首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ethanol sensor has been tested for feed-rate control of baker's yeast prouction. The yeast was grown on molasses in an 8 dm3 fed-batch reactor up to a cell concentration of 60–70 kg/m3. Studies were made on three levels: reliability of the sensor system, characterisation of the control problem, and evaluation of ethanol-controlled cultivations in terms of yield and production rate. Arguments are given for the conceptual advantages of ethanol control compared to other methods of substrate control. It is also shown that ethanol control allows for a simple regulator structure. In fact, a PID regulator, with constant parameters, was used around an exponential dosage scheme. Tuning of the regulator parameters was performed by using simulation on a simplified model of the process. Several cultivations have been carried out. Results from four comparable cultivations are given in detail, and the experience from many others is summarized.  相似文献   

2.
Summary Eight alcohol producing yeast strains were screened for their sedimentation rates and it was found thatS.cerevisiae NCIM 3526 was a better flocculant strain. This strain was employed in cane molasses fermentation with yeast recycle, supplemented with skim milk, chitin and fungal mycelium individually or in combination, at 30°C, using fermentable sugars 15%. On the completion of ten 16 h cycles, 20–30% more ethanol was produced in presence of these supplements and the efficiency of the process was improved from 66 to 87%.  相似文献   

3.
The ethanol production by a laboratory yeast strain, X2180-1B, was less than half that by an alcohol yeast, YOY655, in a molasses medium containing 30% sugars, although X2180-1B produced approximately the same amount of ethanol as YOY655 in a nutrition medium with the same sugar content. The weak productivity of X2180-1B in the molasses was ascribed to the limitation of sucrose hydrolysis in the molasses. The invertase activity of X2180-1B was 0.019 (mmol sucrose/min/mg protein) in the nutrition medium, but substantially zero in the molasses, while that of YOY655 was 1.75 in the nutrition medium and 1.15 even under the inhibitory conditions in molasses. External addition of invertase greatly enhanced the ethanol productivity of only X2180-1B. The inhibitory factors of invertase in molasses were heat-stable and dialyzable substances.  相似文献   

4.
Summary Ethanol fermentation broth produced by an aggregated form ofSaccharomyces uvarum strain contained invertase when sucrose-based raw materials were used. The amount of invertase in the borth was in the range of 1.4 to 4.8 units/ml, which was affected by the dilution rate, the concentration of corn steep liquor, and the type of sugar used. The activity of invertase in the broth could be maintained at 0.8 units/ml over two months. When the broth was passed through DEAE-cellulose beads and eluted with a NaCl-Tris-HCl buffer solution, a 75% recovery yield of invertase with 9-fold purification and 30-fold concentration could be achieved.  相似文献   

5.
Due to the environmental concerns and the increasing price of oil, bioethanol was already produced in large amount in Brazil and China from sugarcane juice and molasses. In order to make this process competitive, we have investigated the suitability of immobilized Saccharomyces cerevisiae strain AS2.1190 on sugarcane pieces for production of ethanol. Electron microscopy clearly showed that cell immobilization resulted in firm adsorption of the yeast cells within subsurface cavities, capillary flow through the vessels of the vascular bundle structure, and attachment of the yeast to the surface of the sugarcane pieces. Repeated batch fermentations using sugarcane supported-biocatalyst were successfully carried out for at least ten times without any significant loss in ethanol production from sugarcane juice and molasses. The number of cells attached to the support increased during the fermentation process, and fewer yeast cells leaked into fermentation broth. Ethanol concentrations (about 89.73–77.13 g/l in average value), and ethanol productivities (about 59.53–62.79 g/l d in average value) were high and stable, and residual sugar concentrations were low in all fermentations (0.34–3.60 g/l) with conversions ranging from 97.67–99.80%, showing efficiency (90.11–94.28%) and operational stability of the biocatalyst for ethanol fermentation. The results of this study concerning the use of sugarcane as yeast supports could be promising for industrial fermentations. L. Liang and Y. Zhang have contributed equally to this work.  相似文献   

6.
Conclusion The prices of the process substrates such as glucose, sucrose and molasses (as $/ton) are 1500, 1600 and 24, respectively. For molasses plus invertase, the price increases to 46 $/ton. Thus compared with the other possible substrates, the lactic acid production procedure used in this study does not cause any appreciable increase in the pruduction cost due to the utilization of invertase, while enhancing the yield of product.  相似文献   

7.
Summary A mathematical model is proposed to explain the influence of the volume fraction of inoculum on the fermentation time and ethanol productivity in semicontinuous ethanol fermentation of sugar cane blackstrap molasses by pressed yeast.Nomenclature a, b, c, d constants, see equation (5) - Eo initial ethanol concentration - Ef final ethanol concentration - K1, K2, K3 constants, see equation (1) - P ethanol productivity - Pc calculated values of P - Pe experimental values of P - r correlation coefficient - So initial TRS concentration - Sm TRS concentration of the feeding mash - T fermentation time (average of the experimental values) - Tc calculated value of T - Te experimental value of T - TRS total reducing sugars calculated as glucose - Uo initial urea concentration - Um urea concentration of the feeding mash - V reactor working volume - Vi volume of the inoculum - volume fraction of inoculum=Vi/V  相似文献   

8.
Partial substitution of sugarcane molasses by cheese whey in the fed-batch production of baker's yeast was evaluated. A sugar feeding profile based in a commercial process and different modes of addition of -galactosidase were used. Molasses substitution of 46%, in terms of sugar fed to the bioreactor, was reached and no significant differences in biomass volumetric productivity, by-products yields, and baking quality were observed. However the biomass yield was 6% lower.  相似文献   

9.
Summary Ethanol concentration and the rate of ethanol production were substantially increased when soy flour was added to the inoculum medium, which saved 95% added soy flour compared to supplementing fermentation medium. 11.7% ethanol was obtained by supplementing inoculum medium with soy flour and the fermentation time was reduced by more than 15%.  相似文献   

10.
Summary Alcohol producing top and bottom yeasts were employed individually and together to assess their role in enhancing the rate of ethanol production, in cane molasses fermentation, at 30°C. The combination of top yeastS.cerevisiae NCIM 3281, and bottom yeastS.uvarum NCIM 3509, improved the enthanol production rate by 32.6% in batch fermentation and 25.2% in recycling yeasts cell fermentation as compared to their mean value of individual ethanol production activity.  相似文献   

11.
《Biomass》1981,1(2):115-126
This paper reports results of studies on the effect of increasing amyl alcohol production on the kinetics and on the yield of ethanol fermentation with molasses as substrate. The production of amyl alcohols at concentrations of up to 1·0 g litre−1 did not affect the alcoholic fermentation. The amyl alcohol yields, calculated as a percentage of the theoretical production, were 66· 4% from l-leucine,57·3% from l-isoleucine, 55·7% from a mixture of l-leucine and l-isoleucine, and 36·1% from racemic leucine. Aeration did not affect the yield of amyl alcohols. When no amino acid was added to the mash, the kinetics of amyl alcohol production as well as the final amyl alcohol concentration depended mainly on the inoculum size. When 2·0 g litre−1 of l-leucine or of racemic leucine were added to the fermentation media, the initial stages of the kinetic patterns and the values of the maximum rate of amyl alcohol production were almost the same.  相似文献   

12.
Two simulation methods for ethanol production from molasses by a flocculating yeast, Saccharomyces cerevisiae AM12, were investigated and molasses feeding was optimized. The first method was based on a deterministic model with fixed kinetic parameters and the second was based on regression analysis. The amount of ethanol produced in a fed-batch culture with multiple additions of molasses was simulated by both of these two methods. Simulated results of a fed-batch culture were compared with those of a simple batch culture by a model of regression analysis. The intermittent addition of molasses gave better production than a single addition at the beginning; more frequent addition may further improve production. The experimental results suggested the same. The effect of the amount of the added molasses on ethanol production was investigated by simulation. Repeated batch culture with and without intermittent addition of molasses in each batch was also done.List of Symbols C e deviation of calculated results from experimental results - F m3 volume of feed medium added to the fermentor - P kg/m3 concentration of ethanol - P M kg total amount of ethanol - S kg/m3 concentration of sugar - S 0 kg/m3 concentration of sugar in the molasses feed medium - S M kg total amount of sugar - V m3 culture volume - X kg/m3 concentration of cells - X M kg total amount of cells - x c calculated data - x e experimental data - h–1 specific rate of growth - kg-sugar/(kg-cell h) specific rate of sugar consumption - kg-ethanol/(kg-cell h) specific rate of ethanol production  相似文献   

13.
14.
Summary Yeast isolates were obtained from different stages in the sugar refining process in an attempt to isolate thermotolerant strains which would grow on a molasses urea medium. Several strains which gave biomass yields of 30–41% at 40° were isolated and identified. Four of these strains were shown to be more resistant to a 15 minute incubation at 55° than three mesophilic strains.  相似文献   

15.
Summary Saccharomyces cerevisiae yeast immobilized in calcium alginate gel beads was employed in packed-bed column reactors for continuous ethanol production from glucose or cane molasses, and for beer fermentation from barley malt wort. With properly balanced nutrient content or periodical regeneration of cells by nutrient addition and aeration, ethanol production could be maintained for several months. About 7 percent (w/v) ethanol content could be easily maintained with cane molasses diluted to about 17.5 percent (w/v) of total reducing sugars at about 4 to 5 h residence time. Beer of up to 4.5 percent (wv) of ethanol could be produced from barley wort at about 2 h residence time without any addition of nutrients.  相似文献   

16.
Summary The induction of yeast cell aggregates in a column reactor was initiated by packing yeast cell paste of Saccharomyces uvarum into the column, and then YMP broth was fed into the column from the bottom at a linear flow rate of 2.5 cm/h. Thereafter, yeast cells aggregated in the column within 48 h without a supply of oxygen. When this yeast aggregate column reactor was used for continuous ethanol production, a final ethanol concentration of 10.8% (w/v) was obtained from 23% (w/v) of glucose in a YMP broth with a dilution rate of 0.05 h-1, and 4.9% (w/v) was obtained from 10% (w/v) of glucose with a dilution rate of 0.6 h-1. The theoretical yield was above 97% in both cases. The ethanol production rates were 13 g1 h-1 l-1 and 90 g1 h-1 l-1 for producing 10.8% (w/v) and 4.9% (w/v) of ethanol respectively. This column reactor was maintained at a steady state for more than one month.  相似文献   

17.
Summary The rate of fermentation of glucose by Saccharomyces uvarum in steadystate continuous culture in excess of substrates showed non-competitive inhibition kinetics with respect to ethanol. A model is presented which predicts that growth stops at a finite ethanol concentration, which was calculated to be 95 gl-1 for the system used here. The observed maximum ethanol concentration in a single stage continuous culture was 92 gl-1.  相似文献   

18.
Tamarind wastes such as tamarind husk, pulp, seeds, fruit and the effluent generated during tartaric acid extraction were used as supplements to evaluate their effects on alcohol production from cane molasses using yeast cultures. Small amounts of these additives enhanced the rate of ethanol production in batch fermentations. Tamarind fruit increased ethanol production (9.7%, w/v) from 22.5% reducing sugars of molasses as compared to 6.5% (w/v) in control experiments lacking supplements after 72 h of fermentation. In general, the addition of tamarind supplements to the fermentation medium showed more than 40% improvement in ethanol production using higher cane molasses sugar concentrations. The direct fermentation of aqueous tamarind effluent also yielded 3.25% (w/v) ethanol, suggesting its possible use as a diluent in molasses fermentations. This is the first report, to our knowledge, in which tamarind-based waste products were used in ethanol production. Received 2 April 1998/ Accepted in revised form 13 November 1998  相似文献   

19.
The temperature-profile curve of ethanol production of the yeast Saccharomyces cerevisiae Sc 5 is shown. Accordingly the biokinetic sphere of ethanol formation consists of 5 ranges. The maximum specific ethanol formation rate v0 is reached within the temperature limits of 32°C ≦ T ≦ 36°C, and the maximum temperature for ethanol formation amounts to Tmax = 57°C. Within the first suboptimum temperature range ethanol formation is not retarded thermally. Using a modified ARRHENIUS equation the activation energy of ethanol formation was calculated to be ΔHÊtOH = (78.5 ± 2.2) kJ/mol.  相似文献   

20.
An immobilization technique has been developed for a packed bed fermenter which is being considered as one stage of a process for the production of fuel-grade ethanol from sugar solutions. Relatively inexpensive beech wood chips have been successfully used as the support material and relatively high cell loadings of 188 mg DW cells/g DW support have been achieved for a test system of Saccharomyces cerevisiae cultures.No washout of adsorbed cells occurs below a superficial liquid velocity of 8.9 × 10-2 cm/s which can be increased to 9.7 × 10-2 cm/s by including up to 1% Hercofloc solution in the reactor medium during the immobilization procedure. The immobilization procedure is practically unaffected by pH and temperature in the range 3.5 to 5.0 and 22 °C to 37 °C respectively.Typical ethanol productivity of 21.8g/l·hr has been obtained with wood-chip-adsorbed cells, which compares well with optimal values of 18 to 32g/l·hr obtained using free-suspension cultures in stirred-tank fermenters with cell recycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号