首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro linoleic acid activation of protein kinase C   总被引:2,自引:0,他引:2  
The importance of membrane fluidity in the activation of protein kinase C (PKC) was examined using the membrane fluidizer, linoleic acid, in a well-defined model membrane system. Biochemical and biophysical properties of the system were monitored. Linoleic acid activated PKC to a level of 50% of that observed for diacylglycerol. In contrast, linoleic acid did not directly interact with the phorbol ester binding site as did diacylglycerol. This was determined by the lack of involvement of the ionizable group of the fatty acid with activity and the enhancement of phorbol ester binding by linoleic acid and its ester analogs. The membrane fluidity of this model membrane system in the presence of linoleic acid was increased as determined by fluorescence polarization. This increased the availability of phospholipids, thus, explaining the linoleic acid-induced enhancement of phorbol ester binding. The PKC conformation as determined from intrinsic tryptophan fluorescence spectra was different for lipid mixtures containing linoleic acid or diacylglycerol correlating with the difference in biochemical activation properties. This study provides evidence that membrane fluidization is not the predominant function of the lipid activator in PKC activation, but may play a role in obtaining the preferred membrane state for maximal activation.  相似文献   

2.
Amyloid beta-protein (A beta), the major protein of cerebrovascular and plaque amyloid in Alzheimer disease, is considered a primary factor in the pathology of this disease. The effect of synthetic A beta (1-40) on the activity of protein kinase C (PKC) was studied with histones for a substrate in a mixed micellar assay, and with calmodulin-depleted soluble brain proteins in a liposomal system. We report here that A beta affects PKC activity in a biphasic manner. An initial stimulation of PKC was noted at low concentrations of A beta (less than 2.5 microM); while PKC-inhibition was observed in a concentration-dependent manner at higher concentrations of A beta. The in vitro phosphorylation of 20, 47, and 87 kDa brain proteins (known PKC substrates) was significantly reduced by 60 microM A beta. The role of 20 kDa in memory storage, of 87 kDa in neurotransmission and neurosecretory processes, and of 47 kDa in long-term potentiation or memory is well recognized, and A beta is known to have both neurotrophic and neurotoxic effects. Since PKC plays an important role in neuronal function, it is suggested that dual modulation of PKC by A beta may be linked to its neurotrophic and neurotoxic effects. We propose that at low concentrations A beta, by stimulating PKC, may contribute to neurites generation; and at higher concentrations A beta, by inhibiting PKC activity, might lead first to memory impairment, and then to neuronal loss.  相似文献   

3.
Regulation of phospholipase D2 activity by protein kinase C alpha   总被引:1,自引:0,他引:1  
It has been well documented that protein kinase C (PKC) plays an important role in regulation of phospholipase D (PLD) activity. Although PKC regulation of PLD1 activity has been studied extensively, the role of PKC in PLD2 regulation remains to be established. In the present study it was demonstrated that phorbol 12-myristate 13-acetate (PMA) induced PLD2 activation in COS-7 cells. PLD2 was also phosphorylated on both serine and threonine residues after PMA treatment. PKC inhibitors Ro-31-8220 and bisindolylmaleimide I inhibited both PMA-induced PLD2 phosphorylation and activation. However, G? 6976, a PKC inhibitor relatively specific for conventional PKC isoforms, almost completely abolished PLD2 phosphorylation by PMA but only slightly inhibited PLD2 activation. Furthermore, time course studies showed that phosphorylation of PLD2 lagged behind its activation by PMA. Concentration curves for PMA action on PLD2 phosphorylation and activation also showed that PLD2 was activated by PMA at concentrations at which PMA didn't induce phosphorylation. A kinase-deficient mutant of PKCalpha stimulated PLD2 activity to an even higher level than wild type PKCalpha. Co-expression of wild type PKCalpha, but not PKCdelta, greatly enhanced both basal and PMA-induced PLD2 phosphorylation. A PKCdelta-specific inhibitor, rottlerin, failed to inhibit PMA-induced PLD2 phosphorylation and activation. Co-immunoprecipitation studies indicated an association between PLD2 and PKCalpha under basal conditions that was further enhanced by PMA. Time course studies of the effects of PKCalpha on PLD2 showed that as the phosphorylation of PLD2 increased, its activity declined. In summary, the data demonstrated that PLD2 is activated and phosphorylated by PMA and PKCalpha in COS-7 cells. However, the phosphorylation is not required for PKCalpha to activate PLD2. It is suggested that interaction rather than phosphorylation underscores the activation of PLD2 by PKC in vivo and that phosphorylation may contribute to the inactivation of the enzyme.  相似文献   

4.
In nearly all mammalian cells and tissues examined, protein kinase C (PKC) has been shown to serve as a major regulator of a phosphatidylcholine-specific phospholipase D (PLD) activity, At least 12 distinct isoforms of PKC have been described so far; of these enzymes only the α- and β-isoform were found to regulate PLD activity, While the mechanism of this regulation has remained unknown, available evidence suggests that both phosphorylating and non-phosphorylating mechanisms may be involved. A phosphatidylcholine-specific PLD activity was recently purified from pig lung, but its possible regulation by PKC has not been reported yet. Several cell types and tissues appear to express additional forms of PLD which can hydrolyze either phosphatidylethanolamine or phosphatidylinositol. It has also been reported that at least one form of PLD can be activated by oncogenes, but not by PKC activators, Similar to activated PKC, some of the primary and secondary products of PLD-mediated phospholipid hydrolysis, including phosphatidic acid, 1,2-diacylglycerol, choline phosphate and ethanolamine, also exhibit mitogenic/co-mitogenic effects in cultured cells. Furthermore, both the PLD and PKC systems have been implicated in the regulation of vesicle transport and exocytosis. Recently the PLD enzyme has been cloned and the tools of molecular biology to study its biological roles will soon be available. Using specific inhibitors of growth regulating signals and vesicle transport, so far no convincing evidence has been reported to support the role of PLD in the mediation of any of the above cellular effects of activated PKC.  相似文献   

5.
Presenilins (PSs) are involved in processing several proteins such as the amyloid precursor protein (APP), as well as in pathways for cell death and survival. We previously showed that some familial Alzheimer's disease PS mutations cause increased basal and acetylcholine muscarinic receptor-stimulated phospholipase C (PLC) activity which was gamma-secretase dependent. To further evaluate the dependence of PLC on PSs we measured PLC activity and the activation of variant protein kinase C (PKC) isoforms in mouse embryonic fibroblasts (MEFs) lacking either PS1, PS2, or both. PLC activity and PKCalpha and PKCgamma activations were significantly lower in PS1 and PS2 double knockout MEFs after PLC stimulation. Protein levels of PKCalpha and PKCgamma were lower in PS1 and PS2 double knockout MEFs. In contrast, PKCdelta levels were significantly elevated in PS1 and PS2 double knockout as well as in PS1 knockout MEFs. Also, PKCdelta levels were lowered after transfection of PS1 into PS1 knockout or PS double knockout MEFs. Using APP knockout MEFs we showed that the expression of PKCalpha, but not the other PKC isoforms is partially dependent on APP and can be regulated by APP intracellular domain (AICD). These results show that PLC and PKC activations are modulated by PS and also that PSs differentially regulate the expression of PKC isoforms by both APP/AICD-dependent and independent mechanisms.  相似文献   

6.
Litosch I 《Biochemistry》2003,42(6):1618-1623
Phosphatidic acid (PA) stimulates phospholipase C-beta(1) (PLC-beta(1)) activity and promotes G protein stimulation of PLC-beta(1) activity. The isoform dependence for PA regulation of PLC-beta activity as well as the role of PA in modulating regulation of PLC-beta activity by protein kinase C (PKC) and G protein subunits was determined. As compared to PLC-beta(1), the phospholipase C-beta(3) (PLC-beta(3)) isoform was less sensitive to PA, requiring greater than 15 mol % PA for stimulation. PLC-beta(3) bound weakly to PA. PKC had little effect on PA stimulation of PLC-beta(3) activity. PKC, however, inhibited PA stimulation of PLC-beta(1) activity through a mechanism dependent on the mol % PA. Stimulation by 7.5 mol % PA was completely inhibited by PKC. Increasing the PA and Ca(2+) concentration attenuated PKC inhibition. The binding of PLC-beta(1) to PA containing phospholipid vesicles was also reduced by PKC, in a manner dependent on the mol % PA. PA increased the stimulation of PLC-beta(1) activity by G alpha q but had little effect on the stimulation by beta gamma subunits. These results demonstrate that PA stimulation of PLC-beta activity is tightly regulated, suggesting the existence of a distinct PA binding region in PLC-beta(1). PA may be an important component of a receptor mediated signaling mechanism that determines PLC-beta(1) activation.  相似文献   

7.
8.
Feedback regulation of phospholipase C-beta by protein kinase C   总被引:9,自引:0,他引:9  
Treatment of a variety of cells and tissues with 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C (PKC) results in the inhibition of receptor-coupled inositol phospholipid-specific phospholipase C (PLC) activity. To determine whether or not the targets of TPA-activated PKC include one or more isozymes of PLC, studies were carried out with PC12, C6Bu1, and NIH 3T3 cells, which contain at least three PLC isozymes, PLC-beta, PLC-gamma, and PLC-delta. Treatment of the cells with TPA stimulated the phosphorylation of serine residues in PLC-beta, but the phosphorylation state of PLC-gamma and PLC-delta was not changed significantly. Phosphorylation of bovine brain PLC-beta by PKC in vitro resulted in a stoichiometric incorporation of phosphate at serine 887, without any concomitant effect on PLC-beta activity. We propose, therefore, that rather than having a direct effect on enzyme activity, the phosphorylation of PLC-beta by PKC may alter its interaction with a putative guanine nucleotide-binding regulatory protein and thereby prevent its activation.  相似文献   

9.
It has recently been shown that the activation of protein kinase C (PKC) induces protein tyrosine phosphorylation in osteoblast-like MC3T3-E1 cells. We previously reported that the activation of PKC stimulates phosphatidylcholine-hydrolyzing phospholipase D in these cells. In this study, we examined whether protein tyrosine kinase is involved in the PKC-induced activation of phospholipase D in MC3T3-E1 cells. Genistein, an inhibitor of protein tyrosine kinases, which by itself had little effect on choline formation, significantly suppressed the formation of choline induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of PKC, in a dose-dependent manner. Tyrphostin, an inhibitor of protein tyrosine kinases chemically distinct from genistein, also dose-dependently suppressed the TPA-induced formation of choline. Sodium orthovandate, an inhibitor of protein tyrosine phosphatases, significantly enhanced the TPA-induced formation of choline in a dose-dependent manner. These results strongly suggest that protein tyrosine kinase regulates phospholipase D activity at a point downstream from PKC in osteoblast-like cells.  相似文献   

10.
11.
Activation of protein kinase C (PKC) can result from stimulation of the receptor-G protein-phospholipase C (PLCbeta) pathway. In turn, phosphorylation of PLCbeta by PKC may play a role in the regulation of receptor-mediated phosphatidylinositide (PI) turnover and intracellular Ca(2+) release. Activation of endogenous PKC by phorbol 12-myristate 13-acetate inhibited both Galpha(q)-coupled (oxytocin and M1 muscarinic) and Galpha(i)-coupled (formyl-Met-Leu-Phe) receptor-stimulated PI turnover by 50-100% in PHM1, HeLa, COSM6, and RBL-2H3 cells expressing PLCbeta(3). Activation of conventional PKCs with thymeleatoxin similarly inhibited oxytocin or formyl-Met-Leu-Phe receptor-stimulated PI turnover. The PKC inhibitory effect was also observed when PLCbeta(3) was stimulated directly by Galpha(q) or Gbetagamma in overexpression assays. PKC phosphorylated PLCbeta(3) at the same predominant site in vivo and in vitro. Peptide sequencing of in vitro phosphorylated recombinant PLCbeta(3) and site-directed mutagenesis identified Ser(1105) as the predominant phosphorylation site. Ser(1105) is also phosphorylated by protein kinase A (PKA; Yue, C., Dodge, K. L., Weber, G., and Sanborn, B. M. (1998) J. Biol. Chem. 273, 18023-18027). Similar to PKA, the inhibition by PKC of Galpha(q)-stimulated PLCbeta(3) activity was completely abolished by mutation of Ser(1105) to Ala. In contrast, mutation of Ser(1105) or Ser(26), another putative phosphorylation target, to Ala had no effect on inhibition of Gbetagamma-stimulated PLCbeta(3) activity by PKC or PKA. These data indicate that PKC and PKA act similarly in that they inhibit Galpha(q)-stimulated PLCbeta(3) as a result of phosphorylation of Ser(1105). Moreover, PKC and PKA both inhibit Gbetagamma-stimulated activity by mechanisms that do not involve Ser(1105).  相似文献   

12.
A potential role of arachidonic acid in the modulation of insulin secretion was investigated by measuring its effects on calmodulin-dependent protein kinase and protein kinase C in islet subcellular fractions. The results were interpreted in the light of arachidonic acid effects on insulin secretion from intact islets. Arachidonic acid could replace phosphatidylserine in activation of cytosolic protein kinase C (K0.5 of 10 microM) and maximum activation was observed at 50 microM arachidonate. Arachidonic acid did not affect the Ca2+ requirement of the phosphatidylserine-stimulated activity. Arachidonic acid (200 microM) inhibited (greater than 90%) calmodulin-dependent protein kinase activity (K0.5 = 50-100 microM) but modestly increased basal phosphorylation activity (no added calcium or calmodulin). Arachidonic acid inhibited glucose-sensitive insulin secretion from islets (K0.5 = 24 microM) measured in static secretion assays. Maximum inhibition (approximately 70%) was achieved at 50-100 microM arachidonic acid. Basal insulin secretion (3 mM glucose) was modestly stimulated by 100 microM arachidonic acid but in a non-saturable manner. In perifusion secretion studies, arachidonic acid (20 microM) had no effect on the first phase of glucose-induced secretion but nearly completely suppressed second phase secretion. At basal glucose (4 mM), arachidonic acid induced a modest but reproducible biphasic insulin secretion response which mimicked glucose-sensitive secretion. However, phosphorylation of an 80 kD protein substrate of protein kinase C was not increased when intact islets were incubated with arachidonic acid, suggesting that the small increases in insulin secretion seen with arachidonic acid were not mediated by protein kinase C. These data suggest that arachidonic acid generated by exposure of islets to glucose may influence insulin secretion by inhibiting the activity of calmodulin-dependent protein kinase but probably has little effect on protein kinase C activity.  相似文献   

13.
We have recently shown that phospholipase C-gamma (PLC-gamma) is activated by the central repeated units (CRUs) of the AHNAK protein in the presence of arachidonic acid. Here we demonstrate that four central repeated units (4 CRUs) of AHNAK act as a scaffolding motif networking PLC-gamma and PKC-alpha. Specifically, 4 CRUs of AHNAK bind and activate PKC-alpha, which in turn stimulates the release of arachidonic acid near where PLC-gamma1 is localized. Moreover, 4 CRUs of AHNAK interacted with PLC-gamma and the concerted action of 4 CRUs with arachidonic acid stimulated PLC-gamma activity. Stimulation of NIH3T3 cells expressing 4 CRUs of AHNAK with phorbol 12-myristate 13-acetate resulted in the increased generation of total inositol phosphates (IP(T)) and mobilization of the intracellular calcium. Phorbol 12-myristate 13-acetate-dependent generation of IP(T) was completely blocked in NIH3T3 cells depleted of PLC-gamma1 by RNA interference. Furthermore, bradykinin, which normally stimulated the PLC-beta isozyme resulting in the generation of a monophasic IP(T) within 30 s in NIH3T3 cells, led to a biphasic pattern for generation of IP(T) in NIH3T3 cells expressing 4 CRUs of AHNAK. The secondary activation of PLC is likely because of the scaffolding activity of AHNAK, which is consistent with the role of 4 CRUs as a molecular linker between PLC-gamma and PKC-alpha.  相似文献   

14.
The involvement of protein kinase C (PKC) and protein kinase A (PKA) in cholinergic signalling in CHO cells expressing the M3 subtype of the muscarinic acetylcholine receptor was examined. Muscarinic signalling was assessed by measuring carbachol-induced activation of phospholipase C (PLC), arachidonic acid release, and calcium mobilisation. Carbachol activation of PLC was not altered by inhibition of PKC with chelerythrine chloride, bisindolylmaleimide or chronic treatment with phorbol myristate acetate (PMA). Activation of PKC by acute treatment with PMA was similarly without effect. In contrast, inhibition of PKC blocked carbachol stimulation of arachidonic acid release. Likewise, PKC inhibition resulted in a decreased ability of carbachol to mobilise calcium, whereas PKC activation potentiated calcium mobilisation. Inhibition of PKA with H89 or Rp-cAMP did not alter the ability of carbachol to activate PLC. Similarly, PKA activation with Sp-cAMP or forskolin had no effect on PLC stimulation by carbachol. Carbachol-mediated release of arachidonic acid was decreased by H89 but only slightly increased by forskolin. Forskolin also increased calcium mobilisation by carbachol. These results suggest a function for PKC and PKA in M3 stimulation of arachidonic acid release and calcium mobilisation but not in PLC activation.  相似文献   

15.
Action of phospholipase A2 and phospholipase C on Escherichia coli   总被引:5,自引:0,他引:5  
The action of exogenous phospholipases on Escherichia coli has been examined. Cells harvested in late log phase were found to be completely resistant to the action of phospholipases A2 and C. Treatment of cells with Tris and EDTA was required to make the phospholipids in the cell accessible to these phospholipases. Phospholipase A2 hydrolyzed mainly phosphatidylethanolamine and phosphatidylglycerol, whereas phospholipase C preferentially degraded phosphatidylethanolamine.During the EDTA treatment, an endogenous phospholipase A1 or a lysophospholipase (or both) was unmasked which caused the formation of free fatty acids in experiments in which no phospholipase was added and which degraded some of the lysophospholipids formed by phospholipase A2.The cells were rapidly killed by the successive Tris-EDTA-phospholipase treatment, but no cell disintegration was observed.  相似文献   

16.
The role of protein kinase C in the stimulation of phosphatidylcholine (PC) synthesis by phospholipase C was investigated. Phospholipase C treatment of Chinese hamster ovary cells (CHO) generates diacylglycerol, which is an activator of protein kinase C. The protein kinase C activator, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) stimulated choline incorporation into two CHO cell lines, a wild-type cell line, WTB, and a mutant cell line, DTG 1-5-4. DTG 1-5-4 is a mutant defective in receptor-mediated endocytosis. A 3-h phospholipase C treatment resulted in the activation and translocation of CTP:phosphocholine cytidylyltransferase in both cell lines. TPA treatment, however, resulted in only a slight (20%) translocation of cytidylyltransferase in WTB; no detectable translocation of cytidylyltransferase was observed in DTG 1-5-4. A decrease in the phosphocholine pools was observed in response to TPA treatment in both cell lines, which indicated that the cytidylyltransferase step was being activated. Phospholipase C stimulated choline incorporation into PC even when protein kinase C had been down-regulated in both cell lines. It was concluded that phospholipase C does not activate PC synthesis by activating protein kinase C.  相似文献   

17.
The developmental appearance of protein kinase C (PKC) activity in the rat pineal gland was investigated. Enzyme activity could be detected before birth in both cytosol and membrane fractions. A small peak in activity was seen between -2 and 4 days of age, coinciding with a temporary redistribution of activity to the membrane fraction (4% increasing to 17%). After 10 days of age both cytosol and membrane activity increased progressively to reach adult levels by 30 days. Inhibition of daily adrenergic stimulation to the gland by decentralizing or removing the superior cervical ganglia or exposing rats to constant light for 14 days did not reduce PKC activity. These results indicate that PKC activity is located in pinealocytes rather than in the presynaptic adrenergic terminals and that adrenergic stimulation is not necessary to maintain the high level of PKC activity in the pineal.  相似文献   

18.
Constitutive activity of membrane-inserted protein kinase C   总被引:6,自引:0,他引:6  
Incubation of purified protein kinase C (PKC) with phospholipid vesicles produced two populations of membrane-bound PKC: one population was dissociated by calcium chelation and the other was not. The second population appeared to be inserted into the membrane. The activity of membrane-inserted PKC was Ca2+-independent and was only modestly sensitive to phorbol esters. Insertion was caused by high calcium concentrations or by phorbol esters plus low calcium. These conditions correlated with those needed to activate PKC; insertion into the membrane may be a primary mechanism of PKC activation. PKC may be a long-term cell regulator which becomes inserted into the membrane upon appearance of the second messengers, calcium and diacylglycerol, and remains in an active membrane-bound state when the second messengers have been removed.  相似文献   

19.
We have shown previously that in rat tracheal epithelial 2C5 cells the induction of ornithine decarboxylase (ODC) activity and the reduction in the binding of epidermal growth factor (EGF) by diacylglycerol is related to the activation of protein kinase C. In this paper we analyse the action of retinoic acid (RA) on these two parameters in order to determine whether RA acts on the level of protein kinase C. RA inhibits the induction of ODC activity by diacylglycerol (sn-1,2-dioctanoylglycerol) in a dose- and time-dependent manner. A biologically inactive analog of RA has no effect on this induction. RA does not affect the activation of protein kinase C by diacylglycerol in an in vitro assay. In contrast to the effect on ODC induction, RA does not counteract the reduction in EGF binding induced by diacylglycerol. These results are consistent with the concept that RA does not act at the level of protein kinase C and inhibits ODC induction during a stage following protein kinase C activation.  相似文献   

20.
Ethanol is known to inhibit the activation of platelets in response to several physiological agonists, but the mechanism of this action is unclear. The addition of physiologically relevant concentrations of ethanol (25-150 mM) to suspensions of washed human platelets resulted in the inhibition of thrombin-induced secretion of 5-hydroxy[14C]tryptamine. Indomethacin was included in the incubation buffer to prevent feedback amplification by arachidonic acid metabolites. Ethanol had no effect on the activation of phospholipase C by thrombin, as determined by the formation of inositol phosphates and the mobilization of intracellular Ca2+. Moreover, ethanol did not interfere with the thrombin-induced formation of diacylglycerol or phosphatidic acid. Stimulation of platelets with phorbol ester (5-50 nM) resulted in 5-hydroxy[14C]tryptamine release comparable with those with threshold doses of thrombin. However, ethanol did not inhibit phorbol-ester-induced secretion. Ethanol also did not interfere with thrombin- or phorbol-ester-induced phosphorylation of myosin light chain (20 kDa) or a 47 kDa protein, a known substrate for protein kinase C. By electron microscopy, ethanol had no effect on thrombin-induced shape change and pseudopod formation, but prevented granule centralization and fusion. The results indicate that ethanol does not inhibit platelet secretion by interfering with the activation of phosphoinositide-specific phospholipase C or protein kinase C by thrombin. Rather, the data demonstrate an inhibition of a Ca2(+)-mediated event such as granule centralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号