首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to investigate the role of polyamines during meiotic maturation of Xenopus oocytes. The results indicate a rapid and significant increase in the activity of ornithine decarboxylase (ODC), the rate-limiting enzyme in the polyamine biosynthetic pathway, during the meiotic maturation induced by either progesterone or human chorionic gonadotropin (HCG). This increase in the enzyme activity was followed by an accumulation of putrescine without any effect on the levels of spermidine or spermine. The inhibition of ODC activity and the accumulation of putrescine levels by α-difluoromethyl ornithine (DFMO), a catalytic irreversible inhibitor of ODC, also resulted in the inhibition of maturation mediated by progesterone in Xenopus oocytes. DFMO caused an inhibition of both maturation and ovulation induced by HCG in ovarian fragments. This inhibition was readily reversible by exogenous supply of putrescine to the medium. These observations suggest that putrescine plays an important role during the meiotic maturation of amphibian oocytes.  相似文献   

2.
We investigated how over-expression of a cDNA for human ornithine decarboxylase (odc) affects the polyamine pools in transgenic rice. We further investigated tissue-specific expression patterns and product accumulation levels of the transgene driven by either constitutive or seed-specific promoters. Our results indicate that: (1) whereas the expression of a heterologous arginine decarboxylase (adc) cDNA in rice resulted in increased putrescine and spermine levels only in seeds, plants engineered to express odc cDNA exhibited significant changes in the levels of all three major polyamines in seeds and also in vegetative tissues (leaves and roots); (2) there was no linear correlation between odc mRNA levels, ODC enzyme activity and polyamine accumulation, suggesting that control of the polyamine pathway in plants is more complex than in mammalian systems; (3) ODC activity and polyamine changes varied in different tissues, indicating that the pathway is regulated in a tissue-specific manner. Our results suggest that ODC rather than ADC is responsible for the regulation of putrescine synthesis in plants.  相似文献   

3.
《Journal of Asia》2022,25(1):101835
The domesticated silkworm Bombyx mori is an economically important insect that produces large quantities of silk during its 5th instar larval stage. Polyamines are important regulators of growth and have been shown to affect silk production, however their role in larval development is not completely understood. L-ornithine decarboxylase (ODC), a key regulatory enzyme in the polyamine biosynthetic pathway catalyzes the conversion of ornithine to putrescine, which is further broken down to spermidine and spermine. In this study, we set out to understand the role of ODC on the growth and development of silkworm larvae. We fed 5th instar larvae with α-difluoromethylornithine (DFMO), an ODC inhibitor and studied its impact on larval silk glands. Feeding DFMO did not alter the expression of L-ODC but led to a significant reduction in putrescine and spermidine levels. Furthermore, reduced cellular levels of polyamine led to increased oxidative stress and decreased cell viability. Subsequently, this resulted in several developmental defects at the pupal and moth stages. These findings highlight the importance of ODC in the growth and development of B. mori larvae.  相似文献   

4.
Cereal leaves subjected to the osmotica routinely used for protoplast isolation show a rapid increase in arginine decarboxylase activity, a massive accumulation of putrescine, and slow conversion of putrescine to the higher polyamines, spermidine, and spermine (HE Flores, AW Galston 1984 Plant Physiol 75: 102). Mesophyll protoplasts from these leaves, which have a high putrescine:polyamine ratio, do not undergo sustained division. By contrast, in Nicotiana, Capsicum, Datura, Trigonella, andVigna, dicot genera that readily regenerate plants from mesophyll protoplasts, the response of leaves to osmotic stress is opposite to that in cereals. Putrescine titer as well as arginine and ornithine decarboxylase activities decline in these osmotically stressed dicot leaves, while spermidine and spermine titers increase. Thus, the putrescine:polyamine ratio in Vigna protoplasts, which divide readily, is 4-fold lower than in oat protoplasts, which divide poorly. We suggest that this differing response of polyamine metabolism to osmotic stress may account in part for the failure of cereal mesophyll protoplasts to develop readily in vitro.  相似文献   

5.
3-Isobutylmethylxanthine (IBMX), a potent phosphodiesterase inhibitor, causes accumulation of putrescine of same magnitude in rat pancreas and liver. IBMX produces increases of acetyl CoA: polyamine N'-acetyltransferase (PAT) and of ornithine decarboxylase (ODC) activities in both organs. However ODC activity is 300 times higher in liver than in pancreas. In the latter organ, there is a transient increase of N1-acetylspermidine, followed by a decrease of spermidine, alpha-Difluoromethylornithine (DFMO), a potent ODC inhibitor, impairs the accumulation of putrescine in liver but not in pancreas. These results suggest that in pancreas the accumulated putrescine is essentially formed from spermidine, via N1-acetylation and oxidation, while in liver it is formed from decarboxylation of ornithine. A possible involvement of cAMP in the stimulation of the polyamine interconversion pathway is discussed.  相似文献   

6.
Ornithine decarboxylase (ODC) is subject to feedback regulation by the polyamines. Thus, addition of putrescine, spermidine or spermine to cells causes inhibition of ODC mRNA translation. Putrescine and spermine are readily converted into spermidine. Therefore, it is conceivable that the inhibition of ODC synthesis observed in putrescine- and spermine-supplemented cells is instead an effect of spermidine. To examine this possibility we have used two analogs of putrescine and spermine, namely 1,4-dimethylputrescine and 5,8-dimethylspermine, which cannot be converted into spermidine. Both analogs were found to inhibit the incorporation of [35S]methionine into ODC protein to approximately the same extent, suggesting that putrescine as well as spermine exert a negative feedback control of ODC mRNA translation in the cell. In addition to suppressing ODC synthesis, both analogs were found to increase the turnover rate of the enzyme. 5,8-Dimethylspermine caused a marked decrease in the activity of S-adenosylmethionine decarboxylase (AdoMetDC). This effect was not obtained with 1,4-dimethylputrescine, indicating that spermine, but not putrescien, exerts a negative control of AdoMetDC. Treatment with 1,4-dimethylputrescine caused extensive depletion of the cellular putrescine and spermidine content, but accumulation of spermine. 5,8-Dimethylspermine treatment, on the other hand, effectively depleted the spermine content and had less effect on the putrescine and spermidine content, at least initially. Nevertheless, the total polyamine content was more extensively reduced by treatment with 5,8-dimethylspermine than with 1,4-dimethylputrescine. Accordingly, only 5,8-dimethylspermine treatment exerted a significant inhibitory effect on Ehrlich ascites tumor cell growth.  相似文献   

7.
Arginaseless Neurospora: Genetics, Physiology, and Polyamine Synthesis   总被引:25,自引:19,他引:6  
Four arginaseless mutants of Neurospora crassa have been isolated. All carry mutations which lie at a single locus, aga, on linkage group VIIR. A study of aga strains shows the arginase reaction to be the major, perhaps the only, route of arginine consumption in Neurospora other than protein synthesis. Ornithine-δ-transaminase, the second enzyme of the arginine catabolic pathway, is present and normally inducible by arginine in aga strains, and ornithine transcarbamylase, an enzyme of arginine synthesis, also has normal activity. Arginine inhibits the growth of aga strains. The inhibition can be reversed by spermidine, putrescine (1,4-diaminobutane), or ornithine. The results suggest that ornithine is the major source of the putrescine moiety of polyamines in Neurospora, and that putrescine is an essential growth factor for this organism. The inhibition of aga strains by arginine can be attributed to feedback inhibition of ornithine synthesis by arginine, combined with the complete lack of ornithine normally provided by the arginase reaction.  相似文献   

8.
Thigmotropism is the ability of an organism to respond to a topographical stimulus by altering its axis of growth. The thigmotropic response of the model fungus Neurospora crassa was quantified using microfabricated glass slides with ridges of defined height. We show that the polarity machinery at the hyphal tip plays a role in the thigmotropic response of N. crassa. Deletion of N. crassa genes encoding the formin, BNI-1, and the Rho-GTPase, CDC-42, an activator of BNI-1 in yeast, CDC-24, its guanine nucleotide exchange factor (GEF), and BEM-1, a scaffold protein in the same pathway, were all shown to significantly decrease the thigmotropic response. In contrast, deletion of genes encoding the cell end-marker protein, TEA-1, and KIP-1, the kinesin responsible for the localisation of TEA-1, significantly increased the thigmotropic response. These results suggest a mechanism of thigmotropism involving vesicle delivery to the hyphal tip via the actin cytoskeleton and microtubules. Neurospora crassa thigmotropic response differed subtly from that of Candida albicans where the stretch-activated calcium channel, Mid1, has been linked with thigmotropic behaviour. The MID-1 deficient mutant of N. crassamid-1) and the effects of calcium depletion were examined here but no change in the thigmotropic response was observed. However, SPRAY, a putative calcium channel protein, was shown to be required for N. crassa thigmotropism. We propose that the thigmotropic response is a result of changes in the polarity machinery at the hyphal tip which are thought to be downstream effects of calcium signalling pathways triggered by mechanical stress at the tip.  相似文献   

9.
10.
In rape leaf discs the response to osmotic stress has been found to be associated with increases in putrescine and 1,3-diaminopropane (an oxidation product of spermidine and/or spermine) and decreases in spermidine titers. In contrast, agmatine and spermine titers showed small changes while cadaverine accumulated massively. Similar results were observed in whole rape seedlings subjected to drought conditions. -DL-difluoromethylarginine (DFMA), a specific irreversible inhibitor of arginine decarboxylase, strongly inhibited polyamine accumulation in unstressed rape leaf discs, which suggested that the arginine decarboxylase pathway is constitutively involved in putrescine biosynthesis. In leaf discs treated under high osmotic stress conditions, both DFMA and DFMO (-DL-difluoromethylornithine, a specific and irreversible inhibitor of ornithine decarboxylase) inhibited the accumulation of polyamines. Although the stressed discs treated with DFMA had a lower concentration of putrescine than those treated with DFMO, we propose that under osmotic stress the synthesis of putrescine might involve both enzymes. DFMA, but not DFMO, was also found to inhibit cadaverine formation strongly in stressed explants. The effects on polyamine biosynthesis and catabolism of cyclohexylamine, the spermidine synthase inhibitor, aminoguanidine, the diamine-oxidase inhibitor and -aminobutyric acid, a product of putrescine oxidation via diamine oxidase or spermidine oxidation via polyamine oxidase were found to depend on environmental osmotic challenges. Thus, it appears that high osmotic stress did not block spermidine biosynthesis, but induced a stimulation of spermidine oxidation. We have also demonstrated that in stressed leaf discs, exogenous ethylene, applied in the form of (2-chloroethyl) phosphonic acid or ethephon, behaves as an inhibitor of polyamine synthesis with the exception of agmatine and diaminopropane. In addition, in stressed tissues, when ethylene synthesis was inhibited by aminooxyacetic acid or aminoethoxyvinylglycine, S-adenosylmethionine utilization in polyamine synthesis was not promoted. The relationships between polyamine and ethylene biosynthesis in unstressed and stressed tissues are discussed.  相似文献   

11.
Neurospora crassa mycelia, when starved for polyamines, have 50-70-fold more ornithine decarboxylase activity and enzyme protein than unstarved mycelia. Using isotopic labeling and immunoprecipitation, we determined the half-life and the synthetic rate of the enzyme in mycelia differing in the rates of synthesis of putrescine, the product of ornithine decarboxylase, and spermidine, the main end-product of the polyamine pathway. When the pathway was blocked between putrescine and spermidine, ornithine decarboxylase synthesis rose 4-5-fold, regardless of the accumulation of putrescine. This indicates that spermidine is a specific signal for the repression of enzyme synthesis. When both putrescine and spermidine synthesis were reduced, the half-life of the enzyme rapidly increased 10-fold. The presence of either putrescine or spermidine restored the normal enzyme half-life of 55 min. Tests for an ornithine decarboxylase inhibitory protein ("antizyme") were negative. The regulatory mechanisms activated by putrescine and spermidine account for most or all of the regulatory amplitude of this enzyme in N. crassa.  相似文献   

12.
13.
14.
ODC is a labile protein subject to rapid turnover, and a conditional expression system providing long-term overexpression may be helpful in further understanding the biochemical properties of this enzyme and elucidating aspects of the polyamine biosynthetic pathway that have otherwise been difficult to study. HEK293 and LNCaP cell lines were engineered to stably and inducibly overexpress ODC using a Tet-on inducible construct. Clones from both cell lines were characterized by evaluating ODC mRNA expression, ODC activity, intracellular and extracellular polyamine levels, SSAT activity and growth kinetics. The ODC-inducible cell lines were time- and dose-responsive providing a mechanism to increase ODC and putrescine accumulation to a desired level in a flexible and controllable manner. The findings demonstrate that LNCaP ODC overexpressing cells maintained over a 100-fold increase in ODC activity and over a 10-fold increase in intracellular putrescine after 6 h. ODC induction at the highest levels was accompanied by a slight decline in intracellular spermidine and spermine levels and this observation was supported by the finding that SSAT activity was induced over 40-fold under these conditions. Growth rate remained unaffected following at least 12 h of ODC overexpression. Similar results were observed in the HEK293 ODC overexpressing cells.  相似文献   

15.
DH23A cells, an α-difluoromethylornithine (DFMO)–resistant variant of rat hepatoma tissue culture cells (HTC), contain high levels of very stable ornithine decarboxylase (ODC). In the absence of DFMO, the high ODC activity results in a large accumulation of endogenous putrescine. Concomitant with the putrescine increase is a period of cytostasis and a subsequent loss of viable cells. In contrast, HTC cells with a moderate polyamine content can be maintained in exponential growth. This suggests that a moderate polyamine concentration is necessary for both optimal cell growth and survival. The cytoxicity observed in the DH23A cells is apparently not due to byproducts of polyamine oxidation or alterations in steady state intracellular pH or free [Ca2+]. It is possible to mimic the effects of high levels of stable ODC by treatment of cells with exogenous putrescine in the presence of DFMO. This suggests that overaccumulation of putrescine is the causative agent in the observed cytotoxicity, although the mechanism is unclear. These data support the hypothesis that downregulation of ODC may be necessary to prevent accumulation of cytotoxic concentrations of the polyamines. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Definition of the cellular events involved in the production of collagenase by macrophages following activation has revealed prostaglandin E2 (PGE2)- and cAMP-dependent steps. Since ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis, is regulated by cAMP and is associated with certain aspects of protein synthesis, the potential role of this enzyme and its polyamine product, putrescine, in collagenase synthesis was examined. Lipopolysaccharide (LPS) activation of macrophages resulted in a maximal ODC response after 6 to 9 h with a 10- to 12-fold elevation in enzyme activity. This elevation in ODC appeared to be regulated by PGE2 since indomethacin inhibited LPS-induced macrophage ODC levels by 70%. Associated with the indomethacin-mediated inhibition of ODC was a loss of collagenase synthesis. Furthermore, partial restoration of collagenase production in indomethacin-inhibited cultures could be achieved by the addition of putrescine. In additional studies alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, also inhibited collagenase production when added to LPS-treated macrophages. This inhibition by DFMO could be reversed by the exogenous addition of putrescine. These findings demonstrate that the ODC pathway is an important intracellular component in the sequence of events that lead to macrophage collagenase synthesis.  相似文献   

17.
Synthesis and uptake are two important regulated mechanisms by which eukaryotic cells maintain polyamine levels. The role that loss of synthesis and/or uptake regulation plays in mediating putrescine toxicity was investigated by comparing toxicity in an ornithine decarboxylase (ODC)-deficient Chinese hamster ovary cell line (C55.7) with a functional putrescine transport system and an ODC-overproducing rat hepatoma cell line (DH23b), which are transport regulation deficient. When C55.7 cells were transfected with either mouse ODC (M) or trypanosome ODC (Tb), intracellular putrescine content increased slightly in C55.7(Tb-ODC), compared to C55.7(M-ODC), due to the lack of response of Tb-ODC to polyamine regulation. The increase in putrescine content resulting from loss of ODC regulation had no impact on cell growth and viability. When the feedback repression of polyamine uptake was blocked with cycloheximide, C55.7 cells transfected with either ODC construct accumulated very high levels of putrescine from the medium, and underwent apoptosis in a putrescine dose-dependent manner. A similar correlation of deregulated putrescine uptake and increased apoptotic cells was observed in DH23b cells. These data demonstrate that loss of feedback regulation on the polyamine transport system, but not ODC activity, is sufficient to induce apoptosis. Thus, downregulation of the transport system is necessary to prevent accumulation of cytotoxic putrescine levels in rodent cells.  相似文献   

18.
Hyphal tip-growing organisms often rely upon an internal hydrostatic pressure (turgor) to drive localized expansion of the cell. Regulation of the turgor in response to osmotic shock is mediated primarily by an osmotic MAP kinase cascade which activates osmolyte synthesis and ion uptake to effect turgor recovery. We characterized a Neurospora crassa homolog (PTK2) of ser/thr kinase regulators of ion transport in yeast to determine its role in turgor regulation in a filamentous fungi. The ptk2 mutant is osmosensitive, and has lower turgor poise than wildtype. The cause appears to be lower activity of the plasma membrane H+-ATPase. Its role in osmoadaptation is unrelated to the activity of the osmotic MAP kinase cascade. Instead, it acts in an alternative pathway that, like the osmotic MAP kinase cascade, also involves ion transport mediated osmoadaptation.  相似文献   

19.
Two auxotrophs of Neurospora crassa have been isolated that give a positive growth response to putrescine, spermidine or spermine. One of the mutants is deficient in ornithine decarboxylase activity and has been designated put-1. Both mutants map on linkage group VR, fail to complement and are infertile when crossed to one another, indicating that they are probably alleles. A putrescine auxotroph is incapable of suppressing a pro-4 mutant. The isolation of the mutants confirms that putrescine is an essential factor for the normal growth of the organism, and is synthesized via a single pathway in Neurospora.  相似文献   

20.
We studied the effects of several polyamine biosynthesis inhibitors on growth, differentiation, free polyamine levels and in vivo and in vitro activity of polyamine biosynthesis enzymes in Sclerotinia sclerotiorum. -Difluoromethylornithine (DFMO) and -difluoromethylarginine (DFMA) were potent inhibitors of mycelial growth. The effect of DFMO was due to inhibition of ornithine decarboxylase (ODC). No evidence for the existence of an arginine decarboxylase (ADC) pathway was found. The effect of DFMA was partly due to inhibition of ODC, presumably after its conversion into DFMO by mycelial arginase, as suggested by the high activity of this enzyme detected both in intact mycelium and mycelial extracts. In addition, toxic effects of DFMA on cellular processes other than polyamine metabolism might have occurred. Cyclohexylamine (CHA) slightly inhibited mycelial growth and caused an important decrease of free spermidine associated with a drastic increase of free putrescine concentration. Methylglyoxal bis-[guanyl hydrazone] (MGBG) had no effect on mycelial growth. Excepting MGBG, all the inhibitors strongly decreased sclerotial formation. Results demonstrate that sclerotial development is much more sensitive to polyamine biosynthesis inhibition than mycelial growth. Our results suggest that mycelial growth can be supported either by spermidine or putrescine, while spermidine (or the putrescine/spermidine ratio) is important for sclerotial formation to occur. Ascospore germination was completely insensitive to the inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号