首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two inducible NADP+-dependent glycerol dehydrogenase (GlcDH) activities were identified in Mucor circinelloides strain YR-1. One of these, denoted iGlcDH2, was specifically induced by n-decanol when it was used as sole carbon source in the culture medium, and the second, denoted iGlcDH1, was induced by alcohols and aliphatic or aromatic hydrocarbons when glycerol was used as the only substrate. iGlcDH2 was found to have a much broader substrate specificity than iGlcDH1, with a low activity as an ethanol dehydrogenase with NAD+ or NADP+ as cofactor. Both isozymes showed an optimum pH for activity of 9.0 in Tris-HCl buffer and are subject to carbon catabolite repression. In contrast, the constitutive NADP+-dependent glycerol dehydrogenases (GlcDHI, II, and III) were only present in cell extracts when the fungus was grown in glycolytic carbon sources or glycerol under oxygenation, and their optimum pH was 7.0 in Tris-HCl buffer. In addition to these five NADP+-dependent glycerol dehydrogenases, a NAD+-dependent alcohol dehydrogenase is also present in glycerol or n-decanol medium; this enzyme was found to have weak activity as a glycerol dehydrogenase.  相似文献   

2.
Callus and suspension cultures adapted to various concentrations of NaCl or mannitol were developed from the cultivated potato Solanum tuberosum cv. Desire. Growth of the calli was less inhibited by mannitol than by iso-osmotic concentrations of NaCl. Reduction of growth by both NaCl and mannitol was considerably lower in osmotically adapted calli than in non-adapted ones. Salt-adapted suspension cultures that grew in the medium to which they had been originally adapted had a shorter lag in growth as well as a shorter time required to achieve the maximum growth, as compared with non-adapted cells. Suspension cultures adapted to NaCl concentrations higher than 150 mM were obtained only after preadaptation to osmotic stress. Adaptation of these cells was found to be stable. Accumulation of Na+ was lower and level of K+ was more stable in osmotically adapted than in non-adapted calli, when both were exposed to salt. Potassium level in NaCl-adapted calli exposed to saline medium was lower than that in non-adapted calli in standard medium. The maximum of Cl and Na+ accumulation was reached at higher external salt concentration in salt-adapted than in non-adapted suspension cultures. In both callus and suspension cultures, Cl accumulated more than Na+. Potassium level decreased more in non-adapted than in NaCl-adapted suspension cultures. The decrease of osmotic potential in osmotically adapted calli exposed to mannitol and in salt-adapted calli and suspension cultures exposed to salt was correlated to the increase of the external concentration. Such a correlation was not found in osmotically adapted calli exposed to salt. Non-electrolytes were found to be the main contributors to the decrease is osmotic potential in both callus and suspension cultures.  相似文献   

3.
The characterization and partial purification of geissoschizine dehydrogenase from Catharanthus roseus cell suspension cultures are described. The 35-fold purified enzyme removes the 21α-hydrogen of geissoschizine in a NADP+-dependent reaction. NAD+, FAD or FMN cannot act as cofactors for the dehydrogenation. Structurally related indole alkaloids are not dehydrogenated. In comparison to enzymes of the ajmalicine pathway, geissoschizine dehydrogenase shows an extremely low specific activity.  相似文献   

4.
5.
An NADP+-dependent dihydroxyacetone reductase, which catalyzes specifically the reduction of dihydroxyacetone to glycerol, has been isolated from the halophilic alga Dunaliella parva. The enzyme has been purified about 220-fold. It has a molecular weight of about 65,000 and is highly specific for NADPH. The pH optima for dihydroxyacetone reduction and for glycerol oxidation are 7.5 and 9.2, respectively. The enzyme has a very narrow substrate specificity and will not catalyze the reduction of glyceraldehyde or dihydroxyacetone phosphate. It is suggested that this enzyme functions physiologically as a dihydroxyacetone reductase in the path of glycerol synthesis and accumulation in Dunaliella.  相似文献   

6.
7.
The subcellular distribution of NADP+ and NAD+-dependent glucose-6-phosphate and galactose-6-phosphate dehydrogenases were studied in rat liver, heart, brain, and chick brain. Only liver particulate fractions oxidized glucose-6-phosphate and galactose-6-phosphate with either NADP+ or NAD+ as cofactor. While all of the tissues examined had NADP+-dependent glucose-6-phosphate dehydrogenase activity, only rat liver and rat brain soluble fractions had NADP+-dependent galactose-6-phosphate dehydrogenase activity. Rat liver microsomal and rat brain soluble galactose-6-phosphate dehydrogenase activities were kinetically different (Km's 0.5 mm and 10 mm, respectively, for galactose-6-phosphate), although their reaction products were both 6-phosphogalactonate. Rat brain subcellular fractions did not oxidize 6-phosphogalactonate with either NADP+ or NAD+ cofactors but phosphatase activities hydrolyzing 6-phosphogalactonate, galactose-6-phosphate and galactose-1-phosphate were found in crude brain homogenates. In addition, galactose-6-phosphate and 6-phosphogalactonate were tested as inhibitors of various enzymes, with largely negative results, except that 6-phosphogalactonate was a competitive inhibitor (Ki = 0.5 mM) of rat brain 6-phosphogluconate dehydrogenase.  相似文献   

8.
Enzymatic studies have been performed on a local strain of Aspergillus niger to find a correlation with citric acid accumulation. The activity of aconitase [aconitate hydratase, citrate(isocitrate) hydrolyase, EC 4.2.1.3] and isocitrate dehydrogenase (NADP+) [threo-ds-isocitrate:NADP+ oxidoreductase (decarboxylating) EC 1.1.1.42] decreased after 4 days whereas that of citrate synthase [citrate oxaloacetate-lyase (pro-3S-CH2COO?acetylCoA), EC 4.1.3.7] did so after 8 days, when citric acid accumulation in the medium reached a maximum (45.9 mg ml?1). In vitro studies with mycelial cell-free extracts demonstrated inhibition of citrate synthase activity by sodium azide and potassium ferricyanide on both the 4th and 8th days. Aconitase was inhibited by sodium arsenate, sodium fluoride, iodoacetic acid and potassium ferricyanide only on the 4th day. Isocitrate dehydrogenase (NADP+) activity on the 4th and 8th days was inhibited by iodoacetic acid but was stimulated by potassium ferricyanide. The possible existence of isozyme species of these enzymes is discussed.  相似文献   

9.
Li J  Chen G  Wang X  Zhang Y  Jia H  Bi Y 《Physiologia plantarum》2011,141(3):239-250
Glucose‐6‐phosphate dehydrogenase (G6PDH) is important for the activation of plant resistance to environmental stresses, and ion homeostasis is the physiological foundation for living cells. In this study, we investigated G6PDH roles in modulating ion homeostasis under salt stress in Carex moorcroftii callus. G6PDH activity increased to its maximum in 100 mM NaCl treatment and decreased with further increased NaCl concentrations. K+/Na+ ratio in 100 mM NaCl treatment did not exhibit significant difference compared with the control; however, in 300 mM NaCl treatment, it decreased. Low‐concentration NaCl (100 mM) stimulated plasma membrane (PM) H+‐ATPase and NADPH oxidase activities as well as Na+/H+ antiporter protein expression, whereas high‐concentration NaCl (300 mM) decreased their activity and expression. When G6PDH activity and expression were reduced by glycerol treatments, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio dramatically decreased. Simultaneously, NaCl‐induced hydrogen peroxide (H2O2) accumulation was abolished. Exogenous application of H2O2 increased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein expression and K+/Na+ ratio in the control and glycerol treatments. Diphenylene iodonium (DPI), the NADPH oxidase inhibitor, which counteracted NaCl‐induced H2O2 accumulation, decreased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio. Western blot result showed that G6PDH expression was stimulated by NaCl and H2O2, and blocked by DPI. Taken together, G6PDH is involved in H2O2 accumulation under salt stress. H2O2, as a signal, upregulated PM H+‐ATPase activity and Na+/H+ antiporter protein level, which subsequently resulted in the enhanced K+/Na+ ratio. G6PDH played a central role in the process.  相似文献   

10.
A NADP+-specific isocitrate dehydrogenase (EC 1.1.1.42) was isolated and purified over 400-fold from Anacystis nidulans. The enzyme activity responded slowly to rapid changes in ligand (NADP+, isocitrate, Mg2+-ions) or enzyme concentration as well as to rapid changes in temperature. These are properties characteristic of the hysteretic enzymes. In addition, the enzyme activity was subject to product (-ketoglutarate) inhibition. ATP, ADP and CDP also inhibited the enzyme. Unlike several other cyanobacterial enzymes, the isocitrate dehydrogenase of Anacystis is not under redox control.  相似文献   

11.
Although NAD+-dependent succinate semialdehyde dehydrogenase activity was first described in Escherichia coli more than 25 years ago, the responsible gene has remained elusive so far. As an experimental proof of concept for a gap-filling algorithm for metabolic networks developed earlier, we demonstrate here that the E. coli gene yneI is responsible for this activity. Our biochemical results demonstrate that the yneI-encoded succinate semialdehyde dehydrogenase can use either NAD+ or NADP+ to oxidize succinate semialdehyde to succinate. The gene is induced by succinate semialdehyde, and expression data indicate that yneI plays a unique physiological role in the general nitrogen metabolism of E. coli. In particular, we demonstrate using mutant growth experiments that the yneI gene has an important, but not essential, role during growth on arginine and probably has an essential function during growth on putrescine as the nitrogen source. The NADP+-dependent succinate semialdehyde dehydrogenase activity encoded by the functional homolog gabD appears to be important for nitrogen metabolism under N limitation conditions. The yneI-encoded activity, in contrast, functions primarily as a valve to prevent toxic accumulation of succinate semialdehyde. Analysis of available genome sequences demonstrated that orthologs of both yneI and gabD are broadly distributed across phylogenetic space.  相似文献   

12.
Cell-free extracts of the xylose fermenting yeast Pichia stipitis exhibited xylitol dehydrogenase activity with NAD+ and NADP+. During the purification step on DEAE-sephadex A-50 a NAD+-dependent xylitol dehydrogenase could be separated from a NADP+-dependent. The NAD+-xylitol dehydrogenase was further purified to electrophoretic homogeneity via gel and affinity chromatography. The purified enzyme was most active at pH 9 and 35°C. Its molecular weight was determined to be 63,000 dalton by Sephadex G-200 column chromatography, and that of its subunit was 32,000 dalton by sodium dodecyl sulphate polyacrylamide gel electrophoresis. From the results of substrate specificity, the enzyme should be named l-iditol:NAD+-5-oxidoreductase (EC 1.1.1.14, sorbitol dehydrogenase).  相似文献   

13.
Previously, we constructed a glycerol oxidative pathway-deficient mutant strain of Klebsiella pneumoniae by inactivation of glycerol dehydrogenase (dhaD) to eliminate by-product synthesis during production of 1,3-propanediol (1,3-PD) from glycerol. Although by-product formation was successfully blocked in the resultant strain, the yield of 1,3-PD was not enhanced, probably because dhaD disruption resulted in insufficient regeneration of the cofactor NADH essential for the activity of 1,3-PD oxidoreductase (DhaT). To improve cofactor regeneration, in the present study we overexpressed an NAD+-dependent aldehyde dehydrogenase in the recombinant strain. To this end, an aldehyde dehydrogenase AldHk homologous to E. coli AldH but with NAD+-dependent propionaldehyde dehydrogenase activity was identified in K. pneumoniae. Functional analysis revealed that the substrate specificity of AldHk embraced various aldehydes including propionaldehyde, and that NAD+ was preferred over NADP+ as a cofactor. Overexpression of AldHk in the glycerol oxidative pathway-deficient mutant AK/pVOTHk resulted in a 3.6-fold increase (0.57 g l−1 to 2.07 g l−1) in the production of 3-hydroxypropionic acid (3-HP), and a 1.1-fold enhancement (8.43 g l−1 to 9.65 g l−1) of 1,3-PD synthesis, when glycerol was provided as the carbon source, compared to the levels synthesized by the control strain (AK/pVOT). Batch fermentation using AK/pVOTHk showed a significant increase (to 70%, w/w) in conversion of glycerol to the reductive metabolites, 1,3-PD and 3-HP, with no production of by-products except acetate.  相似文献   

14.
The NAD+-dependent isocitrate dehydrogenase from etiolated pea (Pisum sativum L.) mitochondria was purified more than 200-fold by dye-ligand binding on Matrix Gel Blue A and gel filtration on Superose 6. The enzyme was stabilized during purification by the inclusion of 20% glycerol. In crude matrix extracts, the enzyme activity eluted from Superose 6 with apparent molecular masses of 1400 ± 200, 690 ± 90, and 300 ± 50 kD. During subsequent purification steps the larger molecular mass species disappeared and an additional peak at 94 ± 16 kD was evident. The monomer for the enzyme was tentatively identified at 47 kD by sodium dodecyl-polyacrylamide gel electrophoresis. The NADP+-specific isocitrate dehydrogenase activity from mitochondria eluted from Superose 6 at 80 ± 10 kD. About half of the NAD+ and NADP+-specific enzymes remained bound to the mitochondrial membranes and was not removed by washing. The NAD+-dependent isocitrate dehydrogenase showed sigmodial kinetics in response to isocitrate (S0.5 = 0.3 mm). When the enzyme was aged at 4°C or frozen, the isocitrate response showed less allosterism, but this was partially reversed by the addition of citrate to the reaction medium. The NAD+ isocitrate dehydrogenase showed standard Michaelis-Menten kinetics toward NAD+ (Km = 0.2 mm). NADH was a competitive inhibitor (Ki = 0.2 mm) and, unexpectedly, NADPH was a noncompetitive inhibitor (Ki = 0.3 mm). The regulation by NADPH may provide a mechanism for coordination of pyridine nucleotide pools in the mitochondria.  相似文献   

15.
Summary The ability of phenazine methosulphate to transfer electrons from reduced coenzymes to a tetrazolium salt, neotetrazolium chloride, after exposure to light for various periods of time has been studied. Enzymes assayed for this purpose were: glucose-6-phosphate dehydrogenase (NADP+-dependent); lactate dehydrogenase (NAD+-dependent) and succinate dehydrogenase (flavoprotein-dependent). Enzyme activity was measured in sections of rodent liver by scanning and integrating microdensitometry. Phenazine methosulphate in solution was found to be sufficiently stable in light for up to two hours for reproducible quantitative measurements of cytochemical dehydrogenase activity to be obtained over this period.  相似文献   

16.
Production of recombinant versatile peroxidase in Aspergillus hosts was optimized through the modification of temperature during bioreactor cultivations. To further this purpose, the cDNA encoding a versatile peroxidase of Pleurotus eryngii was expressed under control of the alcohol dehydrogenase (alcA) promoter of Aspergillus nidulans. A dependence of recombinant peroxidase production on cultivation temperature was found. Lowering the culture temperature from 28 to 19 °C enhanced the level of active peroxidase 5.8-fold and reduced the effective proteolytic activity twofold. Thus, a maximum peroxidase activity of 466 U L-1 was reached. The same optimization scheme was applied to a recombinant Aspergillus niger that bore the alcohol dehydrogenase regulator (alcR), enabling transformation with the peroxidase cDNA under the same alcA promoter. However, with this strain, the peroxidase activity was not improved, while the effective proteolytic activity was increased between 3- and 11-fold compared to that obtained with A. nidulans.  相似文献   

17.
The utilization of Saccharomyces cerevisiae strains overproducing glycerol and with a reduced ethanol yield is a potentially valuable strategy for producing wine with decreased ethanol content. However, glycerol overproduction is accompanied by acetate accumulation. In this study, we evaluated the effects of the overexpression of GPD1, coding for glycerol-3-phosphate dehydrogenase, in three commercial wine yeast strains in which the two copies of ALD6 encoding the NADP+-dependent Mg2+-activated cytosolic acetaldehyde dehydrogenase have been deleted. Under wine fermentation conditions, the engineered industrial strains exhibit fermentation performance and growth properties similar to those of the wild type. Acetate was produced at concentrations similar to that of the wild-type strains, whereas sugar was efficiently diverted to glycerol. The ethanol yield of the GPD1 ald6 industrial strains was 15 to 20% lower than that in the controls. However, these strains accumulated acetoin at considerable levels due to inefficient reduction to 2,3-butanediol. Due to the low taste and odor thresholds of acetoin and its negative sensorial impact on wine, novel engineering strategies will be required for a proper adjustment of the metabolites at the acetaldehyde branch point.  相似文献   

18.
The pyruvate dehydrogenase complex from pea (Pisum sativum L.) mitochondria was purified 23-fold by high speed centrifugation and glycerol gradient fractionation. The complex had a s20,w of 47.5S but this is a minimal value since the complex is unstable. The complex is specific for NAD+ and pyruvate; NADP+ and other keto acids give no reaction. Mg2+, thiamine pyrophosphate, and cysteine are also required for maximal activity. The pH optimum for the complex was between 6.5 and 7.5.  相似文献   

19.
Summary A new mutant strain,Aspergillus niger GS-III, showing resistance to manganese ions inhibition of citric acid fermentation on a sugarcane molasses containing medium was induced fromAspergillus niger KCU 520, a high citric acid-yielding strain. In submerged, surface or continuous cultures in the presence of manganese ions concentration upto 1.5 ppm the mutant strain yielded citric acid about 90 KgM–3 . The citric acid yield was comparable to that obtained with the parental strain KCU 520 in the absence of manganese ions, but it was atleast 3-fold higher than that obtained by the latter in the presence of manganese ions. The mutant strain immobilized in calcium alginate beads was used in combination with surface-stabilized cultures for about 36-days in a continuous flow horizontal fermenter without any apparent loss in citric acid productivity. These results indicate that the manganese-resistant mutant is stable and may be used in the presence of sufficient manganese ions concentration (1.5 ppm) in the fermentation medium. This capability of the mutant strainA. niger GS-III has been correlated with greatly reduced levels (about one-thirds) of the NADP+ -isocitric dehydrogenase, one of the control points for citric acid accumulation.  相似文献   

20.
Summary Pekin ducks were adapted to permanent osmotic stress by rearing them on a NaCl solution of increasing concentration up to 2% as drinking water. Their salt and water balance was compared with that of non-adapted ducks maintained on tap water. Amounts and osmolalities of salt gland secretion and cloacal discharges, plasma osmolality and electrolytes were measured during stepwise osmotic loading by intravenous infusion of NaCl solution of about 740 mosm·kg–1, at rates of 0.25, 0.45 and 0.65 ml·min–1. Before loading, the plasma osmolality of the adapted ducks was about 22 mosm·kg–1 higher than in non-adapted animals. The initial step of loading induced salt gland secretion in the adapted ducks after an average rise of plasma osmolality of 3.6 mosm·kg–1 and in the non-adapted animals after a rise of 7.8 mosm·kg–1. The method of osmotic loading enabled both groups of animals to balance their water input and output. However, only the adapted ducks were able to balance NaCl input and output, predominantly by salt gland secretion, thus maintaining a stable plasma osmolality. The nonadapted ducks retained 42% of the salt load which resulted in a rise of plasma osmolality of 49 mosm·kg–1, more salt being excreted by the kidneys than by the salt glands.In the salt-adapted ducks, salt gland activity, plasma osmolality and Na+ concentration did not correlate during balanced states of salt input and output. The involvement of tonicity receptors in salt gland control was confirmed by the stimulating effects of various hypertonic solutions. On the other hand, continuous loading by a constant infusion of NaCl solution of 1,300 mosm·kg–1 induced a steady salt gland secretion at a rising plasma osmolality and thus suggested that a volume factor is involved in salt gland control. Inhibition of salt gland activity by withdrawing blood and activation by blood infusion confirmed this assumption. While a direct cause and effect relationship between volume changes and salt gland secretion cannot be demonstrated, the results indicate that volume changes in one or more extracellular compartments do affect salt gland secretion.Supported by Deutsche Forschungsgemeinschaft (Si 320/2)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号