首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyclic nitramine explosive CL-20 (C6H6N12O12, 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12 -hexaazaisowurtzitane) is a relatively new energetic compound which could be a persistent organic pollutant. To follow its biodegradation dynamics, CL-20 was added to soil alone or together with organic co-substrates and N-source and incubated under oxic and anoxic conditions. Without co-substrates, the CL-20 degradation was detectable only under anoxic conditions. The highest degradation rate was found under aerobic conditions and with the addition of co-substrates, succinate and pyruvate being more efficient than acetate, glucose, starch or yeast extract. When added to intact soil, CL-20 degradation was not affected by the N content, but in soil serially diluted with N-free succinate-mineral medium, the process became N-limited. About 40% of randomly selected bacterial colonies grown on succinate agar medium were able to decompose CL-20. Based on 16S rDNA gene sequence and cell morphology, they were affiliated to Pseudomonas, Rhodococcus, Ochrobactrum, Mycobacterium and Ralstonia. In the pure culture of Pseudomonas sp. MS-P grown on the succinate-mineral N(+) medium, the degradation kinetics were first order with the same apparent kinetic constant throughout growth and decline phases of the batch culture. The observed kinetics agreed with the model that supposes co-metabolic transformation of CL-20 uncoupled from cell growth, which can be carried out by several constitutive cellular enzymes with wide substrate specificity. The GenBank accession numbers for the 16S rRNA gene sequences obtained on this study are AY773005–AY773010. Pseudomonas sp. MS-P (=B-41417) was deposited with Agriculture Research Service Culture Collection, USA.  相似文献   

2.
Nitroreductase catalyzed biotransformation of CL-20   总被引:5,自引:0,他引:5  
Previously, we reported that a salicylate 1-monooxygenase from Pseudomonas sp. ATCC 29352 biotransformed CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane) (C(6)H(6)N(12)O(12)) and produced a key metabolite with mol. wt. 346 Da corresponding to an empirical formula of C(6)H(6)N(10)O(8) which spontaneously decomposed in aqueous medium to produce N(2)O, NH(4)(+), and HCOOH [Appl. Environ. Microbiol. (2004)]. In the present study, we found that nitroreductase from Escherichia coli catalyzed a one-electron transfer to CL-20 to form a radical anion (CL-20(-)) which upon initial N-denitration also produced metabolite C(6)H(6)N(10)O(8). The latter was tentatively identified as 1,4,5,8-tetranitro-1,3a,4,4a,5,7a,8,8a-octahydro-diimidazo[4,5-b:4',5'-e]pyrazine [IUPAC] which decomposed spontaneously in water to produce glyoxal (OHCCHO) and formic acid (HCOOH). The rates of CL-20 biotransformation under anaerobic and aerobic conditions were 3.4+/-0.2 and 0.25+/-0.01 nmol min(-1)mg of protein(-1), respectively. The product stoichiometry showed that each reacted CL-20 molecule produced about 1.8 nitrite ions, 3.3 molecules of nitrous oxide, 1.6 molecules of formic acid, 1.0 molecule of glyoxal, and 1.3 ammonium ions. Carbon and nitrogen products gave mass-balances of 60% and 81%, respectively. A comparative study between native-, deflavo-, and reconstituted-nitroreductase showed that FMN-site was possibly involved in the biotransformation of CL-20.  相似文献   

3.
Cyclic nitramine explosives, RDX, HMX, and CL-20 are hydrophobic pollutants with very little aqueous solubility. In sediment and soil environments, they are often attached to solid surfaces and/or trapped in pores and distribute heterogeneously in aqueous environments. For efficient bioremediation of these explosives, the microorganism(s) must access them by chemotaxis ability. In the present study, we isolated an obligate anaerobic bacterium Clostridium sp. strain EDB2 from a marine sediment. Strain EDB2, motile with numerous peritrichous flagella, demonstrated chemotactic response towards RDX, HMX, CL-20, and NO(2)(-). The three explosives were biotransformed by strain EDB2 via N-denitration with concomitant release of NO(2)(-). Biotransformation rates of RDX, HMX, and CL-20 by the resting cells of strain EDB2 were 1.8+/-0.2, 1.1+/-0.1, and 2.6+/-0.2nmol h(-1)mgwet biomass(-1) (mean+/-SD; n=3), respectively. We found that commonly seen RDX metabolites such as TNX, methylenedinitramine, and 4-nitro-2,4-diazabutanal neither produced NO(2)(-) during reaction with strain EDB2 nor they elicited chemotaxis response in strain EDB2. The above data suggested that NO(2)(-) released from explosives during their biotransformation might have elicited chemotaxis response in the bacterium. Biodegradation and chemotactic ability of strain EDB2 renders it useful in accelerating the bioremediation of explosives under in situ conditions.  相似文献   

4.
Two different mechanisms of inhibition of chemiluminescence in the oxidation of luminol by sodium hypochlorite were found. Most substances investigated in these experiments acted by scavenging NaOCI. This mechanism was independent of the concentration of hydrogen peroxide and the incubation time between luminol and inhibitors. The most potent inhibitors were substances containing SH groups. Compounds with amino groups as a target for HOCI/OCI? to yield chloramines were much less effective inhibitors. Another mechanism of inhibition was found for catalase. It depended on the presence of hydrogen peroxide in the incubation medium and the incubation time between luminol and catalase. The enzyme inhibited the luminescence by removing H2O2 at molar concentrations much smaller than those found for all other inhibitors. Our results confirm the present models of the mechanism of generation of luminescence in luminol oxidation.  相似文献   

5.
A dehydrogenase from Clostridium sp. EDB2 and a diaphorase from Clostridium kluyveri were reacted with CL-20 to gain insights into the enzyme-catalyzed hydride transfer to CL-20, and the enzyme's stereo-specificity for either pro-R or pro-S hydrogens of NAD(P)H. Both enzymes biotransformed CL-20 at rates of 18.5 and 24nmol/h/mg protein, using NADH and NADPH as hydride-source, respectively, to produce a N-denitrohydrogenated product with a molecular weight of 393Da. In enzyme kinetics studies using reduced deuterated pyridine nucleotides, we found a kinetic deuterium isotopic effect of 2-fold on CL-20 biotransformation rate using dehydrogenase enzyme against (R)NADD as a hydride-source compared to either (S)NADD or NADH. Whereas, in case of diaphorase, the kinetic deuterium isotopic effect of about 1.5-fold was observed on CL-20 biotransformation rate using (R)NADPD as hydride-source. In a comparative study with LC-MS, using deuterated and non-deuterated NAD(P)H, we found a positive mass-shift of 1Da in the N-denitrohydrogenated product suggesting the involvement of a deuteride (D(-)) transfer from NAD(P)D. The present study thus revealed that both dehydrogenase and diaphorase enzymes from the two Clostridium species catalyzed a hydride transfer to CL-20 and showed stereo-specificity for pro-R hydrogen of NAD(P)H.  相似文献   

6.
A simple, sensitive cupric oxide nanoparticles (CuO NPs) enhanced chemiluminescence (CL) method was developed for the measurement of β‐lactam antibiotics, including amoxicillin and cefazolin sodium. The method was based on suppression of the CuO NPs–luminol–H2O2 CL reaction by β‐lactam antibiotics. Experimental parameters that influenced the inhibitory effect of the antibiotic drugs on the CL system, such as NaOH (mol/L), luminol (µmol/L), H2O2 (mol/L) and CuO NPs (mg/L) concentrations, were optimized. Calibration graphs were linear and had dynamic ranges of 1.0 × 10–6 to 8.0 × 10–6 mol/L and 3.0 × 10–5 to 5.0 × 10–3 mol/L for amoxicillin and cefazolin sodium, respectively, with corresponding detection limits of 7.9 × 10–7 mol/L and 1.8 × 10–5 mol/L. The relative standard deviations of five replicate measurements of 5.0 × 10–6 amoxicillin and 5 × 10–4 cefazolin sodium were 5.43 and 5.01%, respectively. The synthesized CuO NPs were characterized by X‐ray diffraction (XRD) and transmission electronmicroscopy (TEM). The developed approach was exploited successfully to measure antibiotics in pharmaceutical preparations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A new chemiluminescence (CL) reaction was observed when chloramphenicol solution was injected into the mixture after the end of the reaction of alkaline luminol and sodium periodate or sodium periodate was injected into the reaction mixture of chloramphenicol and alkaline luminol. This reaction is described as an order‐transform second‐chemiluminescence (OTSCL) reaction. The OTSCL method combined with a flow‐injection technique was applied to the determination of chloramphenicol. The optimum conditions for the order‐transform second‐chemiluminescence emission were investigated. A mechanism for OTSCL has been proposed on the basis of the chemiluminescence kinetic characteristics, the UV‐visible spectra and the chemiluminescent spectra. Under optimal experimental conditions, the CL response is proportional to the concentration of chloramphenicol over the range 5.0 × 10?7–5.0 × 10?5 mol/L with a correlation coefficient of 0.9969 and a detection limit of 6.0 × 10?8 mol/L (3σ). The relative standard deviation (RSD) for 11 repeated determinations of 5.0 × 10?6 mol/L chloramphenicol is 1.7%. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The intensity of 4-I-phenol-enhanced chemiluminescence from the luminol-H2O2-horseradish peroxidase system is markedly attenuated in the presence of low concentrations of non-enhancer phenols. Under the conditions studied, the effect is not associated with competition between 4-I-phenol and non-enhancer phenol for the enzyme intermediates, Compounds I and II, but involves a competition between non-enhancer phenol and luminol most probably for the 4-I-phenoxy radical.  相似文献   

9.
In this study, we investigated the pathways (including the formation of hydroxyl radicals and chloramines) leading to luminol chemiluminescence induced by hypochlorite generated in a suspension of stimulated rabbit polymorphonuclear leukocytes. Chemiluminescence of leukocytes stimulated by phorbol myristate acetate, which was enhanced by luminol (0.02 mM), did not change in the presence of dimethyl sulfoxide at moderate concentrations (0.02–2.6 mM), under which the latter should manifest the specific ability to scavenge hydroxyl radicals. This indicates that stimulation of polymorphonuclear leukocytes is not accompanied by the generation of hydroxyl radicals with the involvement of superoxide anion and hypochlorite synthesized by myeloperoxidase. At high concentrations of dimethyl sulfoxide (260 mM), chemiluminescence markedly declined because dimethyl sulfoxide directly reacts with hypochlorite. The luminol emission intensity considerably increased after its addition to a suspension of leukocytes that were preliminarily stimulated for 10 min. This effect was caused by the accumulation of hydrogen peroxide rather than chloramines. Exogenous amino acids and taurine at high concentrations (3–15 mM) quench chemiluminescence. All these data indicate that chemiluminescence in the system studied is largely determined by the direct initial reaction of hypochlorite with luminol, the emission intensity increasing as a result of oxidation of luminol transformation products by hydrogen peroxide.  相似文献   

10.
A new flow injection chemiluminescence (CL) method has been developed for the determination of bisphenol A (BPA), based on the inhibitory effect of BPA on the chemiluminescence reaction between luminol and potassium hexacyanoferrate. Under optimum conditions, the decrease in CL emission intensity was linear with BPA concentration in the range 8.0 x 10(-7)-1.2 x 10(-5) mol/L, and the detection limit was 3.1 x 10(-7) mol/L. The relative standard deviation (RSD) of 11 replicate measurements was 2.6% for 2.0 x 10(-6) mol/L BPA (n = 11). The sampling frequency was calculated to be ca. 120/h. This method has been successfully used to determine the content of BPA in aqueous solution of polycarbonate materials. A brief discussion on the possible chemiluminescence reaction mechanism is presented.  相似文献   

11.
Liu Y  Fu Z  Wang L 《Luminescence》2011,26(6):397-402
A rapid and simple capillary electrophoresis method coupled with chemiluminescent (CL) detection was proposed for analysis of isoniazid (ISO) based on the enhancement effect of ISO to CL emission of luminol‐periodate potassium reaction. Under the optimal conditions, ISO can be assayed in the range of 7.0 × 10?7 to 3.0 × 10?5 g mL?1 (R2 = 0.9990) with a limit of detection of 3.0 × 10?7 g mL?1 (signal‐to‐noise ratio of 3). The whole analysis process can be completed within 2.5 min with a theoretical plate number of 6258. The relative standard deviations of the signal intensity and the migration time were 3.1 and 1.4% for a standard sample at 1.0 × 10?5 g mL?1 (n = 5), respectively. The presented novel strategy was successfully applied to the determination of ISO in commercial pharmaceutical preparations and spiked human serum samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Acetaminophen, also called paracetamol, is found in Tylenol, Excedrin and other products as over–the‐counter medicines. In this study, acetaminophen as a luminol signal enhancer was used in the chemiluminescence (CL) substrate solution of horseradish peroxidase (HRP) for the first time. The use of acetaminophen in the luminol–HRP–H2O2 system affected not only the intensity of the obtained signal, but also its kinetics. It was shown that acetaminophen was to be a potent enhancer of the luminol–HRP–H2O2 system. A putative enhancement mechanism for the luminol–H2O2–HRP–acetaminophen system is presented. The resonance of the nucleophilic amide group and the benzene ring of acetaminophen structure have a great effect on O‐H bond dissociation energy of the phenol group and therefore on phenoxyl radical stabilization. These radicals act as mediators between HRP and luminol in an electron transfer reaction that generates luminol radicals and subsequently light emission, in which the intensity of CL is enhanced in the presence of acetaminophen. In addition, a simple method was developed to detect acetaminophen by static injection CL based on the enhanced CL system of luminol–H2O2–HRP by acetaminophen. Experimental conditions, such as pH and concentrations of substrates, have been examined and optimized. The proposed method exhibited good performance, the linear range was from 0.30 to 7.5 mM, the relative standard deviation was 1.86% (n = 10), limit of detection was 0.16 mM and recovery was 99 ± 4%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
This article describes the use of probes directly labeled with horseradish peroxidase in conjunction with enhanced chemiluminescence, which allows a flexible approach to hybridizations and detections. This system may be used with the following applications: Southern blots, Northern blots, colony and plaque screening for positive clones, YAC clone screening, and PCR products detection. The major steps required for the use of directly labeled HRP probes are hybridization, stringent washes, and detection.  相似文献   

14.
A simple and sensitive chemiluminescence (CL) method has been developed for the determination of ampicillin sodium at submicromolar levels. The method is based on the inhibitory effect of ampicillin sodium on the cupric oxide nanoparticles (CuO NPs)–luminol–H2O2 CL reaction. Experimental parameters affecting CL inhibition including concentrations of CuO NPs, luminol, H2O2 and NaOH were optimized. Under optimum conditions, the calibration plot was linear in the analyte concentration range 4.0 × 10‐7–4.0 × 10‐6 mol/L. The limit of detection was 2.6 × 10‐7 mol/L and the relative standard deviation (RSD) for six replicate determinations of 1 × 10‐6 mol/L ampicillin sodium was 4.71%. Also, X–ray diffraction (XRD) and transmission electron microscopy (TEM) analysis were employed to characterize the CuO NPs. The utility of the proposed method was demonstrated by determining ampicillin sodium in pharmaceutical preparation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A novel chemiluminescence (CL) method was developed for the determination of cefazolin sodium based on the CL reaction between the [Cu(HIO6)2]5‐Cu(III) complex and luminol in alkaline solution. Results showed that CL emission of Cu(III) complex–luminol in alkaline medium was significantly different from that in acidic medium. A possible mechanism of the enhanced effect of cefazolin on CL emission of the [Cu(HIO6)2]5‐‐ luminol system was proposed. The effect of the reaction conditions on CL emissions was examined. Under optimized conditions, a good linear relationship was obtained between CL intensity and concentrations of cefazolin sodium in the range of 2.0 x 10‐8 to 2.0 x 10‐6 g/mL with a correlation coefficient of R2 = 0.9978. The limit of detection was 4.58 x 10‐9 g/mL. The proposed method was applied for the determination of cefazolin sodium in real samples with recoveries of 82.0‐109% with an RSD of 0.7‐2.1%. The proposed method was successfully used for the determination of cefazolin sodium in injectable powder preparations and human urine with satisfactory results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The oxidation reaction of luminol with AgNO3 can produce chemiluminescence (CL) in the presence of silver nanoparticles (NPs) in alkaline solution. Based on the studies of UV‐vis absorption spectra, photoluminescence (PL) spectra and CL spectra, a CL enhancement mechanism is proposed. The CL emission spectrum of the luminol–AgNO3–Ag NPs system indicated that the luminophore was still 3‐aminophthalate. On injection of silver nanoparticles into the mixture of luminol and AgNO3, they catalysed the reduction of AgNO3 by luminol. The product luminol radicals reacted with the dissolved oxygen, to produce a strong CL emission. As a result, the CL intensity was substantially increased. Moreover, the influences of 18 amino acids, e.g. cystine, tyrosine and asparagine, and 25 organic compounds, including gallic acid, tannic acid and hydroquinone, on the luminol–AgNO3–Ag NPs CL system were studied by a flow‐injection procedure, which led to an effective method for detecting these compounds. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Luminol chemiluminescence was used to detect activation of the respiratory burst oxidase in bovine eosinophils and neutrophils. Extracellular and intracellular chemiluminescence were measured by supplementing the medium with horseradish peroxidase and catalase, respectively. Pure bovine eosinophils (> 90%), maximally stimulated with 1 nmol/l phorbol 12-myristate-13-acetate (PMA) showed ten times more extracellular luminol-dependent chemiluminescence (CL) than maximally stimulated pure bovine neutrophils (> 96%). Extracellular CL from eosinophils was preferably induced over intracellular CL by both PMA (27-fold difference) and platelet-activating factor (PAF) at 2 μmol/l (9-fold difference), but not by calcium ionophore A23187 (15 μmol/l). Time course information was used in the following experiments to distinguish between the mode of action of various stimulants. A progressively longer lag period was observed in eosinophil suspensions treated with decreasing doses of PMA, whereas platelet-activating factor induced a dose-dependent increase in the maximum response with no change in time to peak CL. The time course of extracellular CL was almost identical to intracellular CL for all stimulants tested, providing no evidence to suggest that extracellular CL stems from a different enzyme system than intracellular CL. Eosinophils generated most extracellular CL when stimulated with PMA, whereas neutrophils were most efficiently stimulated with A23187, which induced intracellular CL in eosinophils as well as in neutrophils. This accords with the greater tendency of neutrophils to ingest and kill microorganisms, whereas eosinophils are armed to destroy large extracellular targets.  相似文献   

18.
A novel method for the detection of trace estradiol valerate (EV) in pharmaceutical preparations and human serum was developed by inhibition of luminol chemiluminescence (CL) by estradiol valerate on the zinc deuteroporphyrin (ZnDP)‐enhanced luminol‐K3Fe(CN)6 chemiluminescence system. Under optimized experimental conditions, CL intensity and concentration of estradiol valerate had a good linear relationship in the ranges of 8.0 × 10‐8 to 1.0 × 10‐5 g/mL. Detection limit (3σ) was estimated to be 3.5 × 10‐8 g/mL. The proposed method was applied successfully for the determination of estradiol valerate in pharmaceutical preparations and human serum and recoveries were 97.0‐105.0% and 95.5‐106.0%, respectively. The possible mechanism of the CL system is discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Isoamyl nitrite is used as a therapeutic reagent for cardiac angina and as an antidote for cyanide poisoning, but it is abused because of its euphoric properties. Therefore, a method to determine isoamyl nitrite is required in many fields, including pharmaceutical and forensic studies. In this study, a simple, rapid and sensitive method for the determination of isoamyl nitrite was developed using a flow injection analysis system equipped with a chemiluminescence detector and on‐line photoreactor. This method is based on on‐line ultraviolet irradiation of isoamyl nitrite and subsequent luminol chemiluminescence detection without the addition of an oxidant. A linear standard curve was obtained up to 1.0 μM of isoamyl nitrite with a detection limit (blank + 3SD) of 0.03 μM. The method was successfully applied to determine isoamyl nitrite content in pharmaceutical preparations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The chemiluminescent reaction of luminol during lipoxygenase-catalyzed oxygenations was studied with the purpose of developing a specific luminometric assay for cis,cis-1,4-pentadiene fatty acids directly in aqueous solutions. The addition of picomole levels of either linoleic or arachidonic acids to reaction systems containing 0.04 mM luminol and 40 micrograms/ml of purified soybean lipoxygenase-1 gave light emission curves with a single sharp maximum. Under these conditions the peak heights were linearly dependent on the fatty acid concentration and the detection limit for both of the fatty acids was 2 pmol with a signal to noise ratio of 2. For maximum reproducibility of the assays a procedure for the proper quantitation of the enzyme was developed. The fact that the assay proved to be relatively interference-free was ascribed to the high molar enzyme/substrate ratio (above 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号