the application prospects of them as diagnostic, prognostic and therapeutic targets.  相似文献   

5.
Cancer cells modulate their metabolic networks to support cell proliferation and a higher demand of building blocks. These changes may restrict the availability of certain amino acids for protein synthesis, which can be utilized for cancer therapy. However, little is known about the amino acid demand changes occurring during aggressive and invasive stages of cancer. Recently, we developed diricore, an approach based on ribosome profiling that can uncover amino acid limitations. Here, we applied diricore to a cellular model in which epithelial breast cells respond rapidly to TGFβ1, a cytokine essential for cancer progression and metastasis, and uncovered shortage of leucine. Further analyses indicated that TGFβ1 treatment of human breast epithelial cells reduces the expression of SLC3A2, a subunit of the leucine transporter, which diminishes leucine uptake and inhibits cell proliferation. Thus, we identified a specific amino acid limitation associated with the TGFβ1 response, a vulnerability that might be associated with aggressiveness in cancer.  相似文献   

6.
Cancer stem cells (CSCs) possess self-renewal and differentiation potential, which may be related to recurrence, metastasis, and radiochemotherapy resistance during tumor treatment. Understanding the mechanisms via which CSCs maintain self-renewal may reveal new therapeutic targets for attenuating CSC resistance and extending patient life-span. Recent studies have shown that amino acid metabolism plays an important role in maintaining the self-renewal of CSCs and is involved in regulating their tumorigenicity characteristics. This review summarizes the relationship between CSCs and amino acid metabolism, and discusses the possible mechanisms by which amino acid metabolism regulates CSC characteristics particularly self-renewal, survival and stemness. The ultimate goal is to identify new targets and research directions for elimination of CSCs.  相似文献   

7.
The metabolic properties of cancer cells diverge significantly from those of normal cells. Energy production in cancer cells is abnormally dependent on aerobic glycolysis. In addition to the dependency on glycolysis, cancer cells have other atypical metabolic characteristics such as increased fatty acid synthesis and increased rates of glutamine metabolism. Emerging evidence shows that many features characteristic to cancer cells, such as dysregulated Warburg-like glucose metabolism, fatty acid synthesis and glutaminolysis are linked to therapeutic resistance in cancer treatment. Therefore, targeting cellular metabolism may improve the response to cancer therapeutics and the combination of chemotherapeutic drugs with cellular metabolism inhibitors may represent a promising strategy to overcome drug resistance in cancer therapy. Recently, several review articles have summarized the anticancer targets in the metabolic pathways and metabolic inhibitor-induced cell death pathways, however, the dysregulated metabolism in therapeutic resistance, which is a highly clinical relevant area in cancer metabolism research, has not been specifically addressed. From this unique angle, this review article will discuss the relationship between dysregulated cellular metabolism and cancer drug resistance and how targeting of metabolic enzymes, such as glucose transporters, hexokinase, pyruvate kinase M2, lactate dehydrogenase A, pyruvate dehydrogenase kinase, fatty acid synthase and glutaminase can enhance the efficacy of common therapeutic agents or overcome resistance to chemotherapy or radiotherapy.  相似文献   

8.
Breast cancer, like many other cancers, is believed to be driven by a population of cells that display stem cell properties. Recent studies suggest that cancer stem cells (CSCs) are essential for tumor progression, and tumor relapse is thought to be caused by the presence of these cells. CSC-targeted therapies have also been proposed to overcome therapeutic resistance in breast cancer after the traditional therapies. Additionally, the metabolic properties of cancer cells differ markedly from those of normal cells. The efficacy of metabolic targeted therapy has been shown to enhance anti-cancer treatment or overcome therapeutic resistance of breast cancer cells. Metabolic targeting of breast CSCs (BCSCs) may be a very effective strategy for anti-cancer treatment of breast cancer cells. Thus, in this review, we focus on discussing the studies involving metabolism and targeted therapy in BCSCs.  相似文献   

9.
Lipotropes (methyl group containing nutrients, including methionine, choline, folate, and vitamin B(12)) are dietary methyl donors and cofactors that are involved in one-carbon metabolism, which is important for genomic DNA methylation reactions and nucleic acid synthesis. One-carbon metabolism provides methyl groups for all biological methylation pathways and is highly dependent on dietary supplementation of methyl nutrients. Nutrition is an important determinant of breast cancer risk and tumor behavior, and dietary intervention may be an effective approach to prevent breast cancer. Apoptosis is important for the regulation of homeostasis and tumorigenesis. The anti-apoptotic protein Bcl-2 may be a regulatory target in cancer therapy; controlling or modulating its expression may be a therapeutic strategy against breast cancer. In this study, the effects of lipotrope supplementation on the growth and death of human breast cancer cell lines T47D and MCF-7 were examined and found to inhibit growth of both T47D and MCF-7 cells. Furthermore, the ratios of apoptotic cells to the total number of cells were approximately 44% and 34% higher in the lipotrope-supplemented treatments of T47D and MCF-7 cancer cells, respectively, compared with the control treatments. More importantly, Bcl-2 protein expression was decreased by approximately 25% from lipotrope supplementation in T47D cells, suggesting that lipotropes can induce breast cancer cell death by direct downregulation of Bcl-2 protein expression. Cancer treatment failure is often correlated with Bcl-2 protein upregulation. These data may be useful in the development of effective nutritional strategies to prevent and reduce breast cancer in humans.  相似文献   

10.
Mitochondria are tightly linked to cellular nutrient sensing, and provide not only energy, but also intermediates for the de novo synthesis of cellular compounds including amino acids. Mitochondrial metabolic enzymes as generators and/or targets of signals are therefore important players in the distribution of intermediates between catabolic and anabolic pathways. The highly regulated 2-oxoglutarate dehydrogenase complex (OGDHC) participates in glucose oxidation via the tricarboxylic acid cycle. It occupies an amphibolic branch point in the cycle, where the energy-producing reaction of the 2-oxoglutarate degradation competes with glutamate (Glu) synthesis via nitrogen incorporation into 2-oxoglutarate. To characterize the specific impact of the OGDHC inhibition on amino acid metabolism in both plant and animal mitochondria, a synthetic analog of 2-oxoglutarate, namely succinyl phosphonate (SP), was applied to living systems from different kingdoms, both in situ and in vivo. Using a high-throughput mass spectrometry-based approach, we showed that organisms possessing OGDHC respond to SP by significantly changing their amino acid pools. By contrast, cyanobacteria which lack OGDHC do not show perturbations in amino acids following SP treatment. Increases in Glu, 4-aminobutyrate and alanine represent the most universal change accompanying the 2-oxoglutarate accumulation upon OGDHC inhibition. Other amino acids were affected in a species-specific manner, suggesting specific metabolic rearrangements and substrate availability mediating secondary changes. Strong perturbation in the relative abundance of amino acids due to the OGDHC inhibition was accompanied by decreased protein content. Our results provide specific evidence of a considerable role of OGDHC in amino acid metabolism.  相似文献   

11.
Viruses lack essential living system, so they must hijack host cell metabolism for its survival and reproduction. Interestingly, the metabolic reprogramming induced by oncovirus is critical for the malignant transformation. Amino acid can supply the source of nitrogen and carbon for biosynthesis or fulfill the energy requirement for the rapid growth of tumor cells. Amino acid metabolism caused by oncogenic viral infection often mirrors metabolic changes observed in cancer cells, such as glutamine addiction, asparagine dependence, arginine auxotrophy and active serine/ proline metabolism. In this review, we describe amino acid metabolism reprogramming in tumors. We also discuss how oncogenic viruses hijack amino acid metabolism in the stress status. Further research on the metabolic profile of virus-related cancers will not only provide new targets for tumor prevention and treatment, but novel diagnostic and therapeutic strategies as well.  相似文献   

12.
The effect of amino acids, in concentrations corresponding to those found in the portal vein of rats given a high-protein diet, was investigated on the activity of system A amino acid transport in hepatocytes from fed rats. Amino acids counteracted the induction of system A by insulin or glucagon. This effect was observed at all concentrations of hormones tested, up to 1 microM. Amino acids did not affect the basal cyclic AMP concentration in hepatocytes, or the large rise in cyclic AMP elicited by glucagon. The reversal of system-A induction was observed at relatively low concentration of amino acids, corresponding to plasma values reported in rats given a basal diet. Amino acids were separately tested: substrates of system A were particularly efficient, but so were glutamine and histidine. Non-metabolizable substrates of system A, such as 2-aminoisobutyrate, were also inhibitory, suggesting that a part of the effect of amino acids is independent of their cellular metabolism. Provision of additional energy substrates such as lactate and oleate did not affect induction of system A or the inhibitory effects of amino acids. Thus amino acids do not act by serving as an energy source and by maintaining the integrity of hepatocytes. Inhibition of mRNA synthesis by actinomycin practically abolished the effect of amino acids on the induction of system A by glucagon. The results suggest that amino acids may promote the synthesis of protein(s) affecting the activity of system A either directly at the carrier unit or at an intermediate stage of its emergence.  相似文献   

13.
SLC6A14, also known as ATB(0,+), is an amino acid transporter with unique characteristics. It transports 18 of the 20 proteinogenic amino acids. However, this transporter is expressed only at low levels in normal tissues. Here, we show that the transporter is up-regulated specifically in estrogen receptor (ER)-positive breast cancer, demonstrable with primary human breast cancer tissues and human breast cancer cell lines. SLC6A14 is an estrogen/ER target. The transport features of SLC6A14 include concentrative transport of leucine (an activator of mTOR), glutamine (an essential amino acid for nucleotide biosynthesis and substrate for glutaminolysis), and arginine (an essential amino acid for tumor cells), suggesting that ER-positive breast cancer cells up-regulate SLC6A14 to meet their increased demand for these amino acids. Consequently, treatment of ER-positive breast cancer cells in vitro with α-methyl-DL-tryptophan (α-MT), a selective blocker of SLC6A14, induces amino acid deprivation, inhibits mTOR, and activates autophagy. Prolongation of the treatment with α-MT causes apoptosis. Addition of an autophagy inhibitor (3-methyladenine) during α-MT treatment also induces apoptosis. These effects of α-MT are specific to ER-positive breast cancer cells, which express the transporter. The ability of α-MT to cause amino acid deprivation is significantly attenuated in MCF-7 cells, an ER-positive breast cancer cell line, when SLC6A14 is silenced with shRNA. In mouse xenograft studies, α-MT by itself is able to reduce the growth of the ER-positive ZR-75-1 breast cancer cells. These studies identify SLC6A14 as a novel and effective drug target for the treatment of ER-positive breast cancer.  相似文献   

14.
代谢重编程是肿瘤的重要特征,是指肿瘤细胞为满足其快速增殖的生物合成与能量需求,对其糖代谢、脂代谢以及氨基酸代谢等代谢路径进行的重编程,以维持增长速度以及补偿能量代谢所造成的氧化还原压力。虽然不同的癌症代谢变化不同,但有些特征是所有癌症共有的,氨基酸代谢重编程是其中一个重要的特征。氨基酸进出细胞需要氨基酸转运体的协助,因而在肿瘤细胞中多种特定的氨基酸转运体均过表达。靶向氨基酸转运体通过影响肿瘤细胞的氨基酸代谢从而达到抗肿瘤的目的,是目前抗肿瘤药物的研究热点之一。主要介绍了几种在肿瘤代谢中发挥重要作用的氨基酸转运体以及靶向氨基酸转运体抗肿瘤治疗的研究进展及相关作用机制,旨在了解氨基酸转运体在抗肿瘤研究中的作用,以期促进靶向氨基酸转运体抗肿瘤药物的发展。  相似文献   

15.

Background

Tumor therapy mainly attacks the metabolism to interfere the tumor's anabolism and signaling of proliferative second messengers. However, the metabolic demands of different cancers are very heterogeneous and depend on their origin of tissue, age, gender and other clinical parameters. We investigated tumor specific regulation in the metabolism of breast cancer.

Methods

For this, we mapped gene expression data from microarrays onto the corresponding enzymes and their metabolic reaction network. We used Haar Wavelet transforms on optimally arranged grid representations of metabolic pathways as a pattern recognition method to detect orchestrated regulation of neighboring enzymes in the network. Significant combined expression patterns were used to select metabolic pathways showing shifted regulation of the aggressive tumors.

Results

Besides up-regulation for energy production and nucleotide anabolism, we found an interesting cellular switch in the interplay of biosynthesis of steroids and bile acids. The biosynthesis of steroids was up-regulated for estrogen synthesis which is needed for proliferative signaling in breast cancer. In turn, the decomposition of steroid precursors was blocked by down-regulation of the bile acid pathway.

Conclusion

We applied an intelligent pattern recognition method for analyzing the regulation of metabolism and elucidated substantial regulation of human breast cancer at the interplay of cholesterol biosynthesis and bile acid metabolism pointing to specific breast cancer treatment.  相似文献   

16.
Amino acids regulate protein synthesis and breakdown (i.e., protein turnover) and consequently protein deposition, which corresponds to the balance between the two processes. Elucidating the mechanisms involved in such regulation is important from fundamental and applied points of view since it can provide a basis to optimize amino acid requirements and to control protein mass, body composition and so forth. Amino acids, which have long been considered simply as precursors of protein synthesis, are now recognized to exert other significant influences; that is, they are precursors of essential molecules, act as mediators or signal molecules and affect numerous functions. For example, amino acids act as mediators of metabolic pathways in the same manner as certain hormones. Thus, they modulate the activity of intracellular protein kinases involved in the regulation of metabolic pathways such as mRNA translation. We provide here an overview of the roles of amino acids as regulators of protein metabolism, by focusing particularly on sulfur amino acids. The potential importance of methionine as a "nutrient signal" is discussed in the light of recent findings. Emphasis is also placed on mechanisms controlling oxidative status since sulfur amino acids are involved in the synthesis of intracellular antioxidants (glutathione, taurine etc.) and in the methionine sulfoxide reductase antioxidant system.  相似文献   

17.
Hypoxia can promote invasive behavior in cancer cells and alters the response to therapeutic intervention as a result of changes in the expression many genes, including genes involved in intermediary metabolism. Although metabolomics technologies are capable of simultaneously measuring a wide range of metabolites in an untargeted manner, these methods have been relatively under utilized in the study of cancer cell responses to hypoxia. Thus, (1)H NMR metabolomics was used to examine the effects of hypoxia in the MDA-MB-231 human breast cancer cell line, both in vitro and in vivo. Cell cultures were compared with respect to their metabolic responses during growth under either hypoxic (1% O(2)) or normoxic conditions. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to identify a set of metabolites that were responsive to hypoxia. Via intracardiac administration, MDA-MB-231 cells were also used to generate widespread metastatic disease in immuno-compromised mice. Serum metabolite analysis was conducted to compare animals with and without a large tumor burden. Intriguingly, using a cross-plot of the OPLS loadings, both the in vitro and in vivo samples yielded a subset of metabolites that were significantly altered by hypoxia. These included primarily energy metabolites and amino acids, indicative of known alterations in energy metabolism, and possibly protein synthesis or catabolism. The results suggest that the metabolite pattern identified might prove useful as a marker for intra-tumoral hypoxia.  相似文献   

18.
Regulation of mammalian translation factors by nutrients.   总被引:13,自引:0,他引:13  
Protein synthesis requires both amino acids, as precursors, and a substantial amount of metabolic energy. It is well established that starvation or lack of nutrients impairs protein synthesis in mammalian cells and tissues. Branched chain amino acids are particularly effective in promoting protein synthesis. Recent work has revealed important new information about the mechanisms involved in these effects. A number of components of the translational machinery are regulated through signalling events that require the mammalian target of rapamycin, mTOR. These include translational repressor proteins (eukaryotic initiation factor 4E-binding proteins, 4E-BPs) and protein kinases that act upon the small ribosomal subunit (S6 kinases). Amino acids, especially leucine, positively regulate mTOR signalling thereby relieving inhibition of translation by 4E-BPs and activating the S6 kinases, which can also regulate translation elongation. However, the molecular mechanisms by which amino acids modulate mTOR signalling remain unclear. Protein synthesis requires a high proportion of the cell's metabolic energy, and recent work has revealed that metabolic energy, or fuels such as glucose, also regulate targets of the mTOR pathway. Amino acids and glucose modulate a further important regulatory step in translation initiation, the activity of the guanine nucleotide-exchange factor eIF2B. eIF2B controls the recruitment of the initiator methionyl-tRNA to the ribosome and is activated by insulin. However, in the absence of glucose or amino acids, insulin no longer activates eIF2B. Since control of eIF2B is independent of mTOR, these data indicate the operation of additional, and so far unknown, regulatory mechanisms that control eIF2B activity.  相似文献   

19.
Inhibition of aromatase is currently well-established as the major treatment option of hormone-dependent breast cancer in postmenopausal women. However, despite the effects of aromatase inhibitors in both early and metastatic breast cancer, endocrine resistance may cause relapses of the disease and progression of metastasis. Thus, driven by the success of manipulating the steroidogenic enzyme aromatase, several alternative enzymes involved in steroid synthesis and metabolism have recently been investigated as possible drug targets. One of the most promising targets is the steroid sulfatase (STS) which converts steroid sulfates like estrone sulfate (E1S) and dehydroepiandrosterone sulfate (DHEAS) to estrone (E1) and dehydroepiandrosterone (DHEA), respectively. Estrone and DHEA may thereafter be used for the synthesis of more potent estrogens and androgens that may eventually fuel hormone-sensitive breast cancer cells. The present review summarizes the biology behind steroid sulfatase and its inhibition, the currently available information derived from basic and early clinical trials in breast cancer patients, as well as ongoing research. Article from the Special Issue on Targeted Inhibitors.  相似文献   

20.
It has been reported that acidic fibroblast growth factor (aFGF) is expressed in breast cancer and via interactions with fibroblast growth factor receptors (FGFRs) to promote the stage and grade of the disease. Thus, aFGF/FGFRs have been considered essential targets in breast cancer therapy. We identified a specific aFGF-binding peptide (AGNWTPI, named AP8) from a phage display heptapeptide library with aFGF after four rounds of biopanning. The peptide AP8 contained two (TP) amino acids identical and showed high homology to the peptides of the 182–188 (GTPNPTL) site of high-affinity aFGF receptor FGFR1. Functional analyses indicated that AP8 specifically competed with the corresponding phage clone A8 for binding to aFGF. In addition, AP8 could inhibit aFGF-stimulated cell proliferation, arrested the cell cycle at the G0/G1 phase by increasing PA2G4 and suppressing Cyclin D1 and PCNA, and blocked the aFGF-induced activation of Erk1/2 and Akt kinase in both breast cancer cells and vascular endothelial cells. Therefore, these results indicate that peptide AP8, acting as an aFGF antagonist, is a promising therapeutic agent for the treatment of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号