首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ten broiler-type chickens at 2 weeks of age were injected daily with 0.5 ml of normal sheep serum while 10 others were similarly injected with 0.5 ml of a sheep anti-IGF-2 serum. Immunization with anti-IGF-2 serum had no significant effect upon body weight gain, on carcass composition, on appetite or food conversion. Liver weight was significantly increased (P < 0.05) in the anti-IGF-2 birds, but there was no effect on the weight of any other organ measured. The proportion of breast muscle in the carcass of anti-IGF-2 treated birds was significantly lower (P < 0.01) than in the controls and they also had 27% less abdominal fat. In acute studies, anti-IGF-2 administration caused an elevation in plasma GH, but in the longer term neither plasma GH nor plasma T3 concentrations were significantly affected by immunization against IGF-2. These results suggest that circulating IGF-2 is not a major regulator of overall somatic growth in chickens, but may have an effect on muscle and fat deposition.  相似文献   

2.
Heavy weight gilts commonly show signs of oestrus during the late finishing phase, which results in a period of reduced feed intake and growth rate. Immunization against gonadotropin-releasing hormone (GnRH) (IM, immunocastration) was developed for finishing boars and recently extrapolated to females. Immunocastration acts by suppressing reproductive activity and improving the growth potential. The objective of this study was to evaluate the effects of IM on growth performance, reproductive activity and carcass characteristics of late finishing gilts. Seventy-two gilts (63.49 ± 0.39 kg) were either injected with saline (Intact) or immunized against GnRH (Immunized). The study consisted of three experimental periods: between the first to second immunization (V1 to V2, 15 to 19 weeks of age), from the second immunization to the beginning of daily boar exposure (DBE) (V2 to DBE, 19 to 21 weeks of age) and from the beginning of DBE to slaughter (S) (DBE to S, 21 to 25 weeks of age). Immunized gilts showed an overall increase (from 15 to 25 weeks) of 3.90 kg (P < 0.05) of live weight, 56 g (P < 0.05) of average daily gain (ADG) and 250 g (P < 0.001) of average daily feed intake (ADFI). Immunized gilts had a greater ADFI (+240 g, P < 0.05) and worse feed conversion ratio (+0.26, P < 0.05) from 19 (V2) to 21 weeks of age (before DBE). Furthermore, those females had higher feed intake (+410 g; P < 0.001) plus greater daily weight gain (+92 g; P < 0.05) from V2 to S, and from DBE to S (+470 g of ADFI, P < 0.001; +129 g of ADG, P < 0.01, respectively). Immunocastration had no effect on backfat thickness, lean meat percentage and weight, cold carcass yield or loin depth (P > 0.05). Immunized gilts showed 4.4% increased cold carcass weight (P < 0.01) and 10.6% greater gross flank weight (P < 0.001). Immunization against GnRH did not influence shoulder, collar, loin, belly or ham weights. Nor did it influence belly fat thickness, or meat, skin plus fat and bones yields of cold ham (P > 0.05). Immunocastration reduced ovarian and uterine weights by 82% (P < 0.001) and 93% (P < 0.001), respectively, and suppressed oestrus manifestation in all gilts in the immunized group (P < 0.001). These results indicate that immunization against GnRH is a promising tool for stimulating growth performance with no detrimental effects on carcass quality of heavy weight finishing gilts, by means of oestrus suppression.  相似文献   

3.
Piglet birth weight and within-litter birth weight variation are important for piglet survival and growth. Pre-mating diets may improve IGF-1 and follicle development during the weaning-to-oestrus interval (WEI) and subsequent piglet birth weight. The objective of this study was to modulate IGF-1 concentration during late lactation and the WEI of young sows by using specific pre-mating diets supplemented with microfibrillated cellulose (MF), l-carnitine (LC) or l-arginine (AR). A further objective was to investigate the relationship between IGF-1 and subsequent follicle development and oestrus and ovulation characteristics. In total, 56 first-parity and 20 second-parity sows in three consecutive batches were used for this experiment. Sows received daily either wheat (CON) or wheat plus MF, LC or AR at one of two supplementation levels (low and high) during last week of lactation and WEI. From weaning onwards, follicle and corpus luteum (CL) diameters were repeatedly measured with ultrasound. Blood samples were collected during the WEI for IGF-1 and on day 21 of pregnancy for progesterone analyses, respectively. Insulin-like growth factor-1 concentration, follicle diameter, oestrus and ovulation characteristics and CL diameter were not affected by pre-mating diets. Low IGF-1 class (≤156 ng/ml, N = 22) sows had smaller follicles at weaning (3.5 v. 3.8 mm, P < 0.05) and a longer weaning-to-ovulation interval (147.2 v. 129.8 h, P < 0.05) than high IGF-1 class sows. In first-parity sows, high loin muscle depth (LM) loss sows (≥8%, N = 28) had lower IGF-1 concentrations at weaning (167 v. 214 ng/ml, P < 0.05) compared to low LM loss sows (<8%, N = 28). However, after weaning, IGF-1 concentrations increased and did not differ between high LM loss and low LM loss sows. In conclusion, the different supplemented compounds in pre-mating diets did not improve IGF-1 concentrations around weaning in young sows. Furthermore, high body condition loss caused lower IGF-1 concentrations at weaning, but these levels rapidly recovered after weaning and were related to follicle development and the interval from weaning to ovulation.  相似文献   

4.
Folate deficiency contributes to impaired adult hippocampal neurogenesis, yet the mechanisms remain unclear. Here we use HT-22 hippocampal neuron cells as model to investigate the effect of folate deprivation (FD) on cell proliferation and apoptosis, and to elucidate the underlying mechanism. FD caused cell cycle arrest at G0/G1 phase and increased the rate of apoptosis, which was associated with disrupted expression of folate transport and methyl transfer genes. FOLR1 and SLC46A1 were (P < 0.01) down-regulated, while SLC19A1 was up-regulated (P < 0.01) in FD group. FD cells exhibited significantly (P < 0.05) higher protein content of BHMT, MAT2b and DNMT3a, as well as increased SAM/SAH concentrations and global DNA hypermethylation. The expression of the total and all the 3 classes of IGF-1 mRNA variants was significantly (P < 0.01) down-regulated and IGF-1 concentration was decreased (P < 0.05) in the culture media. IGF-1 signaling pathway was also compromised with diminished activation (P < 0.05) of STAT3, AKT and mTOR. CpG hypermethylation was detected in the promoter regions of IGF-1 and FOLR1 genes, while higher SLC19A1 mRNA corresponded to hypomethylation of its promoter. IGF-1 supplementation in FD media significantly abolished FD-induced decrease in cell viability. However, IGF-1 had limited effect in rescuing the cell phenotype when added 24 h after FD. Taken together, down-regulation of IGF-1 expression and signaling is involved in FD-induced cell cycle arrest and apoptosis in HT-22 hippocampal neuron cells, which is associated with an abnormal activation of methyl transfer pathway and hypermethylation of IGF-1 gene promoter.  相似文献   

5.
6.
《Endocrine practice》2012,18(6):817-825
ObjectiveTo report the utility of insulin-like growth factor-1 (IGF-1) as a single biomarker for establishing the diagnosis of acromegaly and to examine the clinical and biochemical profile of patients with an elevated IGF-1 in whom a diagnosis of acromegaly could not be confirmed by means of the oral glucose tolerance test (OGTT).MethodsBetween the years 1999 and 2010, we identified 101 patients who underwent pituitary surgery and had histologically proven somatotroph adenomas (Group 1, Gr 1). We selected 149 patients with non- growth hormone (GH) secreting pituitary macroadenomas (Gr 2, n = 97) and microadenomas (Gr 3, n = 52) to serve as control subjects. In addition, we identified 34 patients with elevated IGF-1values in whom acromegaly could not subsequently be proven by the OGTT (Gr 4).ResultsIGF-1 was elevated in all patients with acromegaly prior to therapy with a median (range) standard deviation score (SDS) of + 9.52 (+ 2.34 to + 9.2), compared to SDS − 1.46 (− 2.91 to + 2.17) and − 1.22 (− 2.8 to + 1.58) in Gr 2 and 3, respectively (P < 0.001). IGF- 1 SDS values were + 3.28 (+ 2.05 to + 6.1), and IGF-1 was less than twice the upper limit of normal in all patients in Gr 4. OGTT was performed in 51 of the 101 acromegalic patients. The nadir GH in these patients was 4.01 (0.2 to 46.7) in comparison with 0.2 (< 0.05 to 0.6) in Gr 4 (P < 0.001).ConclusionElevated IGF-1 levels, alone, are sufficient to establish a diagnosis of acromegaly in the majority of clinically suspected cases. The OGTT may be useful to obtain corroborative evidence when there is modest elevation of IGF-1 with absent or equivocal clinical features. (Endocr Pract. 2012;18:817-825)  相似文献   

7.
It has been established that gut microbiota influences chicken growth performance and fat metabolism. However, whether gut microbiota affects chicken growth performance by regulating fat metabolism remains unclear. Therefore, seven-week-old chickens with high or low body weight were used in the present study. There were significant differences in body weight, breast and leg muscle indices, and cross-sectional area of muscle cells, suggesting different growth performance. The relative abundance of gut microbiota in the caecal contents at the genus level was compared by 16S rRNA gene sequencing. The results of LEfSe indicated that high body weight chickens contained Microbacterium and Sphingomonas more abundantly (P < 0.05). In contrast, low body weight chickens contained Slackia more abundantly (P < 0.05). The results of H & E, qPCR, IHC, WB and blood analysis suggested significantly different fat metabolism level in serum, liver, abdominal adipose, breast and leg muscles between high and low body weight chickens. Spearman correlation analysis revealed that fat metabolism positively correlated with the relative abundance of Microbacterium and Sphingomonas while negatively correlated with the abundance of Slackia. Furthermore, faecal microbiota transplantation was performed, which verified that transferring faecal microbiota from adult chickens with high body weight into one-day-old chickens improved growth performance and fat metabolism in liver by remodelling the gut microbiota. Overall, these results suggested that gut microbiota could affect chicken growth performance by regulating fat metabolism.  相似文献   

8.
Pre-mating diets can influence piglet birth weight and within-litter birth weight variation and thereby piglet survival and development. The major objective of this study was to evaluate the litter characteristics of young sows whose pre-mating diets received different supplementation. The supplements included a top-dressing of 200 g, consisting of either wheat (CON) or wheat plus microfibrillated cellulose, L-carnitine or L-arginine at one of two supplementation levels (low and high) in late lactation and during the weaning-to-oestrus interval (WEI). The second objective was to investigate the role of body condition loss and IGF-1 concentration during the WEI for subsequent litter characteristics. In total, sows after their first (N = 41) and second (N = 15) lactation were used. One week before weaning, the sows were allocated to the seven treatments based on the number of piglets and BW loss from farrowing until 1 week before weaning. Pre-mating diets did not affect litter characteristics at subsequent farrowing. However, at subsequent farrowing, sows after their first lactation had a lower total number of piglets born per litter (18.3 v. 20.3), higher mean piglet birth weight (1 365 v. 1 253 g), lower CV of birth weight (20.0 v. 26.1%) and lower percentage of piglets < 1 000 g (11.5 v. 24.4%) than sows after their second lactation. Litter weight at second parturition was positively related to IGF-1 during the WEI after first lactation (P < 0.04). Within parity, piglet mean birth weight was positively related to IGF-1 at oestrus (P < 0.02). Surprisingly, within parity, a higher relative loin muscle depth loss during previous lactation was related to lower CV and SD of birth weight (P < 0.05, for both). In conclusion, pre-mating diets did not affect litter characteristics at subsequent birth. However, a higher IGF-1 concentration during the WEI was positively associated with subsequent litter weight and piglet mean birth weight. Further studies should elucidate the role of IGF-1 during the WEI for subsequent litter characteristics and dietary interventions to stimulate IGF-1.  相似文献   

9.
Abstract

Interleukin (IL)-10 is an anti-inflammatory cytokine that suppresses pro-inflammatory cytokines. We previously demonstrated that supplementation with vitamins E and C ameliorated the increase in IL-10 immediately following anterior cruciate ligament (ACL) surgery in the absence of other cytokine perturbations. Since both oxidative stress and insulin-like growth factor-1 (IGF-1) can modulate IL-10 concentrations, the mechanisms for these changes warranted further investigation. Our objective was to evaluate the mechanism for the IL-10 decrease following ACL surgery. This study consisted of randomized, double-blind, placebo-controlled experimental design. Subjects were randomly assigned to daily supplementation with either: (i) antioxidants (AO; vitamins E [α-tocopherol] and C [ascorbic acid]; n = 10); or (ii) matching placebos (PL; n = 10). Supplementation started ~2 weeks prior to surgery (baseline) and concluded 3 months after surgery. Subjects provided six fasting blood samples at: (i) baseline; (ii) immediately pre-surgery (Pre); (iii) 90 min; (iv) 72 h; (v) 7 days; and (vi) 3 months post-surgery. α-Tocopherol, ascorbic acid, F2-isoprostane and IGF-1 concentrations were measured in each blood sample. At 90 min relative to other times, plasma F2-isoprostane concentrations were significantly (P < 0.05) elevated in both groups, while at 90 min IGF-1 was significantly (P < 0.05) lower in the AO compared to the PL group. The changes in IGF-1 at 90 min relative to baseline were correlated (P < 0.0001) with the changes in IL-10. The decrease in IL-10 observed in the AO group is likely dependent on the decrease IGF-1 since lipid peroxidation was unchanged between the two groups.  相似文献   

10.
11.
Genetic trends for body composition and blood plasma parameters of newborn piglets were estimated through the comparison of two groups of pigs (G77 and G98, respectively) produced by inseminating Large White (LW) sows with semen from LW boars born either in 1977 or in 1998. Random samples of 18 G77 and 19 G98 newborn piglets were used for whole carcass and tissue sampling. Plasma concentrations of glucose, albumin and IGF-1 were determined on 75 G77 and 90 G98 piglets from 18 litters. The G98 piglets had less carcass dry matter, protein and energy (P < 0.01) than their G77 counterparts. When expressed in g/kg birth weight, livers were lighter (P < 0.001) and contained less glycogen (P < 0.01) in G98 piglets, with no difference in the activity of the hepatic glucose-6-phosphatase between G98 and G77 piglets. Concentrations of protein, DNA, RNA in longissimus dorsi muscle were unaffected by selection. Plasma concentrations of glucose (P < 0.05) and IGF-1 (P < 0.01) were lower in G98 than in G77 piglets. On the whole, the results suggest that the improvement in lean growth rate and in sow prolificacy from 1977 to 1998 has resulted in a lower maturity of piglets at birth.  相似文献   

12.
The surgical castration of male chickens induces hormonal changes, which permanently influence metabolic processes in birds. The aim of this study was to determine the effect of age and castration on the growth rate, feed conversion, lipid profile and histopathological changes in the livers of cockerels and capons. The experimental materials comprised male chickens of the Green-legged Partridge breed (old traditional Polish chicken breed), raised to 28 weeks of age. At 8 weeks of age, 100 birds were castrated. Caponization had a significant effect on the plasma concentrations of total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triacylglycerols (P<0.05). Fatty degeneration and lymphoid cell infiltration were observed more frequently in the livers of capons than cockerels. Capon carcasses were characterized by increased deposition of abdominal and subcutaneous fat (P<0.05). Total meat weight in the carcasses of cockerels and capons was similar, but the proportions of muscles were different. From 20 weeks of age, the weight of breast muscles was higher, and the weight of leg muscles was lower in capons than in cockerels (P<0.05). Capons were characterized by higher liver weight, higher gizzard weight and lower heart weight than cockerels (P<0.05). The feed conversion ratio (kg/kg BW) was similar in intact cockerels and capons. The values of carcass quality parameters and feed conversion ratio as well as histopathological changes in the liver indicate that Green-legged Partridge capons should be slaughtered at 20 to 24 weeks of age.  相似文献   

13.
The supplementing of sow diets with lipids during pregnancy and lactation has been shown to reduce sow condition loss and improve piglet performance. The aim of this study was to determine the effects of supplemental palm oil (PO) on sow performance, plasma metabolites and hormones, milk profiles and pre-weaning piglet development. A commercial sow ration (C) or an experimental diet supplemented with 10% extra energy in the form of PO, were provided from day 90 of gestation until weaning (24 to 28 days postpartum) in two groups of eight multiparous sows. Gestation length of PO sows increased by 1 day (P<0.05). Maternal BW changes were similar throughout the trial, but loss of backfat during lactation was reduced in PO animals (C: −3.6±0.8 mm; PO: −0.1±0.8 mm; P<0.01). Milk fat was increased by PO supplementation (C day 3: 8.0±0.3% fat; PO day 3: 9.1±0.3% fat; C day 7: 7.8±0.5% fat; PO day 7: 9.9±0.5% fat; P<0.05) and hence milk energy yield of PO sows was also elevated (P<0.05). The proportion of saturated fatty acids was greater in colostrum from PO sows (C: 29.19±0.31 g/100 g of fat; PO: 30.77±0.36 g/100 g of fat; P<0.01). Blood samples taken on 105 days of gestation, within 24 h of farrowing, day 7 of lactation and at weaning (28±3 days post-farrowing) showed there were no differences in plasma concentrations of triacylglycerol, non-esterified fatty acids, insulin or IGF-1 throughout the trial. However, circulating plasma concentrations of both glucose and leptin were elevated during lactation in PO sows (P<0.05 and P<0.005, respectively) and thyroxine was greater at weaning in PO sows (P<0.05). Piglet weight and body composition were similar at birth, as were piglet growth rates throughout the pre-weaning period. A period of 7 days after birth, C piglets contained more body fat, as indicated by their lower fat-free mass per kg (C: 66.4±0.8 arbitrary units/kg; PO: 69.7±0.8 arbitrary unit/kg; P<0.01), but by day 14 of life this situation was reversed (C: 65.8±0.6 arbitrary units/kg; PO: 63.6±0.6 arbitrary units/kg; P<0.05). Following weaning, PO sows exhibited an increased ratio of male to female offspring at their subsequent farrowing (C: 1.0±0.3; PO: 2.2±0.2; P<0.05). We conclude that supplementation of sow diets with PO during late gestation and lactation appears to increase sow milk fat content and hence energy supply to piglets. Furthermore, elevated glucose concentrations in the sow during lactation may be suggestive of impaired glucose homoeostasis.  相似文献   

14.
Cardiovascular diseases (CVD) constitute a significant risk and may, in part, explain the high morbidity and mortality rates among haemodialysis (HD) patients. Several studies have implicated reduced insulin like growth factor (IGF-1) levels in the development of CVD. However, it is not clear whether IGF-1, and its relationship with other hormones such as leptin, insulin, and growth hormone (GH), as well as anthropometric variables may explain the high incidence of vascular complications in chronic kidney disease (CKD) patients. This study was designed to measure total serum IGF-1, leptin, insulin and GH levels in CKD patients and in age-matched control subjects and to elucidate the relationship between IGF-1 and GH, leptin, and insulin as well as other known aetiological risk factors for CVD including blood pressure, body mass index (BMI), and age. The study consisted of 50 CKD patients [36 M and 14 F; mean age; 41.8 ± 10.3 years) on maintenance haemodialysis and 50 healthy control subjects (36 M and 14 F; mean age 41.6 ± 10.2 years) matched for age and sex. None of the subject among patients and controls reported either smoking or history of diabetes mellitus. The circulating levels of IGF-1 were significantly lower (P < 0.001) in both male and female patients compared to the control subjects. Moreover, IGF-1 was strongly and inversely correlated with both systolic blood pressure (SBP) (r = −0.360; P < 0.01) and diastolic blood pressure (DBP) (r = −0.512; P < 0.001) in the CKD group, and when the two groups were combined SBP (r = −0.396; P < 0.001) and DBP (r = −0.296; P < 0.01). When adjusted for age, the correlation was more significant, however, when adjusted for BMI no significant correlation was observed between IGF-1 and blood pressure. IGF-1 was inversely correlated with age (r = −0.367; P < 0.01) and BMI (r = −0.310; P < 0.05) in the control group, but not the patient group. In controls and patients, respectively, a positive correlation between leptin and BMI (r = 0.358; P < 0.01; r = 0.640, P < 0.001) was observed. The results show that circulating levels of IGF-1 were significantly lower in CKD patients as compared to healthy normal subjects and were inversely correlated with SBP and DBP independent of age, but not BMI indicative of a strong relationship between cardiovascular risk factors and low IGF-1 levels. Although, the data do not clearly indicate low IGF-1 levels as a cause or an effect of these cardiovascular risk factors, they do point to an interesting relationship between low IGF-1 levels and increased cardiovascular risk factors among CKD patients as compared to age-matched healthy control subjects.  相似文献   

15.
Aflatoxin B1 (AFB1) negatively affects chicken (Gallus domesticus) growth. This effect is more severe during development. We studied the influence of age on the toxic effects of AFB1 on plasma, renal and hepatic enzymes, under two protocols, in adult and in developing Arbor-Acres chickens. Protocol A: 100 male 4-week-old chickens (640 g), received AFB1, 0.5, 1.0, or 2.0 μg/g of feed (daily p.o.), a fourth group received an aflatoxin-free diet. Five birds/group were slaughtered at 7, 14, 21 and 28 days of treatment. Body, hepatic and renal weights, succinate-dehydrogenase (SDH) and glutamate-dehydrogenase (GluDH) in plasma and liver were measured. Hepatic SDH and GluDH decreased (P<0.05). Protocol B: two groups of 24 male 1-week-old chickens (106 g) received either aflatoxin-free feed (n=24) or AFB1 feed (2.0 μg/g). At days 7, 14, 21 and 28, the same parameters of Protocol A were measured. AFB1 markedly reduced body weight gain (20–30%), plasma proteins, albumin, renal and hepatic protein content (P<0.05) and increased absolute and relative weights of the kidney (P<0.05). SDH and GluDH were reduced (P<0.05), while total renal γ-glutamyltranspeptidase (GGT) increased (P<0.05). Results suggest that serum proteins, SDH and GluDH are sensitive early indicators of this toxicity that was more severe in developing chickens. Decrease in serum albumin might be used as an early and suitable indicator of the deleterious effect of this mycotoxin in developing chickens.  相似文献   

16.
β-Casomorphin is an opioid-like bioactive peptide derived from β-casein of milk that plays a crucial role in modulating animal’s feed intake, growth, nutrient utilization and immunity. However, the effect of β-casomorphin on lipid metabolism in chickens and its mechanism remain unclear. The aim of this study was to investigate the effects of β-casomorphin on fat deposition in broiler chickens and explore its mechanism of action. A total of 120 21-day-old Arbor Acres male broilers (747.94±8.85 g) was chosen and randomly divided into four groups with six replicates of five birds per replicate. Three groups of broilers were injected with 0.1, 0.5 or 1.0 mg/kg BW of β-casomorphin in 1 ml saline for 7 days, whereas the control group received 1 ml saline only. The results showed that subcutaneous administration of β-casomorphin to broiler chickens increased average daily gain, average daily feed intake and fat deposition, and decreased feed : gain ratio (P<0.05). The activity of malate dehydrogenase in the pectoral muscle, liver and abdominal adipose tissue was also increased along with the concentrations of insulin, very-low-density lipoprotein and triglyceride in the plasma (P<0.05). The activity of hormone-sensitive lipase in the liver and abdominal adipose tissue and the concentration of glucagon in the plasma were decreased by injection with β-casomorphin (P<0.05). Affymetrix gene chip analysis revealed that administering 1.0 mg/kg BW β-casomorphin caused differential expression of 168 genes in the liver with a minimum of fourfold difference. Of those, 37 genes are directly involved in lipid metabolism with 18 up-regulated genes such as very low density lipoprotein receptor gene and fatty acid synthase gene, and 19 down-regulated genes such as lipoprotein lipase gene and low density lipoprotein receptor gene. In conclusion, β-casomorphin increased growth performance and fat deposition of broilers. Regulation of fat deposition by β-casomorphin appears to take place through changes in hormone secretion and enzyme activities by controlling the gene expression of lipid metabolism and feed intake, increasing fat synthesis and deposition.  相似文献   

17.
In ewe lambs, acceleration of growth and accumulation of both muscle and fat leads to earlier sexual maturity and better reproductive performance. The next stage in the development of this theme is to test whether these aspects of growth in young ewes affect milk production in their first lactation and the growth of their first progeny. We studied 75 young Merino ewes that had known phenotypic values for depth of eye muscle (EMD) and fat (FAT), and known Australian Sheep Breeding Values for post-weaning weight (PWT) and depths of eye muscle (PEMD) and fat (PFAT). They lambed for the first time at 1 year of age. Their lambs were weighed weekly from birth to weaning at 10 weeks to determine live weight gain and weaning weight. Progeny birth weight was positively associated with live weight gain and weaning weight (P<0.001). The PWT of the mothers was positively associated with birth weight (P<0.01), live weight gain and weaning weight of the progeny (P<0.05); however, these progeny traits were not influenced by EMD, FAT, PEMD, PFAT of the mothers (P>0.05). The PWT of the sire was positively associated with live weight gain (P<0.05) and weaning weight of the progeny (P<0.01). At around day 20 postpartum, we measured milk production and milk composition (fat, protein, lactose, total solids). Milk production was influenced positively by birth type (single or twin; P<0.05) and negatively by birth weight (P<0.05), but not by mother phenotype or genotype, sire genotype of the mother or the sex of the progeny (P>0.05). The concentrations of fat, protein, lactose and total solids in the milk were not affected by the phenotype or genotype of the mothers or of the sires of the mothers, or by the sex of the progeny (P>0.05). We conclude that selection of young Merino ewes for better growth, and more rapid accumulation of muscle and fat, will lead to progeny that are heavier at birth, grow faster and are heavier at weaning. Moreover, milk production and composition do not seem to be affected by the genetic merit of the mother for post-weaning live weight or PEMD or PFAT. Therefore, Merino ewes can lamb at 1 year of age without affecting the production objectives of the Merino sheep industry.  相似文献   

18.
The influence of enzyme supplementation on performance and intestinal viscosity of male broiler chickens fed with diets containing high amount of wheat was examined in three experiments. In the first experiment, addition with an enzyme preparation including different cell wall degrading enzymes to diets containing 63 g kg−1 and 72 g kg−1 of wheat improved (P<0.05) feed conversion efficiency in the 72 g kg−1 wheat diet. In addition, intestinal viscosity of chickens fed with the 72 g kg−1 wheat diet was reduced (P<0.05). Weight gain and feed intake were not influenced by enzyme addition. In Experiments 2 and 3, the inclusion level of wheat in the diets was more than 80 g kg−1 and four different enzyme preparations were used (two xylanase preparations, two mixed preparations). Overall, a significant effect on performance and intestinal viscosity of chickens was obtained as a result of enzyme supplementation in both experiments. In the first 21 days, improvements (P<0.05) in weight gain and feed conversion efficiency were found to be on average 5% and 6% in Experiment 2 and 7% and 8% in Experiment 3, respectively. When weight gain and feed conversion efficiency were examined on a weekly basis it was shown that the significant response of enzyme addition was confined to the first 4 weeks. However, the effect of enzyme supplementation was still significant in the whole period from 21–42 days. Feed intake was not influenced by enzyme addition. The viscosity of intestinal content in both the jejunum and ileum was in general reduced (P<0.05) with enzyme supplementation, the xylanase preparations proving to be the most efficient. It was concluded that enzyme supplementation of wheat-based diets resulted in improved performance of broiler chickens, which was related to a concomitant reduction in intestinal viscosity. However, the response of enzyme supplementation was most pronounced in diets with a wheat content higher than 80 g kg−1.  相似文献   

19.
20.
Dietary protein levels and cysteamine (CS) supplementation can affect growth performance and protein metabolism of pigs. However, the influence of dietary protein intake on the growth response of CS-treated pigs is unclear, and the mechanisms involved in protein metabolism remain unknown. Hence, we investigated the interactions between dietary protein levels and CS supplementation and the effects of dietary crude protein levels and CS supplementation on protein synthetic and degradative signaling in skeletal muscle of finishing pigs. One hundred twenty barrows (65.84 ± 0.61 kg) were allocated to a 2 × 2 factorial arrangement with five replicates of six pigs each. The primary variations were dietary crude protein (CP) levels (14% or 10%) and CS supplemental levels (0 or 700 mg/kg). The low-protein (LP) diets (10% CP) were supplemented with enough essential amino acids (EAA) to meet the NRC AA requirements of pigs and maintain the balanced supply of eight EAA including lysine, methionine, threonine, tryptophan, valine, phenylalanine, isoleucine, and leucine. After 41 days, 10 pigs per treatment were slaughtered. We found that LP diets supplemented with EAA resulted in decreased concentrations of plasma somatostatin (SS) (P<0.01) and plasma urea nitrogen (PUN) (P<0.001), while dietary protein levels did not affect other traits. However, CS supplementation increased the average daily gain (P<0.001) and lean percentage (P<0.05), and decreased the feed conversion ratio (P<0.05) and back fat (P<0.05). CS supplementation also increased the concentrations of plasma insulin-like growth factor 1 (IGF-1) (P<0.001), and reduced the concentrations of leptin, SS, and PUN (P<0.001). Increased mRNA abundance of Akt1 and IGF-1 signaling (P<0.001) and decreased mRNA abundance of Forkhead Box O (FOXO) 4 (P<0.01) and muscle atrophy F-box (P<0.001) were observed in pigs receiving CS. Additionally, CS supplementation increased the protein levels for the phosphorylated mammalian target of rapamycin (mTOR), eIF-4E binding protein 1, and ribosomal protein S6 kinase 1 (P<0.001). There were no interactions between dietary protein levels and CS supplementation for all traits. In conclusion, dietary protein levels and CS supplementation influenced growth and protein metabolism through independent mechanisms in pigs. In addition, LP diets supplemented with EAA did not affect growth performance and other traits except the concentrations of SS and PUN probably through maintenance of protein synthesis and degradation signaling. Moreover, CS supplementation improved growth performance by increasing plasma IGF-1 concentrations possibly through alterations of mTOR and Akt/FOXO signaling pathways in skeletal muscle of finishing pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号