首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intestinal vitamin C (Asc) absorption was believed to be mediated by the Na+-dependent ascorbic acid transporter SVCT1. However, Asc transport across the intestines of SVCT1 knock-out mice is normal indicating that alternative ascorbic acid transport mechanisms exist. To investigate these mechanisms, rodents were gavaged with Asc or its oxidized form dehydroascorbic acid (DHA), and plasma Asc concentrations were measured. Asc concentrations doubled following DHA but not Asc gavage. We hypothesized that the transporters responsible were facilitated glucose transporters (GLUTs). Using Xenopus oocyte expression, we investigated whether facilitative glucose transporters GLUT2 and GLUT5–12 transported DHA. Only GLUT2 and GLUT8, known to be expressed in intestines, transported DHA with apparent transport affinities (Km) of 2.33 and 3.23 mm and maximal transport rates (Vmax) of 25.9 and 10.1 pmol/min/oocyte, respectively. Maximal rates for DHA transport mediated by GLUT2 and GLUT8 in oocytes were lower than maximal rates for 2-deoxy-d-glucose (Vmax of 224 and 32 pmol/min/oocyte for GLUT2 and GLUT8, respectively) and fructose (Vmax of 406 and 116 pmol/min/oocyte for GLUT2 and GLUT8, respectively). These findings may be explained by differences in the exofacial binding of substrates, as shown by inhibition studies with ethylidine glucose. DHA transport activity in GLUT2- and GLUT8-expressing oocytes was inhibited by glucose, fructose, and by the flavonoids phloretin and quercetin. These studies indicate intestinal DHA transport may be mediated by the facilitative sugar transporters GLUT2 and GLUT8. Furthermore, dietary sugars and flavonoids in fruits and vegetables may modulate Asc bioavailability via inhibition of small intestinal GLUT2 and GLUT8.  相似文献   

2.
Placental hypoxia has been implicated in pregnancy pathologies, including fetal growth restriction and preeclampsia; however, the mechanism by which the trophoblast cell responds to hypoxia has not been adequately explored. Glucose transport, a process crucial to fetoplacental growth, is upregulated by hypoxia in a number of cell types. We investigated the effects of hypoxia on the regulation of trophoblast glucose transporter (GLUT) expression and activity in BeWo choriocarcinoma cells, a trophoblast cell model, and human placental villous tissue explants. GLUT1 expression in BeWo cells was upregulated by the hypoxia-inducing chemical agents desferroxamine and cobalt chloride. Reductions in oxygen tension resulted in dose-dependent increases in GLUT1 and GLUT3 expression. Exposure of cells to hypoxic conditions also resulted in an increase in transepithelial glucose transport. A role for hypoxia-inducible factor (HIF)-1 was suggested by the increase in HIF-1 as a result of hypoxia and by the increase in GLUT1 expression following treatment of BeWo with MG-132, a proteasomal inhibitor that increases HIF-1 levels. The function of HIF-1 was confirmed in experiments where the hypoxic upregulation of GLUT1 and GLUT3 was inhibited by antisense HIF-1. In contrast to BeWo cells, hypoxia produced minimal increases in GLUT1 expression in explants; however, treatment with MG-132 did upregulate syncytial basal membrane GLUT1. Our results show that GLUTs are upregulated by hypoxia via a HIF-1-mediated pathway in trophoblast cells and suggest that the GLUT response to hypoxia in vivo will be determined not only by low oxygen tension but also by other factors that modulate HIF-1 levels. glucose transporter 1; glucose transporter 3; glucose transport  相似文献   

3.

Background

Glucose transporter 4 (GLUT4) is an insulin facilitated glucose transporter that plays an important role in maintaining blood glucose homeostasis. GLUT4 is sequestered into intracellular vesicles in unstimulated cells and translocated to the plasma membrane by various stimuli. Understanding the structural details of GLUT4 will provide insights into the mechanism of glucose transport and its regulation. To date, a crystal structure for GLUT4 is not available. However, earlier work from our laboratory proposed a well validated homology model for GLUT4 based on the experimental data available on GLUT1 and the crystal structure data obtained from the glycerol 3-phosphate transporter.

Methodology/Principal Findings

In the present study, the dynamic behavior of GLUT4 in a membrane environment was analyzed using three forms of GLUT4 (apo, substrate and ATP-substrate bound states). Apo form simulation analysis revealed an extracellular open conformation of GLUT4 in the membrane favoring easy exofacial binding of substrate. Simulation studies with the substrate bound form proposed a stable state of GLUT4 with glucose, which can be a substrate-occluded state of the transporter. Principal component analysis suggested a clockwise movement for the domains in the apo form, whereas ATP substrate-bound form induced an anti-clockwise rotation. Simulation studies suggested distinct conformational changes for the GLUT4 domains in the ATP substrate-bound form and favor a constricted behavior for the transport channel. Various inter-domain hydrogen bonds and switching of a salt-bridge network from E345-R350-E409 to E345-R169-E409 contributed to this ATP-mediated channel constriction favoring substrate occlusion and prevention of its release into cytoplasm. These data are consistent with the biochemical studies, suggesting an inhibitory role for ATP in GLUT-mediated glucose transport.

Conclusions/Significance

In the absence of a crystal structure for any glucose transporter, this study provides mechanistic details of the conformational changes in GLUT4 induced by substrate and its regulator.  相似文献   

4.
The large neutral amino acid transporter type 1, LAT1, is the principal neutral amino acid transporter expressed at the blood-brain barrier (BBB). Owing to the high affinity (low Km) of the LAT1 isoform, BBB amino acid transport in vivo is very sensitive to transport competition effects induced by hyperaminoacidemias, such as phenylketonuria. The low Km of LAT1 is a function of specific amino acid residues, and the transporter is comprised of 12 phylogenetically conserved cysteine (Cys) residues. LAT1 is highly sensitive to inhibition by inorganic mercury, but the specific cysteine residue(s) of LAT1 that account for the mercury sensitivity is not known. LAT1 forms a heterodimer with the 4F2hc heavy chain, which are joined by a disulfide bond between Cys160 of LAT1 and Cys110 of 4F2hc. The present studies use site-directed mutagenesis to convert each of the 12 cysteines of LAT1 and each of the 2 cysteines of 4F2hc into serine residues. Mutation of the cysteine residues of the 4F2hc heavy chain of the hetero-dimeric transporter did not affect transporter activity. The wild type LAT1 was inhibited by HgCl2 with a Ki of 0.56 ± 0.11 μM. The inhibitory effect of HgCl2 for all 12 LAT1 Cys mutants was examined. However, except for the C439S mutant, the inhibition by HgCl2 for 11 of the 12 Cys mutants was comparable to the wild type transporter. Mutation of only 2 of the 12 cysteine residues of the LAT1 light chain, Cys88 and Cys439, altered amino acid transport. The Vmax was decreased 50% for the C88S mutant. A kinetic analysis of the C439S mutant could not be performed because transporter activity was not significantly above background. Confocal microscopy showed the C439S LAT1 mutant was not effectively transferred to the oocyte plasma membrane. These studies show that the Cys439 residue of LAT1 plays a significant role in either folding or insertion of the transporter protein in the plasma membrane.  相似文献   

5.
The human blood-brain barrier glucose transport protein (GLUT1) forms homodimers and homotetramers in detergent micelles and in cell membranes, where the GLUT1 oligomeric state determines GLUT1 transport behavior. GLUT1 and the neuronal glucose transporter GLUT3 do not form heterocomplexes in human embryonic kidney 293 (HEK293) cells as judged by co-immunoprecipitation assays. Using homology-scanning mutagenesis in which GLUT1 domains are substituted with equivalent GLUT3 domains and vice versa, we show that GLUT1 transmembrane helix 9 (TM9) is necessary for optimal association of GLUT1-GLUT3 chimeras with parental GLUT1 in HEK cells. GLUT1 TMs 2, 5, 8, and 11 also contribute to a less abundant heterocomplex. Cell surface GLUT1 and GLUT3 containing GLUT1 TM9 are 4-fold more catalytically active than GLUT3 and GLUT1 containing GLUT3 TM9. GLUT1 and GLUT3 display allosteric transport behavior. Size exclusion chromatography of detergent solubilized, purified GLUT1 resolves GLUT1/lipid/detergent micelles as 6- and 10-nm Stokes radius particles, which correspond to GLUT1 dimers and tetramers, respectively. Studies with GLUTs expressed in and solubilized from HEK cells show that HEK cell GLUT1 resolves as 6- and 10-nm Stokes radius particles, whereas GLUT3 resolves as a 6-nm particle. Substitution of GLUT3 TM9 with GLUT1 TM9 causes chimeric GLUT3 to resolve as 6- and 10-nm Stokes radius particles. Substitution of GLUT1 TM9 with GLUT3 TM9 causes chimeric GLUT1 to resolve as a mixture of 6- and 4-nm particles. We discuss these findings in the context of determinants of GLUT oligomeric structure and transport function.  相似文献   

6.
The regulated movement of glucose across mammalian cell membranes is mediated by facilitative glucose transporters (GLUTs) embedded in lipid bilayers. Despite the known importance of phospholipids in regulating protein structure and activity, the lipid-induced effects on the GLUTs remain poorly understood. We systematically examined the effects of physiologically relevant phospholipids on glucose transport in liposomes containing purified GLUT4 and GLUT3. The anionic phospholipids, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol, were found to be essential for transporter function by activating it and stabilizing its structure. Conical lipids, phosphatidylethanolamine and diacylglycerol, enhanced transporter activity up to 3-fold in the presence of anionic phospholipids but did not stabilize protein structure. Kinetic analyses revealed that both lipids increase the kcat of transport without changing the Km values. These results allowed us to elucidate the activation of GLUT by plasma membrane phospholipids and to extend the field of membrane protein-lipid interactions to the family of structurally and functionally related human solute carriers.  相似文献   

7.
8.

Background

The essential role of glucose transporter 2 (GLUT2) in glucose homeostasis has been extensively studied in mammals; however, little is known about this important protein in lower vertebrates. The freeze-tolerant wood frog (Rana sylvatica), which copiously mobilizes glucose in response to freezing, represents an excellent system for the study of glucose transport in amphibians.

Methods

GLUT2 was sequenced from northern and southern phenotypes of R. sylvatica, as well as the freeze-intolerant Rana pipiens. These proteins were expressed and functionally characterized in Xenopus oocytes. Abundance of GLUT2 in tissues was analyzed using immunoblotting techniques.

Results

GLUT2s cloned from these anurans encoded proteins with high sequence homologies to known vertebrate GLUT2s and had similar transport properties, although, notably, transport of the glucose analog 3-O-methyl-d-glucose (3-OMG) was strongly inhibited by 150 mM urea. Proteins from all study subjects had similar affinity constants (~ 12 mM) and other kinetic properties; however, GLUT2 abundance in liver was 3.5-fold greater in northern R. sylvatica than in the southern conspecific and R. pipiens.

Conclusion

Our results indicate that amphibian GLUT2s are structurally and functionally similar to their homologs in other vertebrates, attesting to the conserved nature of this transport protein. The greater abundance of this protein in the northern phenotype of R. sylvatica suggests that these transporters contribute importantly to freezing survival.

General significance

This study provides the first functional characterization of any GLUT isoform from an anuran amphibian and novel insights into the role of these proteins in glucose homeostasis and cryoprotectant mobilization in freeze-tolerant vertebrates.  相似文献   

9.

Objective

The glucose and dehydroascorbic acid (DHA) transporter GLUT1 contains a phosphorylation site, S490, for ataxia telangiectasia mutated (ATM). The objective of this study was to determine whether ATM and GLUT1-S490 regulate GLUT1.

Research Design and Methods

L6 myoblasts and mouse skeletal muscles were used to study the effects of ATM inhibition, ATM activation, and S490 mutation on GLUT1 localization, trafficking, and transport activity.

Results

In myoblasts, inhibition of ATM significantly diminished cell surface GLUT1, glucose and DHA transport, GLUT1 externalization, and association of GLUT1 with Gα-interacting protein-interacting protein, C-terminus (GIPC1), which has been implicated in recycling of endosomal proteins. In contrast, ATM activation by doxorubicin (DXR) increased DHA transport, cell surface GLUT1, and the GLUT1/GIPC1 association. S490A mutation decreased glucose and DHA transport, cell surface GLUT1, and interaction of GLUT1 with GIPC1, while S490D mutation increased transport, cell surface GLUT1, and the GLUT1/GIPC1 interaction. ATM dysfunction or ATM inhibition reduced DHA transport in extensor digitorum longus (EDL) muscles and decreased glucose transport in EDL and soleus. In contrast, DXR increased DHA transport in EDL.

Conclusions

These results provide evidence that ATM and GLUT1-S490 promote cell surface GLUT1 and GLUT1-mediated transport in skeletal muscle associated with upregulation of the GLUT1/GIPC1 interaction.  相似文献   

10.
11.
Q Liu  J C Vera  H Peng  D W Golde 《Biochemistry》2001,40(26):7874-7881
The glucose transporter GLUT1 has three short amino acid sequences (domains I-III) with homology to typical ATP-binding domains. GLUT1 is a facilitative transporter, however, and transports its substrates down a concentration gradient without a specific requirement for energy or hydrolysis of ATP. Therefore, we assessed the functional role of the predicted ATP-binding domains in GLUT1 by site-directed mutagenesis and expression in Xenopus oocytes. For each mutant, we determined the level of protein expression and the kinetics of transport under zero-trans influx, zero-trans efflux, and equilibrium exchange conditions. Although all five mutants were expressed at levels similar to that of the wild-type GLUT1, each single amino acid change in domains I or III profoundly affected GLUT1 function. The mutants Gly116-->Ala in domain I and Gly332-->Ala in domain III exhibited only 10-20% of the transport activity of the wild-type GLUT1. The mutants Gly111-->Ala in domain I and Leu336-->Ala in domain III showed altered kinetic properties; neither the apparent Km nor the Vmax for 3-methylglucose transport were increased under equilibrium exchange conditions, and they did not show the expected level of countertransport acceleration. The mutant Lys117-->Arg in domain I showed a marked increase in the apparent Km for 3-methylglucose transport under zero-trans efflux and equilibrium exchange conditions while maintaining countertransport acceleration. These results indicate that the predicted ATP-binding domains I and III in GLUT1 are important components of the region in GLUT1 involved in transport of the substrate and that their integrity is critical for maintaining the activity and kinetic properties of the transporter.  相似文献   

12.
Guo X  Geng M  Du G 《Biochemical genetics》2005,43(3-4):175-187
Facilitative glucose transport is mediated by one or more of the members of the closely related glucose transporter (GLUT) family. Thirteen members of the GLUT family have been described thus far. GLUT1 is a widely expressed isoform that provides many cells with their basic glucose requirement. It is also the primary transporter across the blood-brain barrier. This review describes the distribution and expression of GLUT1 in brain in different pathophysiological conditions including Alzheimers disease, epilepsy, ischemia, or traumatic brain injury. Recent investigations show that GLUT1 mediates the transport of some neuroactive drugs, such as glycosylated neuropeptides, low molecular weight heparin, and d-glucose derivatives, across the blood-brain barrier as a delivery system. By utilizing such highly specific transport mechanisms, it should be possible to establish strategies to regulate the entry of candidate drugs.  相似文献   

13.
14.
Insulin stimulates glucose transport in fat and muscle cells by regulating delivery of the facilitative glucose transporter, glucose transporter isoform 4 (GLUT4), to the plasma membrane. In the absence of insulin, GLUT4 is sequestered away from the general recycling endosomal pathway into specialized vesicles, referred to as GLUT4-storage vesicles. Understanding the sorting of GLUT4 into this store is a major challenge. Here we examine the role of the Sec1/Munc18 protein mVps45 in GLUT4 trafficking. We show that mVps45 is up-regulated upon differentiation of 3T3-L1 fibroblasts into adipocytes and is expressed at stoichiometric levels with its cognate target–soluble N-ethylmaleimide–sensitive factor attachment protein receptor, syntaxin 16. Depletion of mVps45 in 3T3-L1 adipocytes results in decreased GLUT4 levels and impaired insulin-stimulated glucose transport. Using sub­cellular fractionation and an in vitro assay for GLUT4-storage vesicle formation, we show that mVps45 is required to correctly traffic GLUT4 into this compartment. Collectively our data reveal a crucial role for mVps45 in the delivery of GLUT4 into its specialized, insulin-regulated compartment.  相似文献   

15.
Insulin controls glucose uptake into muscle and fat cells by inducing a net redistribution of glucose transporter 4 (GLUT4) from intracellular storage to the plasma membrane (PM). The TBC1D4-RAB10 signaling module is required for insulin-stimulated GLUT4 translocation to the PM, although where it intersects GLUT4 traffic was unknown. Here we demonstrate that TBC1D4-RAB10 functions to control GLUT4 mobilization from a trans-Golgi network (TGN) storage compartment, establishing that insulin, in addition to regulating the PM proximal effects of GLUT4-containing vesicles docking to and fusion with the PM, also directly regulates the behavior of GLUT4 deeper within the cell. We also show that GLUT4 is retained in an element/domain of the TGN from which newly synthesized lysosomal proteins are targeted to the late endosomes and the ATP7A copper transporter is translocated to the PM by elevated copper. Insulin does not mobilize ATP7A nor does copper mobilize GLUT4, and RAB10 is not required for copper-elicited ATP7A mobilization. Consequently, GLUT4 intracellular sequestration and mobilization by insulin is achieved, in part, through utilizing a region of the TGN devoted to specialized cargo transport in general rather than being specific for GLUT4. Our results define the GLUT4-containing region of the TGN as a sorting and storage site from which different cargo are mobilized by distinct signals through unique molecular machinery.  相似文献   

16.
Pharmacologic HIV protease inhibitors (PIs) and structurally related oligopeptides are known to reversibly bind and inactivate the insulin-responsive facilitative glucose transporter 4 (GLUT4). Several PIs exhibit isoform selectivity with little effect on GLUT1. The ability to target individual GLUT isoforms in an acute and reversible manner provides novel means both to investigate the contribution of individual GLUTs to health and disease and to develop targeted treatment of glucose-dependent diseases. To determine the molecular basis of transport inhibition, a series of chimeric proteins containing transmembrane and cytosolic domains from GLUT1 and GLUT4 and/or point mutations were generated and expressed in HEK293 cells. Structural integrity was confirmed via measurement of N-[2-[2-[2-[(N-biotinylcaproylamino)ethoxy)ethoxyl]-4-[2-(trifluoromethyl)-3H-diazirin-3-yl]benzoyl]-1,3-bis(mannopyranosyl-4-yloxy)-2-propylamine (ATB-BMPA) labeling of the chimeric proteins in low density microsome fractions isolated from stably transfected 293 cells. Functional integrity was assessed via measurement of zero-trans 2-deoxyglucose (2-DOG) uptake. ATB-BMPA labeling studies and 2-DOG uptake revealed that transmembrane helices 1 and 5 contain amino acid residues that influence inhibitor access to the transporter binding domain. Substitution of Thr-30 and His-160 in GLUT1 to the corresponding positions in GLUT4 is sufficient to completely transform GLUT1 into GLUT4 with respect to indinavir inhibition of 2-DOG uptake and ATB-BMPA binding. These data provide a structural basis for the selectivity of PIs toward GLUT4 over GLUT1 that can be used in ongoing novel drug design.  相似文献   

17.
This study investigates the relationship between human erythrocyte glucose transport protein (GLUT1) oligomeric structure and glucose transporter function. Oligomeric structure was analyzed by hydrodynamic studies of cholate-solubilized GLUT1, by chemical cross-linking studies of membrane-resident GLUT1 and by using conformation-specific antibodies. Transporter function (substrate binding) was analyzed by equilibrium cytochalasin B and D-glucose binding measurements. Erythrocyte-resident glucose transporter is a GLUT1 homotetramer, binds 1 mol of cytochalasin B/2 mol of GLUT1, and presents at least two binding sites to D-glucose. Native structure and function appear to be stabilized by intramolecular disulfide bonds and are preserved during GLUT1 purification by the omission of reductant. Native structure is independent of in vitro and in vivo membrane GLUT1 density but is transformed to dimeric GLUT1 by alkaline reduction. Dimeric GLUT1 binds 1 mol of cytochalasin B/mol of GLUT1, presents a single population of binding sites to D-glucose, and is obtained upon GLUT1 purification in the presence of reductant. Native structure and function are restored by treatment of dimeric GLUT1 with glutathione-disulfide (K0.5 glutathione disulfide = 29 microM). We propose that native structure is established prior to transporter translocation to the plasma membrane and that intrasubunit disulfide bonds promote cooperative subunit interactions that stabilize transporter structure and function.  相似文献   

18.
《The Journal of cell biology》1993,123(6):1687-1694
The biosynthesis, intracellular transport, and surface expression of the beta cell glucose transporter GLUT2 was investigated in isolated islets and insulinoma cells. Using a trypsin sensitivity assay to measure cell surface expression, we determined that: (a) greater than 95% of GLUT2 was expressed on the plasma membrane; (b) GLUT2 did not recycle in intracellular vesicles; and (c) after trypsin treatment, reexpression of the intact transporter occurred with a t1/2 of approximately 7 h. Kinetics of intracellular transport of GLUT2 was investigated in pulse-labeling experiments combined with glycosidase treatment and the trypsin sensitivity assay. We determined that transport from the endoplasmic reticulum to the trans-Golgi network (TGN) occurred with a t1/2 of 15 min and that transport from the TGN to the plasma membrane required a similar half-time. When added at the start of a pulse-labeling experiment, brefeldin A prevented exit of GLUT2 from the endoplasmic reticulum. When the transporter was first accumulated in the TGN during a 15-min period of chase, but not following a low temperature (22 degrees C) incubation, addition of brefeldin A (BFA) prevented subsequent surface expression of the transporter. This indicated that brefeldin A prevented GLUT2 exit from the TGN by acting at a site proximal to the 22 degrees C block. Together, these data demonstrate that GLUT2 surface expression in beta cells is via the constitutive pathway, that transport can be blocked by BFA at two distinct steps and that once on the surface, GLUT2 does not recycle in intracellular vesicles.  相似文献   

19.
Asn331 in transmembrane segment 7 of the yeast Saccharomyces cerevisiae transporter Hxt2 has been identified as a single key residue for high-affinity glucose transport by comprehensive chimera approach. The glucose transporter GLUT1 of mammals belongs to the same major facilitator superfamily as Hxt2 and may therefore show a similar mechanism of substrate recognition. The functional role of Ile287 in human GLUT1, which corresponds to Asn331 in Hxt2, was studied by its replacement with each of the other 19 amino acids. The mutant transporters were individually expressed in a recently developed yeast expression system for GLUT1. Replacement of Ile287 generated transporters with various affinities for glucose that correlated well with those of the corresponding mutants of the yeast transporter. Residues exhibiting high affinity for glucose were medium-sized, non-aromatic, uncharged and irrelevant to hydrogen-bond capability, suggesting an important role of van der Waals interaction. Sensitivity to phloretin, a specific inhibitor for the presumed exofacial glucose binding site, was decreased in two mutants, whereas that to cytochalasin B, a specific inhibitor for the presumed endofacial glucose binding site, was unchanged in the mutants. These results suggest that Ile287 is a key residue for maintaining high glucose affinity in GLUT1 as revealed in Hxt2 and is located at or near the exofacial glucose binding site.  相似文献   

20.
The urate transporter, GLUT9, is responsible for the basolateral transport of urate in the proximal tubule of human kidneys and in the placenta, playing a central role in uric acid homeostasis. GLUT9 shares the least homology with other members of the glucose transporter family, especially with the glucose transporting members GLUT1-4 and is the only member of the GLUT family to transport urate. The recently published high-resolution structure of XylE, a bacterial D-xylose transporting homologue, yields new insights into the structural foundation of this GLUT family of proteins. While this represents a huge milestone, it is unclear if human GLUT9 can benefit from this advancement through subsequent structural based targeting and mutagenesis. Little progress has been made toward understanding the mechanism of GLUT9 since its discovery in 2000. Before work can begin on resolving the mechanisms of urate transport we must determine methods to express, purify and analyze hGLUT9 using a model system adept in expressing human membrane proteins. Here, we describe the surface expression, purification and isolation of monomeric protein, and functional analysis of recombinant hGLUT9 using the Xenopus laevis oocyte system. In addition, we generated a new homology-based high-resolution model of hGLUT9 from the XylE crystal structure and utilized our purified protein to generate a low-resolution single particle reconstruction. Interestingly, we demonstrate that the functional protein extracted from the Xenopus system fits well with the homology-based model allowing us to generate the predicted urate-binding pocket and pave a path for subsequent mutagenesis and structure-function studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号