首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The sensitivity ofHypogymnia physodes,Lobaria pulmonariaandPeltigera aphthosaH. physodesto six photosystem II herbicides and to DBMIB was tested in the laboratory by chlorophyll flouresence and oxygen-exchange measurements. in addition, experiments with freshly isolated photobiont cells fromH. physodesandL. pulmonariawere performed. Generally, the lichens were most sensitive to the urea herbicides diuron and isoproturon, whereas the triazines atrazine, terbuthylazine, and simazine and the triazinone metamitron wre less inhibitory. Among the three lichen species invesigated,H. physodeswas the most sensitive to the urea herbicides. For the other agents, no signifiant differences between lichen species could be found. The highest pI50values obtained from dose response curves were around 6.5 for isolated photobionts, but most values for lichen thalli were in the range 5-6. Thus, there is no particular sensitivity of green algal lichen photobionts to photosytem II herbicides as compared to other algae, higher plant chloroplasts or protoplasts. In nature, we observed recovery from (damaging) treatment with 10−5mol diuron 1−1forH. physodeswithin weeks. Therefore, damage to lichens fromt he use of photosystem-II herbicides in agriculture is probably only of very local occurence.  相似文献   

2.
A structural study of the carbohydrates from Coccomyxa mucigena, the symbiotic algal partner of the lichenized fungus Peltigera aphthosa, was carried out. It produced an O-methylated mannogalactan, with a (1 → 6)-linked β-galactopyranose main-chain partially substituted at O-3 by β-Galp, 3-OMe-α-Manp or α-Manp units. There were no similarities with polysaccharides previously found in the lichen thallus of P. aphthosa. Moreover, the influence of lichenization in polysaccharide production by symbiotic microalgae and the nature of the photobiont in carbohydrate production in lichen symbiosis are also discussed.  相似文献   

3.
Ion-exchange characteristics of the cell walls isolated from different zones of the foliose lichen Peltigera aphthosa (L.) Willd were determined. Four types of ionogenic groups were revealed in the thallus cell walls of P. aphthosa, namely amino groups, carboxylic groups of uronic acids, carboxylic groups of phenolic acids, and phenolic OH groups. They may participate in the ion-exchange reactions with the ions of the environment. The amount of ionogenic groups in P. aphthosa cell walls was found to depend on the zone and age of the thallus.  相似文献   

4.
Secondary compounds were quantified in 75 thalli of the foliose lichen Hypogymnia physodes collected in habitats along a natural shade-sun gradient from dark spruce forests to sun-exposed sea cliffs. The irradiance in all the 75 lichen sites was estimated from hemispherical photographs. The content of lichen compounds per thallus area correlated positively with irradiance level (r2=0.73), and the mean concentration increased from 6.7% in the spruce forest to 14.4% on sea cliffs. The medullary depsidones, physodic, physodalic and protocetraric acids, constituted >95% of the total pool of extractable secondary compounds, the cortical depsides, atranorin and chloratranorin, represented <5%. Both cortical compounds correlated well with direct and with diffuse radiation, whereas the three medullary compounds correlated better with diffuse than with direct radiation. Mentioned trends are consistent with a solar radiation screening hypothesis of both groups of these colourless compounds occuring as tiny crystals outside fungal hyphae. However, the UV-B protective hypothesis of the compounds was further tested in a lab experiment. Unnaturally high UV-B doses were required to significantly reduce the PSII efficiency (FV/FM) of symbiotic algae. Removal of the major pool of secondary compounds with acetone did not increase photobiont susceptibility to UV-B. Therefore, the main functional role of the UV-B absorbing secondary compounds in H. physodes is hardly UV-B screening. Other roles such as PAR-screening and defence against herbivores and pathogenic organisms are discussed.  相似文献   

5.
Kristin Palmqvist 《Planta》1993,191(1):48-56
The CO2 dependence of net CO2 assimilation was examined in a number of green algal and cyanobacterial lichens with the aim of screening for the algal/cyanobacterial CO2-concentrating mechanism (CCM) in these symbiotic organisms. For the lichens Peltigera aphthosa (L.) Willd., P. canina (L.) Willd. and P. neopolydactyla (Gyeln.) Gyeln., the photosynthetic performance was also compared between intact thalli and their respective photobionts, the green alga Coccomyxa PA, isolated from Peltigera aphthosa and the cyanobacterium Nostoc PC, isolated from Peltigera canina. More direct evidence for the operation of a CCM was obtained by monitoring the effects of the carbonic-anhydrase inhibitors acetazolamide and ethoxyzolamide on the photosynthetic CO2use efficiency of the photobionts. The results strongly indicate the operation of a CCM in all cyanobacterial lichens investigated and in cultured cells of Nostoc PC, similar to that described for free-living species of cyanobacteria. The green algal lichens were divided into two groups, one with a low and the other with a higher CO2-use efficiency, indicative of the absence of a CCM in the former. The absence of a CCM in the low-affinity lichens was related to the photobiont, because free-living cells of Coccomyxa PA also apparently lacked a CCM. As a result of the postulated CCM, cyanobacterial Peltigera lichens have higher rates of net photosynthesis at normal CO2 compared with Peltigera aphthosa. It is proposed that this increased photosynthetic capacity may result in a higher production potential, provided that photosynthesis is limited by CO2 under natural conditions.  相似文献   

6.
Soredia of the lichen Hypogymnia physodes cultivated with Bold's basal medium on agar plates for 8 days exhibited decreasing growth rates along with increasing Mn concentrations above 3 mM. Ca and Mg added separately or in combination, alleviated Mn toxicity. The chlorophyll a and b content of the soredia was reduced under the influence of Mn and was positively correlated with the rate of grown soredia. Trebouxia cells of the soredia grown with excess Mn were smaller than control cells, had reduced chloroplasts and were partly collapsed; fungal hyphae were shortened and strongly swollen. Disintegrated cell walls occurred both in algal and fungal cells. Excess Mn was sequestered in extracellular encrustations together with phosphate as corresponding anion. Intracellularly, Mn was accumulated in polyphosphate granules both in algal and fungal cells. Mn uptake was correlated with significant loss of Na, Mg and Ca, particularly from the mycobiont. Fungal cell walls also lost significant amounts of P. The same damage symptoms occurred in cells of soredia both grown or not, but the former had a higher share of intact cells. Damaged cells of both types of soredia had equally increased Mn concentrations, whereas the total Mn content was higher in not grown soredia than in the grown ones due to the greater amount of damaged cells in the former. The Si–Mn ratio in cell walls of intact Trebouxia cells was significantly higher than in collapsed cells. The experimental evidence of Mn sensitivity of H. physodes soredia corresponds to studies of epiphyte vegetation in montane spruce forests of northern Germany that revealed decreasing cover values of H. physodes with an increasing Mn content of the substrate.  相似文献   

7.
Long-lived radionuclides such as 90Sr and 137Cs can be naturally or accidentally deposited in the upper soil layers where they emit β/γ radiation. Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can accumulate and transfer radionuclides from soil to plant, but there have been no studies on the direct impact of ionizing radiation on AMF. In this study, root organ cultures of the AMF Rhizophagus irregularis MUCL 41833 were exposed to 15.37, 30.35, and 113.03 Gy gamma radiation from a 137Cs source. Exposed spores were subsequently inoculated to Plantago lanceolata seedlings in pots, and root colonization and P uptake evaluated. P. lanceolata seedlings inoculated with non-irradiated AMF spores or with spores irradiated with up to 30.35 Gy gamma radiation had similar levels of root colonization. Spores irradiated with 113.03 Gy gamma radiation failed to colonize P. lanceolata roots. P content of plants inoculated with non-irradiated spores or of plants inoculated with spores irradiated with up to 30.35 Gy gamma radiation was higher than in non-mycorrhizal plants or plants inoculated with spores irradiated with 113.03 Gy gamma radiation. These results demonstrate that spores of R. irregularis MUCL 41833 are tolerant to chronic ionizing radiation at high doses.  相似文献   

8.
Jensen  M.  Chakir  Samira  Feige  G.B. 《Photosynthetica》1999,37(3):393-404
Inactivation of photosynthesis during atmospheric and osmotic (highly concentrated NaCl or sucrose solutions) dehydration was monitored by measurement of chlorophyll fluorescence induction (OIP-phase, Kautsky-curves) in three lichen species. The induction curves were changed in a very similar way by all three treatments. All dehydration effects were rapidly reversible after rehydration. At relatively mild water stress, the rise time to the transient peak Fp was prolonged, and the variable part of fluorescence was diminished. In addition, at severe water stress, a considerable decline of the F0 value was observed. For NaCl treatment this effect started at water potentials <-8.5 MPa in P. aphthosa, <-12 MPa in H. physodes, and <-21 MPa in L. pulmonaria. Above these water potentials, our observations are in agreement with values from desiccation-tolerant algae, higher plants, and lichens, where an inactivation on the photosystem 2 (PS2) donor side has been postulated. At very low water potentials, the decrease in F0 probably monitors changes in the organization of the antenna apparatus of PS2. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Recent global climate models predict a further significant loss of ozone in the next decades, with up to 50% depletion of the ozone layer over large parts of the Arctic resulting in an increase in ultraviolet-B radiation (UV-B) (280–315 nm) reaching the surface of the Earth. The percentage of total annual ecosystem N input due to biological nitrogen fixation by cyanobacteria might be as high as 80% and the contribution to total annual N uptake by plants up to 20%. A possible reduction of nitrogen fixation raises serious concerns about already nutrient impoverished plant communities. This review shows that nitrogen fixation by moss-associated cyanobacteria in arctic vegetation was dramatically reduced after six years of exposure to enhanced UV-B radiation. In subarctic vegetation, nitrogen fixation activity of moss-associated cyanobacteria was not affected by 6 years of enhanced UV-B radiation. However, a 50% increase of summer precipitation resulted in a 5- to 6-fold increase in activity. Long-term effects of UV-B radiation on nitrogen fixation activity have been examined only in two lichens, giving contrasting results. Peltigera aphthosa (L.) Willd., having external cephalodia, experienced a significant reduction, whereas Peltigera didactyla (With.) J.R. Laudon, having cyanobacteria in the photobiont layer below the upper cortex, did not experience any changes due to radiation regimes. The difference is probably related to the location of the cyanobacteria. While the Nostoc cells are protected by the fungal, melanized upper cortex in P. didactyla, they are exposed and unprotected in P. aphthosa, and their own synthesis of UV-B absorbing compounds appears to be low. Under certain environmental conditions, an increasing UV-B radiation will dramatically affect nitrogen fixation in arctic tundra vegetation, which in turn may have severe influence on the nitrogen budget in these environments. Further long-term studies are necessary to conclude if these effects are temporal and how concurrent climatic changes will influence the nitrogen balance of the ecosystem.  相似文献   

10.
The methanol extracts of four Parmeliaceae lichens (Hypogymnia physodes, Evernia prunastri, Flavoparmelia caperata and Parmelia sulcata) were screened for antioxidant properties and total phenol content. The H. physodes extract was the most effective at reducing iron(III) and scavenging 1,1-diphenyl-2-picrylhydrazyl radicals, while the P. sulcata extract was the most effective in reducing molybdenum(VI) in an acidic medium. The E. prunastri and H. physodes extracts contained more Folin-Ciocalteu reagent reactive substances than the F. caperata and P. sulcata extracts. Significant activity of the H. physodes extract in DPPH and reducing Fe(III) assays suggest that this lichen can be considered as a potential source of antioxidants.  相似文献   

11.
Despite living organisms are not exposed to acute ionizing radiation under natural conditions, some exhibit a high radiation resistance. Understanding this phenomenon is important for assessing the impact of radiation-related accidents, occupational exposures and space missions. In this context, in this study we analyzed the effect of gamma rays on the Antarctic cryptoendolithic melanized fungus Friedmanniomyces endolithicus CCFEE 5208 and demonstrated its resistance to acute doses of gamma radiation (up to 400 Gy), accompanied by increase in metabolic activity.  相似文献   

12.
Water extracts fromNephroma arcticumwere prepared and tested for inhibitory effects against various yeast, mould, blue-stain and rot fungi. A water extract fromPeltigera aphthosawas used as a reference. Two different diffusion assays were used, wells (cup-plate method) and droplets (drop-plate method). For the majority of fungi studied using the former method there were clear zones with a sharp boundary (fungicidal effect), whereas the latter method yielded more or less hazy zones with inhibition or reduction in growth (fungistatic effect). No clear or hazy zones were seen with the extract fromP. aphthosa. ForCandida glabrataE,Saccharomyces cerevisiaeK andHormonema dematioidesS there were clear zones for both methods. The MIC (Minimum Inhibitory Concentration) values were determined in liquid medium forS. cerevisiaeK andC. glabrataE and were, respectively, 1 and 10 mg ml−1of a crude extract fromN. arcticum. The MFC (Minimum Fungicidal Concentration) values were found to be identical to the MIC values.  相似文献   

13.
Relationships between growth, nitrogen and concentration of unique biont components were investigated for the tripartite lichens Nephroma arcticum (L.) Torss. and Peltigera aphthosa (L.) Willd. Nitrogen availability was manipulated during 4 summer months by removing cephalodia and their associated N2 fixation activity, or by weekly irrigation with NH4NO3. Chlorophyll and ribulose 1·5‐biphosphate carboxylase/oxygenase (Rubisco), and chitin and ergosterol were used as photobiont and mycobiont markers, respectively. Nitrogen concentrations were similar in older and newer parts of the same thallus, varying between 2 and 5 g m?2, with P. aphthosa having higher concentrations than N. arcticum. Both chlorophyll (Chl a) and chitin were linearly correlated with thallus N, but N. arcticum invested more in fungal biomass and had lower Chl a concentrations in comparison with P. aphthosa at equal thallus N. During the 4 months, control and N‐fertilized thalli of N. arcticum increased in area by 0·2 m2 m?2 and P. aphthosa by 0·4 m2 m?2. Thallus expansion was significantly inhibited in samples without cephalodia, but there was no effect on lichen weight gain. Mean relative growth rate (RGR; mg g?1 d?1) was 3·8 for N. arcticum and 8·4 for P. aphthosa, when time (d) reflected the lichen wet periods. RGR was 2–3 times lower when based on the whole time, i.e. when including dry periods. The efficiency (e) of converting incident irradiance into lichen biomass was positively and linearly correlated with thallus Chl a concentration to the same extent in both species. The slower growth rates of N. arcticum, in comparison with P. aphthosa, could then be explained by their lower nitrogen and Chl a concentrations and a subsequently lower light energy conversion efficiency. Functional and dynamic aspects of resource allocation patterns of the two lichens are discussed in relation to the above findings.  相似文献   

14.
The hypothesis is tested that pH-dependent Fe and P uptake influence the preference of epiphytic and saxicolous lichens for certain ranges of ambient pH. Five species from acidic substrata (Hypogymnia physodes, Parmeliopsis ambigua, and Platismatia glauca) or covering the range from weakly acidic to alkaline substrata (Lecanora muralis and Phaeophyscia orbicularis) were exposed to solutions of FeCl2, FeCl3, or KH2PO4 at pH 3 and 8 in the laboratory. Avoidance of alkaline substrata is explainable by low Fe3+ uptake at pH 8 in the case of H. physodes and the inability for net P uptake and membrane damage in P. ambigua at this pH. Preference for acidic substrata in Pl. glauca, however, is neither related to Fe nor P uptake. Efficient Fe3+ and P uptake at pH 8 explains the tolerance of L. muralis and Ph. orbicularis to alkaline conditions. Intracellular accumulation of Fe2+ in probably toxic amounts at pH 3 in Ph. orbicularis is correlated with the absence of this lichen from strongly acidic substrata. Avoidance of acidic sites by L. muralis is not attributable to Fe or P uptake. In summary, the results suggest that pH-dependent Fe and P uptake characteristics are involved in the determination of pH preferences of epiphytic and saxicolous lichens, but are not the only relevant factor.  相似文献   

15.
W.S.G. Maass 《Phytochemistry》1975,14(11):2487-2489
In addition to tenuiorin, methyl gyrophorate and methyl evernate have been isolated from Peltigera aphthosa. The occurrence of a tetradepside (aphthosin) in all the specimens investigated of this species has not been verified.  相似文献   

16.
Epiphytic lichen diversity in a boggy stand of Norway spruce (Picea abies) was studied in the eastern Harz Mountains, northern Germany. Spruce trees at wet sites were affected by forest dieback, whereas trees on drier sites remained unaffected. Lichen diversity was higher on dieback-affected trees than on healthy ones. The foliose lichen Hypogymnia physodes was significantly more frequent on dead trees, whereas the crustose, extremely toxitolerant Lecanora conizaeoides occurred more frequently on healthy trees. Stemflow concentrations of NH4+, NO3, PO3, and SO42− were lower on affected trees. This is attributed to reduced interception from the atmosphere due to needle loss. Cover of H. physodes decreased with increasing mean SO42− concentration in stemflow. The total of lichen species per sample tree also decreased with increasing SO42− concentration in stemflow, indicating that most species reacted in a similar way as H. physodes. Cover of L. conizaeoides increased with increasing SO42− concentration, but decreased at higher SO42− concentrations. Bark chemistry had a minor influence on lichen diversity.  相似文献   

17.
Epidermal features of control, 16 treated and 7 mutants ofPhysalis ixocarpa BROT. (tomatillo),Lycopersicon esculentum MILL. (tomato) andL. pimpinellifolium MILL. (currant tomato) are studied. Although the distribution, ontogenesis and mature structure of stomata in control as well as in treated and mutant plants were similar, the mutagens reduced the stomatal abnormalities which were abundant (60%) inP. ixocarpa. Maximum rectification was found after combined treatment of gamma radiation (5.16 C kg-1 [= 20 kR]) + 1 % dimethyl sulphate. Methyl ethane sulfonate, gamma radiation and gamma radiation + DMS caused an increase in epidermal cell size irrespective of the leaf size but in DMS and diethyl sulphate treated plants, a close negative correlation between leaf size and epidermal coll size was observed. The size and frequency of stomata were also affected, the large leaf usually showed high frequency and small size stomata. The data reveal that mutagens affect the epidermal structures differently.  相似文献   

18.
Lichen substances (i.e. lichen-specific carbon-based secondary compounds) are known to be involved in the uptake and immobilization of metal ions, though the biochemical mechanisms of this interaction are largely unexplained. Previous research on potential effects of lichen substances on heavy metal uptake and tolerance mostly focused on lichens in heavily polluted areas with exceptionally high metal concentrations. In the present study, we aimed at gathering information as to whether lichen substances might be involved in the fine-tuning of metal uptake even at not or low-polluted sites. Therefore, we studied lichen substance concentrations in the epiphytic lichen Hypogymnia physodes and metal concentrations in its substratum in a montane spruce forest of Germany. H. physodes produces two depsides and five depsidones, which had been shown to be involved in metal homeostasis, namely in Cu and Mn uptake, in previous laboratory experiments. The amount of lichen substances increased with increasing heavy metal concentration in the substratum, though the latter varied only in the range of a few μmol g−1 between the sample trees. Variability of lichen substance concentrations in H. physodes within the individual trees was low. Among the different lichen substances of H. physodes, the amount of the depsidone physodalic acid relative to the total of lichen substances was most closely correlated to the concentrations of Cu and Mn in the substratum, whereas the amount of the depsidone 3-hydroxyphysodic acid decreased both with increasing concentrations of these two metals and physodalic acid. Thus, our data suggest that lichen substances contribute to metal homeostasis not only in heavy metal-rich habitats, but also at not or low-polluted sites where the lichen substances apparently help to maintain constant intracellular metal concentrations despite of spatially varying availabilities of metal ions.  相似文献   

19.
Lichens are known to produce a variety of secondary metabolites including polyketides, which have valuable biological activities. Some polyketides are produced solely by lichens. The biosynthesis of these compounds is primarily governed by iterative type I polyketide synthases. Hypogymnia physodes synthesize polyketides such as physodic, physodalic and hydroxyphysodic acid and atranorin, which are non-reducing polyketides. Two novel non-reducing polyketide synthase (PKS) genes were isolated from a fosmid genomic library of a mycobiont of H. physodes using a 409bp fragment corresponding to part of the reductase (R) domain as a probe. H. physodes PKS1 (Hyopks1) and PKS2 (Hypopks2) contain keto synthase (KS), acyl transferase (AT), acyl carrier protein (ACP), methyl transferase (ME) and R domains. Classification based on phylogeny analysis using the translated KS and AT domains demonstrated that Hypopks1 and Hypopks2 are members of the fungal non-reducing PKSs clade III. This is the first report of non-reducing PKSs containing the R domain-mediated release mechanisms in lichens, which are also rare fungal type I PKS in non-lichenized filamentous fungi.  相似文献   

20.
The DNA damage response (DDR) is induced by various DNA damaging factors and maintains genome stability in all organisms. The Chlamydomonas reinhardtii genome contains putative homologous genes involved in DDR; however, little is known about the functions and responses of these genes to DNA damage. In this study, DDR by gamma radiation was determined in C. reinhardtii. Irradiation with 80, and 200 Gy gamma radiation caused death in approximately 47 and 97 % of C. reinhardtii cells, respectively. The absolute lethality of cells was at 300 Gy. The rate of DNA breaks was also determined using comet assays after exposure to different doses of gamma radiation. Irradiation with 80 and 400 Gy resulted in 17 and 34 % of nuclear degradation in C. reinhardtii cells, respectively. To identify the major DDR pathway of C. reinhardtii induced by gamma radiation, 24 putative DDR genes were selected from the Joint Genome Institute (JGI) database. Gamma radiation significantly affected expression of 15 genes among these. Therefore, these genes displaying expressional changes by gamma radiation are involved in DDR, which indicate that C. reinhardtii may possess a fundamental conserved DDR pathway with higher plants. Furthermore, radiation responsive proteins were identified by proteomic analysis, which are involved in metabolisms of carbohydrate, energy, and photosynthesis. This is the first report to describe the responses of DDR homologous genes to gamma radiation and to identify gamma radiation-responsive proteins in C. reinhardtii. Our data should provide molecular insights into gamma radiation responses including DNA damage in green algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号