首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Neurodegenerative disorders are a class of diseases that have been linked to apoptosis induced by elevated levels of reactive oxygen species (ROS). ROS activates the apoptotic cascade through mitochondrial dysfunction and damage to lipids, proteins and DNA. Recently, fruit and tea-derived polyphenols have been found to be beneficial in decreasing oxidative stress and increasing overall health. Further, polyphenols including epigallocatechin gallate (EGCG) have been reported to inhibit apoptotic signaling and increase neural cell survival. In an effort to better understand the beneficial properties associated with polyphenol consumption, the aim of this study was to explore the neuroprotective effects of EGCG, methyl gallate (MG), gallic acid (GA) and N-acetylcysteine (NAC) on H2O2-induced apoptosis in PC12 cells and elucidate potential protective mechanisms. Cell viability data demonstrates that MG and NAC pre-treatments significantly increase viability of H2O2-stressed cells, while pre-treatments with EGCG and GA exacerbates stress. Quantitation of apoptosis and mitochondrial membrane potential shows that MG pre-treatment prevents mitochondria depolarization, however does not inhibit apoptosis and is thus evidence that MG can inhibit mitochondria-mediated apoptosis. Subsequent analysis of DNA degradation and caspase activation reveals that MG inhibits activation of caspase 9 and has a partial inhibitory effect on DNA degradation. These findings confirm the involvement of both intrinsic and extrinsic apoptotic pathways in H2O2-induced apoptosis and suggest that MG may have potential therapeutic properties against mitochondria-mediated apoptosis.  相似文献   

3.
The production of reactive oxygen species (ROS) during oxidative stress may cause cellular injury. Interleukin-15 (IL-15) is one of the skeletal muscle secreted myokines, and there is no information that reported its anti-oxidative capability in skeletal muscle. The aim of this study therefore is to investigate the protective effects of myokine IL-15 against H2O2-mediated oxidative stress in C2C12 myoblasts. The results showed that IL-15 pre-incubation reduced the intracellular creatine kinase and lactate dehydrogenase activities, decreased the ROS overload, and protect the mitochondrial network via up-regulated mRNA expression levels of IL-15 and uncoupling protein 3. It also down-regulated the levels of IL-6 and p21 of the myoblasts compared to the cells treated only with H2O2. Meanwhile, apurinic/aprimidinic endonuclease 1 expression and the Akt signaling pathway were stimulated. These effects could contribute to the resumption of cell viability and act as protective mechanism. In conclusion, myokine IL-15 could be a novel endogenous regulator to control intracellular ROS production and attenuate oxidative stress in skeletal muscle cells.  相似文献   

4.
Long-term and high-dose glucocorticoids (GCs) supplementation has been linked to osteoporosis. In this study, we studied the protective role of plumbagin against GC-induced cell damage in MC3T3-E1 cells. The effect of dexamethasone (DEX) and plumbagin on cell viability was determined. DEX showed as IC-50 value of 95 μM. Further, 10 μM plumbagin treatment effectively ameliorated DEX-induced cell death by increasing the cell viability to 92 %. A further effect of plumbagin on DEX-induced oxidative stress was determined through reactive oxygen species (ROS) level, lipid peroxide content, and antioxidant status. Nrf-2 nuclear localization was analyzed through immunofluorescence. Protein expression of redox regulator Nrf-2 and their target genes HO-1 and NQO1 and osteogenic markers (OCN, OPN Runx-2) were determined by Western blot. Apoptotic effect was analyzed by mitochondrial membrane potential and caspase activities (3, 8, and 9). The results showed that DEX treatment showed a significant increase in oxidative stress through increased ROS levels and downregulation of cytoprotective antioxidant proteins and antioxidant enzyme activities. Further DEX treatment downregulated the osteogenic markers and upregulated apoptosis through decreased mitochondrial membrane potential and upregulation of caspase activities. Plumbagin treatment significantly reversed the levels of oxidative stress and apoptotic markers and protected against DEX-induced cell damage. Further, plumbagin treatment significantly improved the expression of osteogenic markers compared to DEX treatment. In conclusion, the present study shows that plumbagin offers significant protective role against DEX-induced cellular damage via regulating oxidative stress, apoptosis, and osteogenic markers.  相似文献   

5.
Altered oxidative stress has long been observed in cancer cells, and this biochemical property of cancer cells represents a specific vulnerability that can be exploited for therapeutic benefit. The major role of an elevated oxidative stress for the efficacy of molecular targeted drugs is under investigation. Menadione is considered an attractive model for the study of oxidative stress, which can induce apoptosis in human leukemia HL-60 cell lines. Prostaglandin E2 (PGE2) via its receptors not only promotes cell survival but also reverses apoptosis and promotes cancer progression. Here, we present evidence for the biological role of PGE2 as a protective agent of oxidative stress-induced apoptosis in monocytic cells. Pretreatment of HL-60 cells with PGE2 markedly ameliorated the menadione-induced apoptosis and inhibited the degradation of PARP and lamin B. The EP2 receptor antagonist AH6809 abrogated the inhibitory effect of PGE2, suggesting the role of the EP2/cAMP system. The PKA inhibitor H89 also reversed apoptosis and decreased the PKA activity that was elevated 10-fold by PGE2. The treatment of HL-60 cells with NAC or zinc chloride showed a similar protective effect as with PGE2 on menadione-treated cells. Furthermore, PGE2 activated the Ras/Raf/MEK pathway, which in turn initiated ERK activation, and ultimately protected menadione-induced apoptosis. These results imply that PGE2 via cell survival pathways may protect oxidative stress-induced apoptosis in monocytic cells. This study warrants further pre-clinical investigation as well as application towards leukemia clinics.  相似文献   

6.
Oxidative stress is a major pathogenesis of some ocular surface diseases. Our previous study demonstrated that epidermal growth factor (EGF)-activated reactive oxygen species (ROS) could protect against human corneal epithelial cell (HCE) injury. In the present study, we aimed to explore the role and mechanisms of oxidative stress and mitochondrial autophagy in HCE cells subjected to scratch injury. CCK-8 assays, EdU assays, Western blot analysis, wound-healing assays, and flow cytometry were conducted to determine cell viability, proliferation, protein expression, cell apoptosis, and intracellular ROS levels, respectively. The results showed that EGF could promote damage repair and inhibit cell apoptosis in scratch injured HCE cells by upregulating ROS (**p < .01, ***p < .001). EGF also induced mitochondrial autophagy and alleviated mitochondrial damage. Interestingly, the combination of the mitochondrial autophagy inhibitor and mitochondrial division inhibitor 1 (MDIVI-1) with EGF could reduce cell proliferation, viability, and the ROS level (*p < .05, **p < .01, ***p < .001). Treatment using the ROS inhibitor N-acetyl- l -cysteine abrogated the increase in mitochondrial membrane potential after EGF treatment. (*p < .05). Taken together, these findings indicated that EGF plays an important role in HCE damage repair and could activate ROS to protect against HCE injury by inducing mitochondrial autophagy via activation of TRPM2.  相似文献   

7.
Oxidative stress, as mediated by ROS (reactive oxygen species), is a significant factor in initiating the cells damaged by affecting cellular macromolecules and impairing their biological functions; SelX, a selenoprotein also known as MsrB1 belonging to the methionine sulfoxide reductase (Msr) family, is the redox repairing enzyme and involved in redox-related functions. In order to more precisely analyze the relationship between oxidative stress, cell oxidative damage, and SelX, we stably overexpressed porcine Selx full-length cDNA in human normal hepatocyte (LO2) cells. Cell viability, cell apoptosis rate, intracellular ROS, and the expression levels of mRNA or protein of apoptosis-related genes under H2O2-induced oxidative stress were detected. We found that overexpression of SelX can prevent the oxidative damage caused by H2O2 and propose that the main mechanism underlying the protective effects of SelX is the inhibition of LO2 cell apoptosis. The results revealed that overexpressed SelX reduced the H2O2-induced intracellular ROS generation, inhibited the H2O2-induced upregulation of Bax and downregulation of Bcl-2, and increased the mRNA and protein ratio of Bcl-2/Bax. Furthermore, it inhibited H2O2-induced p38 MAPK phosphorylation. Taken together, our findings suggested that SelX played important roles in protecting LO2 cells against oxidative damage and that its protective effect is partly via the p38 pathway by acting as a ROS scavenger.  相似文献   

8.
Tang  Ying  Li  Yingqin  Yu  Guangyin  Ling  Zemin  Zhong  Ke  Zilundu  Prince L. M.  Li  Wenfu  Fu  Rao  Zhou  Li-Hua 《Cellular and molecular neurobiology》2021,41(6):1373-1387

The imbalance between excess reactive oxygen species (ROS) generation and insufficient antioxidant defenses contribute to a range of neurodegenerative diseases. High ROS levels damage cellular macromolecules such as DNA, proteins and lipids, leading to neuron vulnerability and eventual death. However, the underlying molecular mechanism of the ROS regulation is not fully elucidated. Recently, an increasing number of studies suggest that microRNAs (miRNAs) emerge as the targets in regulating oxidative stress. We recently reported the neuroprotective effect of miR-137-3p for brachial plexus avulsion-induced motoneuron death. The present study is sought to investigate whether miR-137-3p also could protect PC12 cells against hydrogen peroxide (H2O2) induced neurotoxicity. By using cell viability assay, ROS assay, gene and protein expression assay, we found that PC-12 cells exposed to H2O2 exhibited decreased cell viability, increased expression levels of calpain-2 and neuronal nitric oxide synthase (nNOS), whereas a decreased miR-137-3p expression. Importantly, restoring the miR-137-3p levels in H2O2 exposure robustly inhibited the elevated nNOS, calpain-2 and ROS expression levels, which subsequently improved the cell viability. Furthermore, the suppressive effect of miR-137-3p on the elevated ROS level under oxidative stress was considerably blunted when we mutated the binding site of calpain-2 targted by miR-137-3p, suggesting the critical role of calpain-2 involving the neuroprotective effect of miR-137-3p. Collectively, these findings highlight the neuroprotective role of miR-137-3p through down-regulating calpain and NOS activity, suggesting its potential role for combating oxidative stress insults in the neurodegenerative diseases.

  相似文献   

9.
Cerebral injury is closely associated with enhanced oxidative stress. A newly discovered secretory adipocytokine, intelectin-1 (ITLN-1), has been shown to have beneficial effects in neuroprotection in epidemiological studies. However, the specific molecular mechanism of ITLN-1 in protecting against cerebral oxidative stress needs further investigation. In this study, we hypothesize that ITLN-1 plays a protective role against oxidative stress injury through the SIRT1/PGC1-α signaling pathway in neuromatocytes. We used hydrogen peroxide (H2O2) as a oxidative stress model to simulate oxidative stress injury. Then, small interfering RNAs (siRNAs) was used to knock down SIRT1 in N2a cells with or without ITLN overexpression, followed by H2O2-induced injury. We observed that H2O2 injury significantly decreased the levels of ITLN-1, SIRT1, and PGC-1α. However, ITLN overexpression reversed H2O2-induced decline in cell viability and rise in apoptosis and intracellular ROS levels in N2a cells, while ITLN siRNA worsened the neurocyte injury. Furthermore, SIRT1 knockdown reversed the positive effect of ITLN overexpression on oxidative stress injury in N2a cells. Taken together, these findings suggest that ITLN-1 exerts neuroprotective effects against oxidative stress injury primarily through the SIRT1/PGC-1α axis.  相似文献   

10.
Cytochrome c oxidase (CCO) is the Cu-dependent, terminal respiratory complex of the mitochondrial electron transport chain. Inhibition of CCO can promote oxidative stress by increasing mitochondrial production of reactive oxygen species (ROS). Because mitochondria have an important role in apoptosis as both a target and source for ROS, enhanced ROS production resulting from inhibition of CCO by Cu deficiency may trigger apoptosis. The present study focuses on the mitochondrial effects of N,N'-bis(2-aminoethyl)-1,3-propanedi-amine (TET), which inhibits CCO by causing cellular Cu deficiency, and the antioxidants ascorbate and alpha-tocopherol in a human promyelocytic leukemia cell line (HL-60). The following effects were observed: (i) TET reduced both cell growth and viability only in the presence of ascorbate or alpha-tocopherol; (ii) TET reduced CCO activity and increased mitochondrial ROS production as indicated by increased expression of Mn super-oxide dismutase, but the induction of Mn superoxide dismutase was not affected by ascorbate or alpha-tocopherol; (iii) TET acted independently of ascorbate or alpha-tocopherol in disrupting mitochondrial membrane potential; (iv) TET did not increase caspase-8 activity in the absence of ascorbate or alpha-tocopherol; and (v) TET did not increase transfer of cytochrome c from mitochondria to the cytosol unless alpha-tocopherol was present. These findings indicate that reduction in CCO activity by TET-induced Cu deficiency increased oxidative stress in HL-60 cells sufficiently to disrupt the electrochemical gradient of the inner mitochondrial membrane but did not trigger cell death. Also, ascorbate and alpha-tocopherol did not alleviate oxidative stress but may have become pro-oxidants, adding to the oxidant burden sufficiently to trigger cell death in TET-treated cells.  相似文献   

11.
12.
The current study was aimed at investigating the neuroprotective effects of the butanol fraction from Cordyceps cicadae (CBU), which was responsible for the anti‐aging effect of this medicine. Glutamate‐induced PC12 cells were used as a model to determine the neuroprotective effect against oxidative cell death. Cell viability, cytotoxicity, flow cytometry, mitochondrial transmembrane potential (MMP), reactive oxygen species (ROS), glutathione peroxidase (GSH‐Px), and superoxide dismutase (SOD) levels were analyzed to assess neuronal cell survival or death. The results obtained from the above evaluations showed that CBU was the most effective fraction and even better than pure compounds present in Ccicadae in terms of suppressing glutamate‐induced damage in PC12 cells, increasing cell viability, decreasing lactase dehydrogenase (LDH) release, and reduction of apoptosis induced by exposure to glutamate. Furthermore, CBU protected cells against mitochondrial dysfunction and oxidative stress as indicated by the suppression of ROS accumulation and up regulation of the levels of GSH‐Px and SOD. In summary, the above results showed that CBU exerted neuroprotective effect against oxidative damage, and this activity could be partly due to the action of nucleosides present in the CBU.  相似文献   

13.
The cellular roles of glutathione reductase (GR) in the reactive oxygen species (ROS)-induced apoptosis were studied using the HepG2 cells transfected with GR. The overexpression of GR caused a marked enhancement in reduced and oxidized glutathione (GSH/GSSG) ratio, and significantly decreased ROS levels in the stable transfectants. Hydrogen peroxide (H2O2), under the optimal condition for apoptosis, significantly decreased cellular viability and total GSH content, and rather increased ROS level, apoptotic percentage and caspase-3 activity in the mock-transfected cells. However, hydrogen peroxide could not largely generate these apoptotic changes in cellular viability, ROS level, apoptotic percentage, caspase-3 activity and total GSH content in the cells overexpressing GR. Taken together, GR may play a protective role against oxidative stress.  相似文献   

14.

The purpose of this study was to investigate the effect of a superoxide-hydrogen peroxide (S-HP) imbalance of the superoxide dismutase manganese dependent (SOD2) gene, generated by paraquat and porphyrin exposure, on the keratinocytes cell line (HaCaT) oxidative metabolism. Paraquat acts increasing superoxide (O·?2) levels, while porphyrin increases hydrogen peroxide (H2O2) levels, acting as VV-SOD2-like and AA-SOD2-like molecules, respectively. First of all, HaCAT cells were treated with different concentrations of paraquat and porphyrin (1; 10; 30, and 70 μM) to determine the concentration of both that causes imbalance. After defining the concentration of paraquat and porphyrin (70 μM), a time curve was performed (1, 3, 6, and 24 h) to evaluate ROS production levels. Other oxidative parameters, such as nitric oxide (NO), lipoperoxidation (TBARS) and protein carbonyl, were evaluated after 24 h of incubation, as well as genotoxic analyses, apoptosis detection, and gene expression. Our findings revealed that paraquat exposure decreased cell viability, increasing lipoperoxidation, DNA damage, and apoptosis. On the other hand, porphyrin treatment increased cell viability and proliferation, ROS and NO production, triggering protein and DNA damage. In addition, porphyrin up-regulated Keap1 and Nrf2 gene expression, while paraquat decreased Nrf2 gene expression. In this sense, we suggested that the superoxide-hydrogen peroxide imbalance differentially modulates oxidative stress on keratinocytes cell line via Keap1-Nrf2 gene expression pathway.

  相似文献   

15.
Oxidative stress is well documented to cause injury to endothelial cells (ECs), which in turn trigger cardiovascular diseases. Previous studies revealed that cerium oxide nanoparticles (nanoceria) had antioxidant property, but the protective effect of nanoceria on ROS injury to ECs and cardiovascular diseases has not been reported. In the current study, we investigated the protective effect and underlying mechanisms of nanoceria on oxidative injury to ECs. The cell viability, lactate dehydrogenase release, cellular uptake, intracellular localization and reactive oxygen species (ROS) levels, endocytosis mechanism, cell apoptosis, and mitochondrial membrane potential were performed. The results indicated that nanoceria had no cytotoxicity on ECs but had the ability to prevent injury by H2O2. Nanoceria could be uptaken into ECs through caveolae- and clathrin-mediated endocytosis and distributed throughout the cytoplasma. The internalized nanoceria effectively attenuated ROS overproduction induced by H2O2. Apoptosis was also alleviated greatly by nanoceria pretreatment. These results may be helpful for more rational application of nanoceria in biomedical fields in the future.  相似文献   

16.
《Free radical research》2013,47(9):1081-1094
Abstract

The imbalance between reactive oxygen species (ROS) production and their elimination by antioxidants leads to oxidative stress. Depending on their concentration, ROS can trigger apoptosis or stimulate cell proliferation. We hypothesized that oxidative stress and mitochondrial dysfunction may participate not only in apoptosis detected in some myelodysplastic syndrome (MDS) patients, but also in increasing proliferation in other patients. We investigated the involvement of oxidative stress and mitochondrial dysfunction in MDS pathogenesis, as well as assessed their diagnostic and prognostic values. Intracellular peroxides, superoxide, superoxide/peroxides ratio, reduced glutathione (GSH), and mitochondrial membrane potential (Δψmit) levels were analyzed in bone marrow cells from 27 MDS patients and 12 controls, by flow cytometry. We observed that all bone marrow cell types from MDS patients had increased intracellular peroxide levels and decreased GSH content, compared with control cells. Moreover, oxidative stress levels were MDS subtype— and risk group—dependent. Low-risk patients had the highest ROS levels, which can be related with their high apoptosis; and intermediate-2-risk patients had high Δψmit that may be associated with their proliferative potential. GSH levels were negatively correlated with transfusion dependency, and peroxide levels were positively correlated with serum ferritin level. GSH content proved to be an accurate parameter to discriminate patients from controls. Finally, patients with high ROS or low GSH levels, as well as high superoxide/peroxides ratio had lower overall survival. Our results suggest that oxidative stress and mitochondrial dysfunction are involved in MDS development, and that oxidative stress parameters may constitute novel diagnosis and/or prognosis biomarkers for MDS.  相似文献   

17.
BackgroundWhen redox balance is lost in the brain, oxidative stress can cause serious damage that leads to neuronal loss, in congruence with neurodegenerative diseases. Aucubin (AU) is an iridoid glycoside and that is one of the active constituents of Eucommia ulmoides, has many pharmacological effects such as anti-inflammation, anti-liver fibrosis, and anti-atherosclerosis.PurposeThe present study aimed to evaluate the inhibitory effects of AU on cell oxidative stress against hydrogen peroxide (H2O2)-induced injury in SH-SY5Y cells in vitro.MethodsSH-SY5Y cells were simultaneously treated with AU and H2O2 for 24 h. Cell viability was measured by CCK-8. Additionally, mitochondrial membrane depolarization, reactive oxygen species (ROS) generation, and cell apoptosis were measured by flow cytometry.ResultsThe results showed that AU can significantly increase the H2O2-induced cell viability and the mitochondrial membrane potential, decrease the ROS generation, malondialdehyde (MDA), and increase glutathione (GSH) contents and the superoxide dismutase (SOD) activity. We also found that H2O2 stimulated the production of nitric oxide (NO), which could be reduced by treatment with AU through inhibiting the inducible nitric oxide synthase (iNOS) protein expression. In H2O2-induced SH-SY5Y cells, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) content and cell apoptosis were significantly reduced by AU treatment through nuclear factor E2-related factor 2/hemo oxygenase-1 (Nrf2/HO-1) activation, inhibiting the expression of p-NF-κB/NF-κB and down-regulating MAPK and Bcl-2/Bax pathways.ConclusionThese results indicate that AU can reduce inflammation and oxidative stress through the NF-κB, Nrf2/HO-1, and MAPK pathways.  相似文献   

18.
19.
20.
In the present study, we determined the protective role of lutein against Aβ 25–35 peptide-induced oxidative stress and apoptosis in bEND.3 cells. Cell viability was determined through MTT assay. Reactive oxygen species, lipid peroxides, and antioxidant enzyme activities were evaluated to analyze the oxidative stress status. NF-κB and Nrf-2 downstream target protein expressions were determined through western blot. Apoptosis was analyzed through caspase activities and subG1 accumulation. The results showed that Aβ 25–35 significantly increased (p < 0.001) oxidative stress biomarkers. Aβ 25–35 significantly up-regulated NF-κB nuclear expression and down-regulated Nrf-2 levels and HO-1 and, NQO-1 expressions. Aβ 25–35 induced apoptosis through decreasing mitochondrial membrane potential and increasing caspase 9 and 3 activities. Lutein pre-treatment significantly (p < 0.001) improved cell viability and decreased ROS levels (p < 0.001) and lipid peroxidation (p < 0.01). Lutein prevented Aβ 25–35-induced NF-κB nuclear expressions and up-regulated Nrf-2 expressions. Further, lutein also improved mitochondrial membrane potential and down-regulated caspase activities and subG1 accumulation. The present study shows the protective role of lutein against Aβ 25–35-induced toxicity by modulating Nrf-2 and NF-κB expressions in cerebrovascular endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号