首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Peng Du  Jae Su Yu 《Luminescence》2017,32(8):1504-1510
A series of Sm3+‐activated Sr3La(VO4)3 phosphors were synthesized by a facile sol‐gel method. X‐ray diffraction patterns and photoluminescence (PL)/cathodoluminescence (CL) spectra as well as PL decay curves were employed to characterize the obtained samples. Upon 402 nm light excitation, the characteristic emissions of Sm3+ ions corresponding to 4G5/26HJ transitions were observed in all the as‐prepared products. The PL emission intensity was increased with increase in Sm3+ ion concentration, while concentration quenching occurred when the doping concentration was over 4 mol%. The non‐radiative energy transfer mechanism for concentration quenching of Sm3+ ions was dominated by dipole–dipole interaction and the critical distance was around 21.59 Å. Furthermore, temperature‐dependent PL emission spectra revealed that the obtained phosphors possessed good thermal stability with an activation energy of 0.19 eV. In addition, the CL spectra of the samples were almost the same as the PL spectra, and the CL emission intensity showed a tendency to increase with increase in accelerating voltage and filament current. These results suggest that the Sm3+‐activated Sr3La(VO4)3 phosphors with good color coordinates, high color purity and superior thermal stability may be a potential candidate for applications in white light‐emitting diodes and field‐emission displays as red‐emitting phosphors.  相似文献   

2.
A series of praseodymium (Pr3+) ion activated Sr3Gd(1−x)(PO4)3:xPr3+ (0 ≤ x ≤ 2.0 mol%) phosphors were prepared and their structural, compositional and luminescence properties were investigated. The X-ray diffraction profiles indicate that the studied phosphors crystallized into body centred cubic structure and the Pr3+ ions have no influence on Sr3Gd(PO4)3 phase. The high-resolution scanning electron microscopy images show the agglomeration of particles that are inter-connected and form irregular shape Sr3Gd(PO4)3 structures. The excitation transitions corresponding to Pr3+:3H43P2,1,0 transitions at 445, 471 and 483 nm, respectively, matched well with the emission of blue-light-emitting diode (LED) chip. The emission spectra show strong reddish-orange luminescence through 1D23H4 transition when excited at 445 nm blue wavelength. The synthesized phosphors have the potential to be used as reddish-orange lighting devices.  相似文献   

3.
The luminescent properties of europium (Eu)‐ and dysprosium (Dy)‐co‐doped K3Ca2(SO4)3Cl halosulfate phosphors were analyzed. This paper reports the photoluminescence (PL) properties of K3Ca2(SO4)3Cl microphosphor doped with Eu and Dy and synthesized using a cost‐effective wet chemical method. The phosphors were characterized by X‐ray diffraction and scanning electron microscopy. The CIE coordinates were calculated to display the color of the phosphor. PL emission of the prepared samples show peaks at 484 nm (blue), 575 nm (yellow), 594 nm (orange) and 617 nm (red). The emission color of the Eu,Dy‐co‐doped K3Ca2(SO4)3Cl halophosphor depends on the doping concentration and excitation wavelength. The addition of Eu in K3Ca2(SO4)3Cl:Dy greatly enhances the intensity of the blue and yellow peaks, which corresponds to the 4 F9/26H15/2 and 4 F9/26H13/2 transitions of Dy3+ ions (under 351 nm excitation). The Eu3+/Dy3+ co‐doping also produces white light emission for 1 mol% of Eu3+, 1 mol% of Dy3+ in the K3Ca2(SO4)3Cl lattice under 396 nm excitation, for which the calculated chromaticity coordinates are (0.35, 0.31). Thus, K3Ca2(SO4)3Cl co‐doped with Eu/Dy is a suitable candidate for NUV based white light‐emitting phosphors technology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This work reports the photoluminescence properties of Ca3Mg3(PO4)4:Sm3+ phosphors that were synthesized by the combustion method. The phase formation and morphology of the prepared phosphors were analysed by X‐ray diffraction studies and scanning electron microscopy. Ca3Mg3(PO4)4:Sm3+ phosphors give orange light emission when excited by near‐ultraviolet (NUV) and blue light. The photoluminescence characteristics of the as‐prepared phosphors were investigated and their emission spectra showed three peaks due to 4G5/2 → 6H5/2, 4G5/2 → 6H7/2 and 4G5/2 → 6H9/2 transitions. The mechanism responsible for the concentration quenching of luminescence was found to be an electric dipole–dipole interaction. The CIE chromaticity coordinates suggested that the prepared phosphors are potential candidates for orange light‐emitting diodes (LEDs).  相似文献   

5.
Sr3(PO4)2:Dy3+,Li+ phosphors were prepared using a simple high temperature solid method for luminescence enhancement. The structures of the as‐prepared samples agreed well with the standard phase of Sr3(PO4)2, even when Dy3+ and Li+ were introduced. Under ultraviolet excitation at 350 nm, the Sr3(PO4)2:Dy3+ sample exhibited two emission peaks at 483 nm and 580 nm, which were due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. A white light was fabricated using these two emissions from the Sr3(PO4)2:Dy3+ phosphors. The luminescence properties of Sr3(PO4)2:Dy3+,Li+ phosphors, including emission intensity and decay time, were improved remarkably with the addition of Li+ as the charge compensator, which would promote their application in near‐ultraviolet excited white‐light‐emitting diodes.  相似文献   

6.
A series of Sr1‐x‐yCayMoO4:xSm3+ (0 ≤ x ≤ 7 mol% and 0 ≤ y < 1) phosphors was synthesized by a conventional solid‐state reaction method in air, and their structural and spectroscopic properties were investigated. The optimal doping concentration of Sm3+ in SrMoO4:Sm3+ phosphor is 5 mol%. Under excitation with 275 nm, in Sr1‐x‐yCayMoO4:xSm3+ (0 ≤ x ≤ 7 mol% and 0 ≤ y < 1) phosphors, the emission band of the host was found to overlap with the excitation bands peaking at ~500 nm of Sm3+ ion, and the energy transfer from MoO42? group to Sm3+ ion can also be observed. The International Commission on Illumination (CIE) chromaticity coordinates of Sr0.95‐yCayMoO4:0.05Sm3+ phosphors with excitation 275 nm varied systematically from an orange (0.4961, 0.3761) (y = 0) to a white color (0.33, 0.3442) (y = 0.95) with increasing calcium oxide (CaO) concentration. However, Sr0.95‐yCayMoO4:0.05Sm3+ phosphors with excitation at 404 nm only showed red emission and the energy transfer between MoO42? group to Sm3+ ion was not observed. The complex mechanisms of luminescence and energy transfer are discussed by energy level diagrams of MoO42? group and Sm3+ ion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Ce3+/Eu2+ co‐doped Na3Ca6(PO4)5 phosphors were prepared using a combustion‐assisted synthesis method. X‐Ray powder diffraction (XRD) analysis confirmed the formation of a Na3Ca6(PO4)5 crystal phase. Na3Ca6(PO4)5:Eu2+ phosphors have an efficient bluish‐green emission band that peaks at 489 nm, whereas Ce3+‐doped Na3Ca6(PO4)5 showed a bright emission band at 391 nm. Analysis of the experimental results suggests that enhancement of the Eu2+ emission intensity in co‐doped Na3Ca6(PO4)5:Eu2+,Ce3+ phosphors is due to a resonance‐type energy transfer from Ce3+ to Eu2+ ions, which is predominantly governed by an exchange interaction mechanism. These results indicate that Ce3+/Eu2+ co‐doped Na3Ca6(PO4)5 is potentially useful as a highly efficient, bluish‐green emitting, UV‐convertible phosphor for white‐light‐emitting diodes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In the recent few years, Eu2+- and Mn4+-activated phosphors are widely used as potential colour converters for indoor plant cultivation lighting application due to their marvellous luminescence characteristics as well as low cost. In this investigation, we synthesized novel red colour-emitting Ca(2−x)Mg2(SO4)3:xmol% Eu2+ (x = 0–1.0 mol%) phosphors via a solid-state reaction method in a reducing atmosphere. The photoluminescence (PL) excitation spectra of synthesized phosphors exhibited a broad excitation band with three excitation bands peaking at 349 nm, 494 nm, and 554 nm. Under these excitations, emission spectra exhibited a broad band in the red colour region at ~634 nm. The PL emission intensity was measured for different concentrations of Eu2+. The maximum Eu2+ doping concentration in the Ca2Mg2(SO4)3 host was observed for 0.5 mol%. According to Dexter theory, it was determined that dipole–dipole interaction was responsible for the concentration quenching. The luminous red colour emission of the sample was confirmed using Commission international de l'eclairage colour coordinates. The results of PL excitation and emission spectra of the prepared phosphors were well matched with excitation and emission wavelengths of phytochrome PR. Therefore, from the entire investigation and obtained results it was concluded that the synthesized Ca0.995Mg2(SO4)3:0.5mol%Eu2+ phosphor has huge potential for plant cultivation application.  相似文献   

9.
A new halophosphor K3Ca2(SO4)3 F activated by Eu or Ce and K3Ca2(SO4)3 F:Ce,Eu co‐doped halosulfate phosphor has been synthesized by the co‐precipitation method and characterized for its photoluminescence (PL). The PL emission spectra of the K3Ca2(SO4)3 F :Ce phosphor show emission at 334 nm when excited at 278 nm due to 5d → 4f transition of Ce3+ ions. In the K3Ca2(SO4)3 F:Eu lattice, Eu2+ (440 nm) as well as Eu3+ (596 nm and 615 nm) emissions have been observed showing 5D07 F1 and 5D07 F2 transition of the Eu3+ ion, which is in the blue and red region of the visible spectrum respectively. The trivalent europium ion is very useful for studying the nature of metal coordination in various systems owing to its non‐degenerate emitting 5D0 state. K3Ca2(SO4)3 F:Ce,Eu is suitable for Ce3+ → Eu2+ → Eu3+ energy transfer in which Ce3+and Eu2+ play the role of sensitizers and Eu2+ and Eu3+ act as the activators. The observations presented in this paper are relevant for lamp phosphors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In this article, we report the synthesis of Na2Sr1‐x(PO4)F:Eux phosphor via a combustion method. The influence of different annealing temperatures on the photoluminescence properties was investigated. The phosphor was excited at both 254 and 393 nm. Na2Sr1‐x(PO4)F:Eux3+ phosphors emit strong orange and red color at 593 and 612 nm, respectively, under both excitation wavelengths. Na2Sr1‐x(PO4)F:Eux3+ phosphors annealed at 1050°C showed stronger emission intensity compared with 600, 900 and 1200°C. Moreover, Na2Sr1‐x(PO4)F:Eux3+ phosphor was found to be more intense when compared with commercial Y2O3:Eu3+ phosphor. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
K. N. Shinde  K. Park 《Luminescence》2013,28(5):793-796
A series of efficient Li3Al2(PO4)3:Eu2+ novel phosphors were synthesized by the facile combustion method. The effects of dopant on the luminescence behavior of Li3Al2(PO4)3 phosphor were also investigated. The phosphors were characterized by X‐ray diffraction, field emission scanning electron microscope and photoluminescence techniques. The result shows that all samples can be excited efficiently by near‐ultraviolet excitation under 310 nm. The emission was observed for Li3Al2(PO4)3:Eu2+ phosphor at 425 nm, which corresponded to the d → f transition. The concentration quenching of Eu2+ was observed in Li3Al2(PO4)3:Eu2+ when the Eu concentration was at 0.5 mol%. The prepared powders exhibited intense blue emission at the 425 nm owing to the Eu2+ ion by Hg‐free excitation at 310 nm (i.e., solid‐state lighting excitation). Consequently, the availability of such a phosphor will significantly help in the development of blue‐emitting solid‐state lighting applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A series of Eu2+‐, Sm3+‐ and Eu2+/Sm3+‐doped SrZn2(PO4)2 samples were synthesized using a solid‐state reaction. SrZn2(PO4)2:Eu2+ presented a broad emission band due to 4f65d–4f7 transition of the Eu2+ ion. The spectra of SrZn2(PO4)2:Sm sintered in air and H2/N2 were identical in every aspect, except for a very small difference in intensity. A Eu2+–Sm3+ energy transfer scheme was proposed to realize the sensitization of Sm3+ ion emission by Eu2+ ions, and UV‐convertible Sm3+‐activated red phosphor was obtained in SrZn2(PO4)2:Eu2+, Sm3+. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Triple whitlockite‐type structure‐based red phosphors Ca8MgBi1?x(PO4)7:xEu3+ (x = 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80 and 1.00) were synthesized by a conventional solid‐state reaction route and characterized by their X‐ray crystal structures. The X‐ray diffraction (XRD) patterns, Fourier transform infrared spectra, morphologies, photoluminescence spectra, UV/Vis reflectance spectra, decay times and the International Commission on Illumination (CIE) chromaticity coordinates of Ca8MgBi1?x(PO4)7:xEu3+ were analyzed. Eu‐doped Ca8MgBi(PO4)7 phosphors exhibited strong red luminescence with peaks at 616 nm due to the 5D07 F2 electric dipole transition of Eu3+ ions after excitation at 396 nm. The UV/Vis spectra indicated that the band gap of Ca8MgBi0.30(PO4)7:0.70Eu3+ is larger than that of Ca8MgBi(PO4)7. The phosphor developed in this study has great potential as a red‐light‐emitting phosphor for UV light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
《IRBM》2019,40(5):270-278
BackgroundBreast cancer reported in the young women exhibits high local and distant recurrence and a poor prognosis. Rare earth doped calcium phosphate phosphors have been extensively investigated due to their unique applications in biomedicine.MethodsIn the current study, Tb3+, Ce3+ doped Ca3(PO4)2 phosphor were prepared by hydrothermal method at 150 °C using citric acid as additive and characterized by PXRD, FT-IR, TG-DTA, EDX, TEM and PL techniques. The photoluminescence properties of Tb3+, Ce3+ doped Ca3(PO4)2 phosphor was investigated upon photo excitation at 240 nm. Antiproliferative activity was evaluated by MTT, BrdU proliferation, ELISA, Methylene blue and caspase-3 assays.ResultsCa3(PO4)2:Tb3+, Ce3+ phosphor exhibited needle like morphology with length and width ∼100-500 nm and ∼40-50 nm, respectively. It exhibited green emission at 550 nm corresponding to 5D47F5 transition with the CIE coordinates (x, y) as (0.284, 0.614). It also showed remarkable concentration dependent cytotoxicity against MCF-7 as well as MDA-MB 231 cells with negligible cytotoxicity compared to MCF-12A, a human epithelial healthy cell line. It reduced the proliferative index of both cell lines in a concentration dependent manner by inhibiting DNA synthesis and Ki67 protein. It also induced distinct apoptotic changes in the morphology of cell and nucleus and also activated the caspase-3 activity in breast cancer cell lines.ConclusionThe results suggest that Ca3(PO4)2:Tb3+, Ce3+ phosphor may be useful for therapeutic application in clinical settings.  相似文献   

15.
The CaAlBO4:RE (RE = Dy3+, Eu3+, Sm3+) phosphor were prepared via combustion synthesis and studied by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), photoluminescence (PL) spectra and CIE coordinates. The phase formation of the obtained phosphor was analyzed by XRD and the result was confirmed by standard PDF Card No. 1539083. XRD data successfully indicated pure phase of CaAlBO4 phosphor. The crystal structure of CaAlBO4 phosphor is orthorhombic with space group Ccc2 (37). The SEM image of CaAlBO4 phosphor reveals an agglomerated morphology and non-uniform particle size. The EDS image provides evidence of the elements present and the chemical makeup of the materials. Under the 350 nm excitation, the emission spectrum of Dy3+ activated CaAlBO4 phosphor consists of two main groups of characteristic peaks located at 484 and 577 nm which are ascribed to 4F9/26H15/2 and 4F9/26H13/2 transition of Dy3+ respectively. The PL emission spectra of CaAlBO4:Eu3+ phosphor shows characteristics bands observed around 591 and 613 nm, which corresponds to 5D07F1 and 5D07F2 transition of Eu3+ respectively, upon 395 nm excitation wavelength. The emission spectra of Sm3+ activated CaAlBO4 phosphor shows three characteristic bands observed at 565, 601 and 648 nm which emits yellow, orange and red color. The prominent emission peak at the wavelength 601 nm, which is attributed to 4G5/26H7/2 transition, displays an orange emission. The CIE color coordinates of CaAlBO4:RE (RE = Dy3+, Eu3+, Sm3+) phosphor are calculated to be (0.631, 0.368), (0.674, 0.325) and (0.073, 0.185). As per the obtained results, CaAlBO4:RE (RE = Dy3+, Eu3+, Sm3+) phosphor may be applicable in eco-friendly lightning technology.  相似文献   

16.
The LiLa(MoO4)2:Sm3+ and LiLa(MoO4)2:Sm3+,Bi3+ phosphors were prepared using the citric-acid-fueled combustion method and the influence of concentrations of Bi3+ dopant on LiLa(MoO4)2:Sm3+ red luminescence was investigated. The LiLa(MoO4)2:Sm3+ and LiLa(MoO4)2:Sm3+,Bi3+ samples matched well with the scheelite structure and I41/a space group and did not detect structural changes. Under an excitation of 403 nm, the prepared LiLa(MoO4)2:Sm3+,Bi3+ phosphor was excited and produced orange-red emission. When compared with the LiLa(MoO4)2:Sm3+ phosphor, the LiLa(MoO4)2:Sm3+,Bi3+ phosphor exhibited enhanced fluorescence intensity because the Bi3+ dopant ions are doped as a sensitizer. The optimal doping concentrations of Sm3+ and Bi3+ were 5 and 1 mol%, respectively. Furthermore, the energy transfer from Bi3+ to Sm3+ is effective (3P14K11/2). Subsequently, the electrons in an unstable excited state were transferred to a stable ground state (4G5/26H5/2, 6H7/2, 6H9/2). The Commission Internationale de L'Eclairage (CIE) chromaticity coordinates of the optimized LiLa(MoO4)2:Sm3+,Bi3+ phosphor were situated in the orange-red region. The luminescence of the LiLa(MoO4)2:Sm3+,Bi3+ phosphor generated under near-ultraviolet (UV) irradiation could be used to produce a warm white light, indicating its possible applications in white light-emitting diodes.  相似文献   

17.
The individual emission and energy transfer between Ce3+ and Eu2+ or Dy3+ in BaCa(SO4)2 mixed alkaline earth sulfate phosphor prepared using a co‐precipitation method is described. The phosphor was characterized by X‐ray diffraction (XRD) and photoluminescence (PL) studies and doped by Ce;Eu and Dy rare earths. All phosphors showed excellent blue–orange emission on excitation with UV light. PL measurements reveal that the emission intensity of Eu2+ or Dy3+ dopants is greater than when they are co‐doped with Ce3+. An efficient Ce3+ → Eu2+ [2T2g(4f65d) → 8S7/2(4f7)] and Ce3+ → Dy3+ (4 F9/26H15/2 and 4 F9/26H13/2) energy transfer takes place in the BaCa(SO4)2 host. A strong blue emission peak was observed at 462 nm for Eu2+ ions and an orange emission peak at 574 nm for Dy3+ ions. Hence, this phosphor may be used as a lamp phosphor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Samarium ion (Sm3+)-doped alkali zinc alumino borosilicate (AZABS) glass was synthesized via quick melt quench technique. Various spectroscopic studies like optical absorption, photoluminescence (PL) emission, PL excitation, temperature-dependent PL and PL decay kinetics were performed on the as prepared glass system. Under 402 nm excitation, three sharp bands at wavelengths 563, 599 and 645 nm corresponding to transitions 4G5/26H5/2, 6H7/2 and 6H9/2, respectively, can be seen in the PL emission spectra. The 0.25 mol% Sm3+ glass has the highest intensity for these emissions. The lanthanide interaction in the glass matrix is dipole–dipole in nature as was proven from Dexter's analysis. The direct bandgap of 0.25 mol% Sm3+-doped AZABS glass was calculated to be 2.88 eV. The lifetimes of the as prepared glass range from 1.93 ms for the lowest concentration of Sm3+ to 0.75 ms for the highest. From temperature dependent PL studies, the activation energy for 0.25 mol% Sm3+-doped AZABS glass was found to be 0.19 eV which shows high thermal stability of this glass. We propose to utilize these Sm3+-doped AZABS glasses for white-light emitting diodes (w-LEDs) and solid-state lighting (SSL) applications.  相似文献   

19.
In the present study, Na3(SO4)X (X = F or Cl) halosulphate phosphors have been synthesized by the solid‐state diffusion method. The phase formation of the compounds Na3(SO4)F and Na3(SO4)Cl were confirmed by X‐ray powder diffraction (XRD) measurement. Photoluminescence (PL) excitation spectrum measurement of Na3(SO4)F:Ce3+ and Na3(SO4)Cl:Ce3+ shows this phosphor can be efficiently excited by near‐ultraviolet (UV) light and presents a dominant luminescence band centred at 341 nm for Ce3+, which is responsible for energy transfer to Dy3+and Mn2+ ions. The efficient Ce3+ → Dy3+ energy transfer in Na3(SO4)F and Na3(SO4)Cl under UV wavelength was observed due to 4 F9/2 to 6H15/2 and 6H13/2 level, while Ce3+ → Mn2+ was observed due to 4 T1 state to 6A1. The purpose of the present study is to develop and understanding the photoluminescence properties of Ce3+‐, Dy3+‐ and Mn2+‐doped fluoride and chloride Na3(SO4)X (X = F or Cl) luminescent material, which can be the efficient phosphors in many applications, such as scintillation applications, TL dosimetry and the lamp industry, etc. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, a series of LaNbTiO6:RE3+ (RE = Tb, Dy, Ho) down‐converting phosphors were synthesized using a modified sol–gel combustion method, and their photoluminescence (PL) properties were investigated as a function of activator concentration and annealing temperature. The resultant particles were characterized using X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, UV/Vis diffuse reflectance spectroscopy and PL spectra. The highly crystalline LaNbTiO6:RE3+ (RE = Tb, Dy, Ho) phosphors with an average size of 200–300 nm obtained at 1100°C have an orthorhombic aeschynite‐type structure and exhibit the highest luminescent intensity in our study range. The emission spectra of LaNbTiO6:RE3+ (RE = Tb, Dy, Ho) phosphors under excitations at UV/blue sources are mainly composed of characteristic peaks arising from the f–f transitions of RE3+, including 489 nm (5D47F6) and 545 nm (5D47F5) for Tb3+, 476 and 482 nm (4F9/26H15/2) and 571 nm (4F9/26H13/2) for Dy3+, and 545 nm (5F4 + 5S25I8) for Ho3+, respectively. The luminescent mechanisms were further investigated. It can be expected that these phosphors are of intense interest and potential importance for many optical applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号