首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study introduces a novel chemiluminescence (CL) approach utilizing FeS2 nanosheets (NSs) catalyzed luminol–O2 CL reaction for the measurement of three pharmaceuticals, namely venlafaxine hydrochloride (VFX), imipramine hydrochloride (IPM), and cefazolin sodium (CEF). The CL method involved the phenomenon of quenching induced by the pharmaceuticals in the CL reaction. To achieve the most quenching efficacy of the pharmaceuticals in the CL reaction, the concentrations of reactants comprising luminol, NaOH, and FeS2 NSs were optimized accordingly. The calibration curves demonstrated exceptional linearity within the concentration range spanning from 4.00 × 10−7 to 1.00 × 10−3 mol L−1, 1.00 × 10−7 to 1.00 × 10−4 mol L−1, and 4.00 × 10−6 to 2.00 × 10−4 mol L−1 with detection limits (3σ) of 3.54 × 10−7, 1.08 × 10−8, and 2.63 × 10−6 mol L−1 for VFX, IPM, and CEF, respectively. This study synthesized FeS2 NSs using a facile hydrothermal approach, and then the synthesized FeS2 NSs were subjected to a comprehensive characterization using a range of spectroscopic methods. The proposed CL method was effective in measuring the aforementioned pharmaceuticals in pharmaceutical formulations as well as different water samples. The mechanism of the CL system has been elucidated.  相似文献   

2.
In this article, nickel(II) oxide (NiO) hollow microspheres (HMSs) were fabricated and used to catalyze chemiluminescence (CL) reaction. The studied CL reaction is the luminol-oxygen reaction that was used as a sensitive analytical tool for measuring tuberculostatic drug isoniazid (IND) in pharmaceutical formulations and water samples. The CL method was established based on the suppression impact of IND on the CL reaction. The NiO HMSs were produced by a simple hydrothermal method and characterized by several spectroscopic techniques. The result of essential parameters on the analytical performance of the CL method, including concentrations of sodium hydroxide (NaOH), luminol, and NiO HMSs were investigated. At the optimum conditions, the calibration curve for IND was linear in the range of 8.00 × 10−7 to 1.00 × 10−4 mol L−1 (R2 = 0.99). A detection limit (3S) of 2.00 × 10−7 mol L−1 was obtained for this method. The acceptable relative standard deviation (RSD) was obtained for the proposed CL method (2.63%, n = 10) for a 5.00 × 10−6 mol L−1 IND solution. The mechanism of the CL reaction was also discussed.  相似文献   

3.
《Luminescence》2003,18(5):249-253
We established a peroxynitrite–luminol chemiluminescence system for detecting peroxynitrite in cell culture solution exposed to carbon disulphide (CS2). Three factors, including exposure time to ozone (Factor A), volume of peroxynitrite (ONOO?) solution (Factor B) and luminol concentrations (Factor C) at three levels were selected and the combinations were in accordance with orthogonal design L9 (34). Peroxynitrite was generated from the reaction of ozone and 0.01 mol/L sodium azide (NaN3) dissolved in carbonic acid buffer solution (pH 11), and it was reacted with luminol to yield chemiluminescence. The peak value, peak time and kinetic curve of the light emission were observed. The selected combination conditions were 50 s ozone, 800 µL peroxynitrite and 0.001 mol/L luminol solution. Cell culture solution with CS2 enhanced the emission intensity of chemiluminescence (F = 8.38, p = 0.018) and shortened the peak time to chemiluminescence (F = 139.00, p = 0.0001). The data demonstrated that this luminol chemiluminescence system is suitable for detecting peroxynitrite in cell culture solutions for evaluating the effect of CS2 on endothelial cells. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
《农业工程》2014,34(6):337-341
In order to examine the response characteristics and possible reasons of Atriplex lentiformis and Atriplex undulata under salt stress at stage of seed germination, the seeds were treated with different concentrations of NaCl (0, 50, 100, 200 and 300 mmol⋅L−1), 20 mmol⋅L−1 LiCl or mannitol whose iso-osmotic concentrations corresponding to 200 mmol⋅L−1 NaCl. The results showed that the germination rate of two species of saltbush was depressed with the increase of NaCl concentration, and A. lentiformis showed greater salt tolerance compared with A. undulata. After removal of salt stress, the final germination ratio of A. lentiformis was over 93%, while that of A. undulata was only 56%. Evans blue staining revealed that 200 mmol⋅L−1 NaCl did not damage membrane permeability of A. lentiformis seed embryos, but significantly increased the membrane permeability of A. undulata seed embryos and caused irreversible damage to them, especially radicles. The results on water uptake indicated that the inhibition of NaCl on seed germination was mainly due to osmotic stress instead of ionic toxicity, and A. lentiformis exhibited higher salt tolerance due to its greater resistance to osmotic stress.  相似文献   

5.
FeS2 nanosheets (NSs) were produced and exploited as a new catalyst for a chemiluminescence (CL) reaction. The characterization of FeS2 NSs was performed using spectroscopic methods. In this regard, transmission electron microscopy images showed that FeS2 NSs have a length of ~0.5–1 μm. The direct optical band gap energy of FeS2 NSs was found to be 3.45 eV. Prepared FeS2 NSs were used to catalyze the NaHCO3–H2O2 CL reaction. It was found that procaine hydrochloride (PCH) could reduce the intensity of the FeS2 NSs–NaHCO3–H2O2 CL reaction so, with increasing PCH concentrations, the intensity of light emission decreased. Therefore, a simple and sensitive method was introduced to measure PCH with a linear range expanded from 1.00 × 10−6 to 1.00 × 10−3 mol L−1 and an 8.32 × 10−7 mol L−1 limit of detection. Studies related to the effect of foreign species and reaction mechanisms were performed. The application of the approach was verified by quantifying the PCH in the injection.  相似文献   

6.
Systematic studies on phenol derivatives facilitates an explanation of the enhancement or inhibition of the luminol–H2O2–horseradish peroxidase system chemiluminescence. Factors that govern the enhancement are the one-electron reduction potentials of the phenoxy radicals (PhO/PhOH) vs. luminol radicals (L/LH) and the reaction rates of the phenol derivatives with the compounds of horseradish peroxidase (HRP-I and HRP-II). Only compounds with radicals with a similar or greater reduction potential than luminol at pH 8.5 (0.8 V) can act as enhancers. Radicals with reduction potentials lower than luminol behave in a different way, because they destroy luminol radicals and inhibit chemiluminescence. The relations between the reduction potential, reaction rates and the Hammett constant of the substituent in a phenol suggest that 4-substituted phenols with Hammett constants (σ) for their substituents similar or greater than 0.20 are enhancers of the luminol–H2O2–horseradish peroxidase chemiluminescence. In contrast, those phenols substituted in position 4 for substituents with Hammett constants (σ) lower than 0.20 are inhibitors of chemiluminescence. On the basis of these studies, the structure of possible new enhancers was predicted. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
Based on the inhibition effect of methimazole (MMI) on the reaction of luminol–H2O2 catalyzed by gold nanoparticles, a novel chemiluminescence (CL) method was developed for the determination of MMI. Under the optimum conditions, the relative CL intensity was linearly related to MMI concentration in the range from 5.0 × 10?8 to 5.0 × 10?5 mol L?1. The detection limit was 1.6 × 10?8 mol L?1 (S/N = 3), and the RSD for 6.0 × 10?6 mol L?1 MMI was 4.83 (n = 11). This method has high sensitivity, wide linear range, inexpensive instrumentation and has been applied to detect MMI in pharmaceutical tablets and pig serum samples. Furthermore, a possible reaction mechanism is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Hydrogen peroxide amplifies the chemiluminescence in the oxidation of luminol by sodium hypochlorite. A linear relationship between concentration of hydrogen peroxide and light intensity was found in the concentration range 5 × 10?8?7.5 × 10?6 mol/l. At 7.5 × 10?6 mol/l H2O2 the chemiluminescence is amplified 550—fold. The chemiluminescence spectra of these reactions have a wavelength maximum at 431 nm independent of the concentration of hydrogen peroxide. The results indicate that hydrogen peroxide is a necessary component in the chemiluminescent oxidation of the luminol by sodium hypochlorite.  相似文献   

9.
Understanding what environmental drivers influence marine predator–prey relationships can be key to managing and protecting ecosystems, especially in the face of future climate change risks. This is especially important in environments such as the Black Sea, where strong biogeochemical gradients can drive marine habitat partitioning and ecological interactions. We used underwater video recordings in the north-eastern Black Sea in November 2013 to observe the distribution and behaviour of the Black Sea sprat (Sprattus sprattus phalericus, Risso 1827) and its zooplankton prey. Video recordings have shown that the Black Sea sprat S. sprattus phalericus tolerates severely hypoxic waters near the redoxcline. The school was distributed in the 33–96 m layer [oxygen concentration (O2) 277–84 μmol L−1]. Some individuals were observed to leave the school and descended 20 m deeper for foraging on copepods in the 119–123 m layer (O2 12–10 μmol L−1). Zooplankton appeared concentrated on the upper boundary of the suboxic zone (O2 < 10 μmol L−1). No zooplankton were observed below O2 6–7 μmol L−1 (128 m). Understanding the ability of this species to tolerate low oxygen waters is crucial to predicting future responses to natural and anthropogenic changes in hypoxia.  相似文献   

10.
A new chemiluminescence (CL) reaction between luminol and diperiodatoargentate {K2 [Ag (H2IO6) (OH) 2]} was observed in alkaline medium. The CL intensity could be greatly enhanced by amikacin sulfate. Therefore a new CL method for the determination of amikacin sulfate was built by combining with flow injection technology. A possible mechanism of the CL reaction was proposed via the investigation of the CL kinetic characteristics, the CL spectrum and the UV absorption spectra of some related substance. The concentration range of linear response was 5.1 × 10?8 to 5.1 × 10?6 mol L?1 with a detection limit of 1.9 × 10?8 mol L?1 (3σ). The proposed method had good reproducibility with a relative standard deviation of 2.8% (n = 7) for 5.1 × 10?7 mol L?1 of amikacin sulfate. It was successfully applied to determine amikacin sulfate in serum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A novel flow injection analysis‐direct chemiluminescence (FI‐CL) method has been developed for determination of trace amounts of dopamine (DA) based on the enhancing effect of DA on the CL reaction of luminol with an Ag(III) complex in alkaline solution. Under optimum conditions, CL intensities are proportional to the concentration of DA in the range of 1.0 × 10?10 to 4.0 × 10?8 mol L?1. The detection limit is 3.0 × 10?11 mol L?1 for DA (3s), with a relative standard deviation (n = 13) of 2.3% for 1.0 × 10?8 mol L?1 DA. This method has also been applied for the determination of DA in commercial pharmaceutical injection samples. On the basis of the CL spectra and the results of the free‐radical trapping experiment of this work, a reaction mechanism for this CL reaction is proposed and discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Marine toxic dinoflagellates of the genus Gambierdiscus are the causative agents of ciguatera fish poisoning (CFP), a form of seafood poisoning that is widespread in tropical, subtropical and temperate regions worldwide. The distributions of Gambierdiscus australes, Gambierdiscus scabrosus and two phylotypes of Gambierdiscus spp. type 2 and type 3 have been reported for the waters surrounding the main island of Japan. To explore the bloom dynamics and the vertical distribution of these Japanese species and phylotypes of Gambierdiscus, the effects of light intensity on their growth were tested, using a photoirradiation-culture system. The relationship between the observed growth rates and light intensity conditions for the four species/phylotypes were formulated at R > 0.92 (p < 0.01) using regression analysis and photosynthesis-light intensity (P-L) model. Based on this equation, the optimum light intensity (Lmax) and the semi-optimum light intensity range (Ls-opt) that resulted in the maximum growth rate (μmax) and ≥80% μ max values of the four species/phylotypes, respectively, were as follows: (1) the Lmax and Ls-opt of G. australes were 208 μmol photons m−2 s−1 and 91–422 μmol photons m−2 s−1, respectively; (2) those of G. scabrosus were 252 and 120–421 μmol photons m−2 s−1, respectively; (3) those of Gambierdiscus sp. type 2 were 192 and 75–430 μmol photons m−2 s−1, respectively; and (4) those of Gambierdiscus sp. type 3 were ≥427 and 73–427 μmol photons m−2 s−1, respectively. All four Gambierdiscus species/phylotypes required approximately 10 μmol photons m−2 s−1 to maintain growth. The light intensities in coastal waters at a site in Tosa Bay were measured vertically at 1 m intervals once per season. The relationships between the observed light intensity and depth were formulated using Beer’s Law. Based on these equations, the range of the attenuation coefficients at Tosa Bay site was determined to be 0.058–0.119 m−1. The values 1700 μmol photons m−2 s−1, 500 μmol photons m−2 s−1, and 200 μmol photons m−2 s−1 were substituted into the equations to estimate the vertical profiles of light intensity at sunny midday, cloudy midday and rainy midday, respectively. Based on the regression equations coupled with the empirically determined attenuation coefficients for each of the four seasons, the ranges of the projected depths of Lmax and Ls-opt for the four Gambierdiscus species/phylotypes under sunny midday conditions, cloudy midday conditions, and rainy midday conditions were 12–38 m and 12–54 m, 1–16 m and 1–33 m, and 0 m and 0–16 m, respectively. These results suggest that light intensity plays an important role in the bloom dynamics and vertical distribution of Gambierdiscus species/phylotypes in Japanese coastal waters.  相似文献   

13.
A new chemiluminescence (CL) reaction was observed when chloramphenicol solution was injected into the mixture after the end of the reaction of alkaline luminol and sodium periodate or sodium periodate was injected into the reaction mixture of chloramphenicol and alkaline luminol. This reaction is described as an order‐transform second‐chemiluminescence (OTSCL) reaction. The OTSCL method combined with a flow‐injection technique was applied to the determination of chloramphenicol. The optimum conditions for the order‐transform second‐chemiluminescence emission were investigated. A mechanism for OTSCL has been proposed on the basis of the chemiluminescence kinetic characteristics, the UV‐visible spectra and the chemiluminescent spectra. Under optimal experimental conditions, the CL response is proportional to the concentration of chloramphenicol over the range 5.0 × 10?7–5.0 × 10?5 mol/L with a correlation coefficient of 0.9969 and a detection limit of 6.0 × 10?8 mol/L (3σ). The relative standard deviation (RSD) for 11 repeated determinations of 5.0 × 10?6 mol/L chloramphenicol is 1.7%. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Uniform molecular imprinting microspheres were prepared using precipitation polymerization with thifensulfuron‐methyl (TFM) as template, acrylamide as functional monomer and ethylene glycol dimethacrylate as cross‐linker. TFM could be selectively adsorbed on the molecularly imprinted polymers (MIPs) matrix through the hydrogen bonding interaction and the adsorbed TFM could be sensed by its strikingly enhancing effect on the weak chemiluminescence (CL) reaction between luminol and hydrogen peroxide. On this basis, a novel CL sensor for the determination of TFM using MIPs as recognition elements was established. The logarithm of net CL intensity (ΔI) is linearly proportional to the logarithm of TFM concentration (C) in the range from 1.0 × 10?9 to 5.0 × 10?5 mol L?1 with a detection limit of 8.3 × 10?10 mol L?1 (3σ). The results demonstrated that the MIP–CL sensor was reversible and reusable and that it could strikingly improve the selectivity and sensitivity of CL analysis. Furthermore, it is suggested that the CL enhancement of luminol–H2O2 by TFM might be ascribed to the enhancement effect of CO2, which came from TFM hydrolysis in basic medium. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A post‐chemiluminescence (PCL) phenomenon was observed when chloramphenicol was injected into a mixture of luminol and potassium periodate after the chemiluminescence (CL) reaction of luminol–potassium periodate had finished. The possible reaction mechanism was proposed based on studies of the CL kinetic characteristics, the CL spectra, the fluorescence spectra and the UV‐vis absorption spectra of the related substances. Based on the PCL reaction, a rapid and sensitive method for the determination of chloramphenicol was established. The linear response range was 6.0 × 10?7–1.0 × 10?5 mol/L, with a correlation coefficient of 0.9986. The relative standard deviation (RSD) for 5.0 × 10?6 mol/L chloramphenicol was 2.3% (n = 11). The detection limit was 1.6 × 10?7 mol/L. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In this article, a DPPH·–luminol chemiluminescence (CL) system was reported and the CL mechanism was discussed according to the CL kinetic properties after sequence injecting DPPH· into the DPPH·–luminol reaction mixture. It was observed that scutellarin could inhibit the CL response of the DPPH·–luminol system. Based on this observation, a simple and rapid flow injection CL method was developed for the determination of scutellarin using the inhibition effect in alkaline medium. The optimized chemical conditions for the CL reaction were 5 × 10?6 mol/L DPPH · and 1.0 × 10?4 mol/L luminol in 0.01 mol/L NaOH. Under optimized conditions, the CL intensity was inversely proportional to the concentration of scutellarin over the ranges 5–2000 and 40–3200 ng/ml in pharmaceutical injection and rat plasma, respectively. The limits of detection (S/N  = 3) were 5 and 40 ng/ml in preparations and rat plasma, respectively. Furthermore, the precision, recovery and stability of the validated method were acceptable for the determination of scutellarin in both pharmaceutical injections and rat plasma. The presented method was successfully applied in the determination of scutellarin in pharmaceutical injections and real rat plasma samples.  相似文献   

17.
This study described the utility of green analytical chemistry in the synthesis of gelatin‐capped silver, gold and bimetallic gold–silver nanoparticles (NPs). The preparation of nanoparticles was based on the reaction of silver nitrate or chlorauric acid with a 1.0 wt% aqueous gelatin solution at 50°C. The gelatin‐capped silver, gold and bimetallic NPs were characterized using transmission electron microscopy, UV–vis, X‐ray diffraction and Fourier transform infrared spectroscopy, and were used to enhance a sensitive sequential injection chemiluminescence luminol–potassium ferricyanide system for determination of the anticancer drug raloxifene hydrochloride. The developed method is eco‐friendly and sensitive for chemiluminescence detection of the selected drug in its bulk powder, pharmaceutical injections and biosamples. After optimizing the conditions, a linear relationship in the range of 1.0 × 10–9 to 1.0 × 10–1 mol/L was obtained with a limit of detection of 5.0 × 10–10 mol/L and a limit of quantification of 1.0 × 10‐9 mol/L. Statistical treatment and method validation were performed based on ICH guidelines. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Optimal conditions were found for the oxidation of luminol by hydrogen peroxide in the presence of peroxidase isolated from leaves of the African oil palm tree Elaeis guineensis (AOPTP). The pH range for maximal chemiluminescence intensity (8.3-8.6) is similar for AOPTP, horseradish, and Arthromyces ramosus peroxidases and slightly different from that for tobacco peroxidase (9.3). Increasing the buffer concentration decreases the chemiluminescence intensity. As in the case of other anionic peroxidases, the catalytic efficiency of AOPTP does not depend on the presence of enhancers (4-iodophenol and 4-hydroxycinnamic acid) in the reaction medium. The detectable limit of AOPTP assayed by luminol peroxidation is 2·10–12 M. The long-term chemiluminescence signal produced during AOPTP-dependent luminol peroxidation is a characteristic feature of the African oil palm enzyme. This feature in combination with its very high stability suggests that AOPTP will be a promising tool in analytical practice.  相似文献   

19.
The use of waste materials as feedstock for biosynthesis of valuable compounds has been an intensive area of research aiming at diminishing the consumption of non-renewable materials. In this study, P. putida KT2440 was employed as a cell factory for the bioconversion of waste vegetable oil into medium-chain-length Polyhydroxyalkanoates. In the presence of the waste oil this environmental strain is capable of secreting enzymes with lipase activities that enhance the bioavailability of this hydrophobic carbon substrate. It was also found that the oxygen transfer coefficient is directly correlated with high PHA levels in KT2440 cells when metabolizing the waste frying oil. By knocking out the tctA gene, encoding for an enzyme of the tripartite carboxylate transport system, an enhanced intracellular level of mcl-PHA was found in the engineered strain when grown on fatty acids. Batch bioreactors showed that the KT2440 strain produced 1.01 (g⋅L−1) of PHA whereas the engineered ΔtctA P. putida strain synthesized 1.91 (g⋅L−1) after 72 h cultivation on 20 (g⋅L−1) of waste oil, resulting in a nearly 2-fold increment in the PHA volumetric productivity. Taken together, this work contributes to accelerate the pace of development for efficient bioconversion of waste vegetable oils into sustainable biopolymers.  相似文献   

20.
A novel flow injection chemiluminescence (CL) method for the determination of rutin was reported. The proposed method was based on the enhanced effect of rutin on the chemiluminescence intensity of luminol and potassium hexacyanoferrate(III) reaction in NaOH medium. The variables of reaction system, such as luminol concentration, potassium hexacyanoferrate(III) concentration and NaOH concentration, were optimized with the aid of response surface methodology. For the responses prediction, a second‐order polynomial model (SOPM) was applied. The optimal conditions for determination of rutin estimated by the model equation were as follows: NaOH concentration of 0.13 mol/L luminol concentration of 0.94 × 10?6 mol/L, and K3Fe(CN)6 concentration of 1.09 × 10?4 mol/L. The theoretical increased ratio of CL intensity (IRI) predicted and actual IRI for 0.05 mg/L rutin under the above conditions were 99.40 and 99.74%, respectively. The SOPM model proved to be powerful for navigating the design space. Under the above optimum conditions, the increased IRI was linearly related to the concentration of rutin in the range from 0.008 to 0.100 mg/L with the regression equation IRI = 1948.20c + 5.24 (r = 0.9994) and in the range from 0.100 to 1.000 mg/L with the regression equation IRI = 1362.50 c + 61.94 (r = 0.9996). The detection limit (3σ) was of 1.95 × 10?3 mg/L. The sampling frequency of this method was 72/h. The method was used directly to determine rutin in tablets. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号