首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coenzyme A-linked aldehyde dehydrogenase from Clostridium kluyveri was purified from the soluble fraction of crude extracts and its physical and kinetic properties were studied. The enzyme was purified approximately 90-fold over crude extracts to a specific activity of 50 units/mg protein and was estimated to be 40% pure by polyacrylamide gel electrophoresis. From active enzyme centrifugation studies, aldehyde dehydrogenase was found to have a sedimentation coefficient of s20, w = 7.4. The Stokes radius of the enzyme was determined by gel filtration and found to be 9.5 nm in the presence of substrates and 11.0 nm in the absence of substrates. Using the values found for the sedimentation coefficient and the Stokes radius, the molecular weight of the enzyme in the presence of substrates was calculated to be 290,000 and the frictional ratio, 2.2. Aldehyde dehydrogenase can utilize thiols other than CoA as acetyl acceptors. A number of methods were employed in order to exclude the possibility that these thiols act merely by recycling nonenzymatically trace amounts of CoA that might be in the enzyme preparation. From steady-state kinetic measurements, a ping pong mechanism was proposed in which NAD+ binds to free enzyme, acetaldehyde binds next, and NADH is released before CoA binds and acetyl-CoA released. At Km levels of other substrates, substrate inhibition by CoA was observed. The nature of the substrate inhibition is discussed.  相似文献   

2.
The xanthine-oxidizing enzyme of rat liver has been purified as an NAD+-dependent dehydrogenase (type D) and as the O2-dependent oxidase (type O). The purified D and O variants are nearly homogenous as judged by polyacrylamide discontinuous gel electrophoresis and are indistinguishable on sodium dodecyl sulfate-urea gels. The absorption spectrum of the type D enzyme is indistinguishable from that of the type O enzyme and closely resembles the spectra of xanthine-oxidizing enzymes from other sources. The types D and O enzymes have essentially the same cofactor composition. Oxidation of xanthine by type D is stimulated by NAD+ with concomitant NADH formation. Type D is able to utilize NADH as well as xanthine as electron donor to various acceptors, in contrast to type O that is unable to oxidize NADH. Arsenite, cyanide and methanol completely abolish xanthine oxidation by the type D enzyme while affecting the activities with NADH to varying extents. In these respects rat liver xanthine dehydrogenase closely resembles chicken liver xanthine dehydrogenase. However, in contrast to the avian enzyme, the purified rat liver enzyme is unstable as a dehydrogenase and is gradually converted to an oxidase. This conversion is accompanied by an increase in the aerobic xanthine → cytochrome c activity. The native type D enzyme in rat liver extracts is precipitable with antibody prepared against purified type O. The Km for xanthine is not significantly different for the two forms.  相似文献   

3.
Glycosynthase mutants obtained from Thermotogamaritima were able to catalyze the regioselective synthesis of aryl β-d-Galp-(1→3)-β-d-Glcp and aryl β-d-Glcp-(1→3)-β-d-Glcp in high yields (up to 90 %) using aryl β-d-glucosides as acceptors. The need for an aglyconic aryl group was rationalized by molecular modeling calculations, which have emphasized a high stabilizing interaction of this group by stacking with W312 of the enzyme. Unfortunately, the deprotection of the aromatic group of the disaccharides was not possible without partial hydrolysis of the glycosidic bond. The replacement of aryl groups by benzyl ones could offer the opportunity to deprotect the anomeric position under very mild conditions. Assuming that benzyl acceptors could preserve the stabilizing stacking, benzyl β-d-glucoside firstly assayed as acceptor resulted in both poor yields and poor regioselectivity. Thus, we decided to undertake molecular modeling calculations in order to design which suitable substituted benzyl acceptors could be used. This study resulted in the choice of 2-biphenylmethyl β-d-glucopyranoside. This choice was validated experimentally, since the corresponding β-(1→3) disaccharide was obtained in good yields and with a high regioselectivity. At the same time, we have shown that phenyl 1-thio-β-d-glucopyranoside was also an excellent substrate leading to similar results as those obtained with the O-phenyl analogue. The NBS deprotection of the S-phenyl group afforded the corresponding disaccharide quantitatively.  相似文献   

4.
Glycoprotein sialyltransferase was studied in the rat brain and in the frontal grey cortex and corpus callosum of the calf brain. Activities were measured with endogenous acceptors as well as with desialized α1-acid glycoprotein as an exogenous acceptor. The enzyme was characterized by means of its pH optimum, Km values and requirements for detergent and cations. The properties of the rat and calf brain enzymes appeared to be very similar. Substrate specificity studies indicate that more than one glycoprotein sialyltransferase reaction may occur in brain. The regional distribution of the enzyme in the calf brain was rather uniform. From this it was concluded that glycoprotein sialyltransferase, at least for the greater part, is localized in membranes other than those of the synaptic complexes, and occurs in both neurons and glia cells. The regional distribution of the amounts of endogenous glycoprotein acceptor sites, which could be calculated from the sialyltransferase activities, showed a striking correlation with that of the protein-bound sialic acid, but not with the sialyltransferase activity. The role of these endogenous glycoprotein acceptors in cerebral sialoglycoprotein biosynthesis is discussed.  相似文献   

5.
The NADH:ubiquinone oxidoreductase (NDH-1 or Complex I) of Escherichia coli is a smaller version of the mitochondrial enzyme, being composed of 13 protein subunits in comparison to the 43 of bovine heart complex I. The bacterial NDH-1 from an NDH-2-deficient strain was purified using a combination of anion exchange chromatography and sucrose gradient centrifugation. All 13 different subunits were detected in the purified enzyme by either N-terminal sequencing or matrix-assisted laser desorption/ionization time-of-flight mass spectral analysis. In addition, some minor contaminants were observed and identified. The activity of the enzyme was studied and the effects of phospholipid and dodecyl maltoside were characterized. Kinetic analyses were performed for the enzyme in the native membrane as well as for the purified NDH-1, using ubiquinone-1, ubiquinone-2 or decylubiquinone as the electron acceptors. The purified enzyme exhibited between 1.5- and 4-fold increase in the apparent Km for these acceptors. Both ubiquinone-2 and decylubiquinone are good acceptors for this enzyme, while affinity of NDH-1 for ubiquinone-1 is clearly lower than for the other two, particularly in the purified state.  相似文献   

6.
《Experimental mycology》1990,14(3):227-233
Most of the fucosyl transferase activity fromMucor rouxii was detected in a crude membrane fraction. The enzyme transferredl-fucose from GDP-fucose to endogenous and exogenous acceptors. When crude membrane fractions were treated with neutral detergents such as Trition X-100 or Brij 36 T enzyme activity became dependent on exogenous acceptors such as mucoric acid or mucoran. Brij-treated membrane fractions showed maximum fucosyl transferase activity at pH 6.5, and at a temperature between 22 and 28°C. The cations Mn2+, Mg2+, Co2+, Zn2+, Fe2+, and Ca2+ activated the enzyme about twofold. The former was slightly more stimulatory at 4 mM. Km for GDP-fucose was 10 μM. Evidence was obtained that mucoric acid serves as acceptor for fucosyl moieties. Acid hydrolysis of the product synthesized from GDP-fuc by Brij-treated membrane fractions revealed fucose as the major radioactive sugar.  相似文献   

7.
This study is concerned with the isolation and characterization of the enzyme, S-adenosylmethionine:ribosomal ribonucleic acid-adenine (N6−) methyl-transferase [rRNA-adenine (N6-) methylase] of Escherichia coli strain B, which is responsible for the formation of N6-methyladenine moieties in ribosomal ribonucleic acids (rRNA). A 1,500-fold purified preparation of the species-specific methyltransferase methylates a limited number of adenine moieties in heterologous rRNA (Micrococcus lysodeikticus and Bacillus subtilis) and methyl-deficient homologous rRNA. The site recognition mechanism does not require intact 16 or 23S rRNA. The enzyme does not utilize transfer ribonucleic acid as a methyl acceptor nor does it synthesize 2-methyladenine or N6-dimethyladenine moieties. Mg2+, spermine, K+, and Na+ increase the reaction rate but not the extent of methylation; elevated concentrations of the cations inhibit markedly. The purified preparations utilize 9-β-ribosyl-2,6-diaminopurine (DAPR) as a methyl acceptor with the synthesis of 9-β-ribosyl-6-amino-2-methylaminopurine. A comparison of the two activities demonstrated that one methyltransferase is responsible for the methylation of both DAPR and rRNA. This property provides a sensitive assay procedure unaffected by ribonucleases and independent of any specificity exhibited by rRNA methyl acceptors.  相似文献   

8.
Studies were carried out on the acceptor specificity of dextransucrase which had been isolated from Streptococcus sanguis 10558. Radioactive acceptors were employed in reactions with cold sucrose and the counts incorporated were taken as a measure of “acceptor activity.” An order of relative activity was found to be polysaccharide > oligosaccharide > glycoside > monosaccharide. An evaluation of the time course of the reaction with α-methyl glucoside, or maltose, showed that a homologous series of oligosaccharides were formed from each. This suggested that the individual members of the series were related as precursors and products. The kinetics of the reaction with different acceptors was studied. All acceptors studied caused an activation of the enzyme and changes in the Km for sucrose. The kinetic constants obtained were also used to compare the various acceptors.  相似文献   

9.
β-Galactosidases can transfer the galactosyl from lactose or galactoside donors to various acceptors and thus are especially useful for the synthesis of important glycosides. However, these enzymes have limitations in the glycosylation of phenolic compounds that have many physiological functions. In this work, the β-galactosidase from Lactobacillus bulgaricus L3 was subjected to site-saturation mutagenesis at the W980 residue. The recombinant pET-21b plasmid carrying the enzyme gene was used as the template for mutation. The mutant plasmids were transformed into Escherichia coli cells for screening. One recombinant mutant, W980F, exhibited increased yield of glycoside when using hydroquinone as the screening acceptor. The enzyme was purified and the effects of the mutation on enzyme properties were determined in detail. It showed improved transglycosylation activity on novel phenolic acceptors besides hydroquinone. The yields of the glycosides produced from phenol, hydroquinone, and catechol were increased by 7.6% to 53.1%. Moreover, it generated 32.3% glycosides from the pyrogallol that could not be glycosylated by the wild-type enzyme. Chemical structures of these glycoside products were further determined by MS and NMR analysis. Thus, a series of novel phenolic galactosides were achieved by β-galactosidase for the first time. This was a breakthrough in the enzymatic galactosylation of the challenging phenolic compounds of great values.  相似文献   

10.
The cyclodextrin glucanotransferase (CGTase) gene (cgt) from Bacillus circulans 251 was cloned into plasmid pYD1, which allowed regulated expression, secretion, and detection. The expression of CGTase with a-agglutinin at the N-terminal end on the extracellular surface of Saccharomyces cerevisiae was confirmed by immunofluorescence microscopy. This surface-anchored CGTase gave the yeast the ability to directly utilize starch as a sole carbon source and the ability to produce the anticipated products, cyclodextrins, as well as glucose and maltose. The resulting glucose and maltose, which are efficient acceptors in the CGTase coupling reaction, could be consumed by yeast fermentation and thus facilitated cyclodextrin production. On the other hand, ethanol produced by the yeast may form a complex with cyclodextrin and shift the equilibrium in favor of cyclodextrin production. The yeast with immobilized CGTase produced 24.07 mg/ml cyclodextrins when it was incubated in yeast medium supplemented with 4% starch.  相似文献   

11.
AspNH2-, Asp- and GluNH2-tRNA synthetases were purified from Phaseolus aureus; their optimum assay conditions, substrate specificities and salt sensitivities were investigated. AspNH2-tRNA synthetase from β-cyanoalanine-producing (Vicia sativa), and non-producing (P. aureus and V. faba) species was able to utilize the analogue as a substrate irrespective of the source of the enzyme. Asp-tRNA synthetase from P. aureus was able to utilize α-aminomalonate and threo-β-hydroxy Asp as a substrate. The transfer of 14C-GluNH2 to tRNA, catalyzed by GluNH2-tRNA synthetase, was only inhibited by high concentrations of those analogues tested; albizziine was the most efficient, but no difference could be demonstrated between the substrate specificities of the enzyme isolated from an albizziine-producer (A. julibrissin and a non-producer (P. aureus) species.  相似文献   

12.
Phanerochaete chrysosporium cellobiose oxidoreductase (CBOR) comprises two redox domains, one containing flavin adenine dinucleotide (FAD) and the other protoheme. It reduces both two-electron acceptors, including molecular oxygen, and one-electron acceptors, including transition metal complexes and cytochrome c. If the latter reacts with the flavin, the reduced heme b acts merely as a redox buffer, but if with the b heme, enzyme action involves a true electron transfer chain. Intact CBOR fully reduced with cellobiose, CBOR partially reduced by ascorbate, and isolated ascorbate-reduced heme domain, all transfer electrons at similar rates to cytochrome c. Reduction of cationic one-electron acceptors via the heme group supports an electron transfer chain model. Analogous reactions with natural one-electron acceptors can promote Fenton chemistry, which may explain evolutionary retention of the heme domain and the enzyme's unique character among secreted sugar dehydrogenases.  相似文献   

13.
3,5,6-trichloro-2-pyridinol (TCP) is a major metabolite of the insecticide chlorpyrifos and is hazardous to human and animal health. A gene encoding a TCP degrading enzyme was cloned from a metagenomic library prepared from cow rumen. The gene (tcp3A) is 2.5 kb in length, encoding a protein (Tcp3A) of 599 amino acid residues. Tcp3A has a potential signal sequence, as well as a putative ATP/GTP binding site, and a likely amidation site. The molecular weight of the enzyme is 62 kDa by SDS–PAGE. Comparison of Tcp3A with the NCBI database using BLASTP revealed homology to amidohydrolase proteins. Recombinant Escherichia coli harboring the tcp3A gene could utilize TCP as the sole source of carbon. TLC and HPLC revealed that TCP was degraded by recombinant E. coli harboring tcp3A. This is the first report of a gene encoding a TCP degrading enzyme.  相似文献   

14.
Intact chicken embryo neural retina cells have been shown to catalyze the transfer of galactose-14C from uridine diphosphate galactose (UDP-galactose) to endogenous acceptors of high molecular weight as well as to exogenous acceptors. Four lines of evidence indicate that the galactosyltransferases catalyzing these reactions are at least partly located on the outside surface of the plasma membrane: (a) there is no evidence for appreciable uptake of sugar-nucleotides by vertebrate cells nor did unlabeled galactose, galactose 1-phosphate, or UDP-glucose interfere with the radioactivity incorporated during the reaction; (b) the cells remained essentially intact during the course of the reaction; (c) there was insufficient galactosyltransferase activity in the cell supernatants to account for the incorporation of galactose-14C into cell pellets; and (d) the intact cells could transfer galactose to acceptors of 106 daltons, and the product of this reaction was in the extracellular fluid. Appropriate galactosyl acceptors interfered with the adhesive specificity of neural retina cells; other compounds, which were not acceptors, had no effect. These results suggested that the transferase-acceptor complex may play a role in cellular recognition.  相似文献   

15.
The assay condition for N-acetylglucosaminyltransferase activities in rat liver microsomal fraction was developed. The enzyme activities towards endogenous acceptors within 48 h after partial hepatectomy were lower than in controls, exceeding the control level by 96 h, and then higher than in controls up to 240 h after the operation. The changes in N-acetylglucosaminyltransferase activities towards exogenous acceptor (UPD-2-acetamido-2-deoxy-D-glucose: glycoprotein 2-acetamido-2-deoxy-D-glucosyltransferase, EC 2.4.1.51) were consistent with those in the enzyme activities towards endogenous acceptors at 144 h, but not at 48 h, after the operation. The contents of protein and the levels of protein-bound hexosamine in the liver microsomes were decreased at early period of liver regeneration.These results suggest that the acceptor capacity of liver microsomal proteins is diminished during first 48 h of the regeneration. This may be responsible for the decreased transfer of the amino sugar to nascent glycoproteins. However, the enzyme activity was enhanced at 144 h and the level of endogenous acceptors may increase.  相似文献   

16.
BackgroundCurrently marketed chondroitin sulfate isolated from animal sources and structurally quite heterogeneous. Synthesis of structurally defined chondroitin sulfate is highly desired. The capsular polysaccharide from Escherichia coli strain K4 is similar to chondroitin, and its biosynthesis requires a chondroitin polymerase (KfoC). The essential step toward de novo enzymatic synthesis of chondroitin sulfate, synthesis of chondroitin, could be achieved by employing this enzyme.MethodsStructurally defined acceptors and donor-sugars were prepared by chemoenzymatic approaches. In addition, surface plasmon resonance was employed to determine the binding affinities of individual substrates and donor–acceptor pairs for KfoC.ResultsKfoC has broad donor substrate specificity and acceptor promiscuity, making it an attractive tool enzyme for use in structurally-defined chimeric glycosaminoglycan oligosaccharide synthesis in vitro. In addition, the binding of donor substrate molecules regulated the affinity of KfoC for acceptors, then influenced the glycosyl transferase reaction catalyzed by this chondroitin polymerase.Conclusion and general significanceThese results assist in the development of enzymatic synthesis approaches toward chimeric glycosaminoglycan oligosaccharides and designing future strategies for directed evolution of KfoC in order to create mutants toward user-defined goals.  相似文献   

17.
Cao YZ  Oo KC  Huang AH 《Plant physiology》1990,94(3):1199-1206
Lysophosphatidate (LPA) acyltransferase (EC 2.3. 1.51) in the microsomes from the maturing seeds of meadowfoam (Limnanthes alba), nasturtium (Tropaeolum majus), palm (Syagrus cocoides), castor bean (Ricinus communis), soybean (Glycine max), maize (Zea mays), and rapeseed (Brassica napus) were tested for their specificities toward 1-oleoyl-LPA or 1-erucoyl-LPA, and oleoyl coenzyme A (CoA) or erucoyl CoA. All the enzymes could use either of the two acyl acceptors and oleoyl CoA, but only the meadowfoam enzyme could use erucoyl CoA as the acyl donor to produce dierucoyl phosphatidic acid (PA). The meadowfoam enzyme was studied further. It had an optimal activity at pH 7 to 8, and its activity was inhibited by 1 millimolar MnCl2, ZnCl2, or p-chloromercuribenzoate. In a test of substrate specificity using increasing concentrations of either 1-oleoyl-LPA or 1-erucoyl-LPA, and either oleoyl CoA or erucoyl CoA, the enzyme activity in producing PA was highest for dioleoyl-PA, followed successively by 1-oleoyl-2-erucoyl-PA, dierucoyl-PA, and 1-erucoyl-2-oleoyl-PA. In a test of substrate selectivity using a fixed combined concentration, but varying proportions, of 1-oleoyl-LPA and 1-erucoyl-LPA, and of oleoyl CoA and erucoyl CoA, the enzyme showed a pattern of acyl preference similar to that observed in the test of substrate specificity, but the preference toward oleoyl moiety in the substrates was slightly stronger. The meadowfoam microsomes could convert [14C]glycerol-3-phosphate to diacylglycerols and triacylglycerols in the presence of erucoyl CoA. The meadowfoam LPA acyltransferase is unique in its ability to produce dierucoyl-PA, and should be a prime candidate for use in the production of trierucin oils in rapeseed via genetic engineering.  相似文献   

18.
The thiol S-methyltransferase from rat liver has been solubilized and prepared in homogeneous form. The enzyme exists in a monomer of Mr 28,000 although enzyme activity is highly unstable with a half-life of 4 days under the best conditions of storage. The reaction requires S-adenosylmethionine as methyl donor but, as is the case with many enzymes active in detoxification, a large variety of lipophilic compounds can serve as acceptors. Acceptor activity is limited to thiols. The naturally occurring hydrophilic thiols, glutathione and cysteine, act neither as substrates nor as inhibitors. The course of the reaction is biphasic with an initial rapid formation of product that is followed by a slower linear rate. The suggestion is offered that this behavior reflects the slow dissociation of an enzyme-product complex composed of enzyme and S-adenosyl-homocysteine.  相似文献   

19.
Purified α-galactosidase from a thermotolerant fungus Aspergillus fumigatus IMI 385708 was found to catalyze efficiently transgalactosylation reactions using 4-nitrophenyl α-d-galactopyranoside as glycosyl donor. Self-transfer reactions with this substrate afforded in low yields several 4-nitrophenyl galactobiosides. Monosaccharides also served as poor glycosyl acceptors. Disaccharides and particularly higher oligosaccharides of α-1,4-gluco- (maltooligosaccharides), β-1,4-gluco- (cellooligosaccharides) and β-1,4-manno-series were efficiently galactosylated, the latter being the best acceptors that were also doubly galactosylated. With mannooligosaccharides product yields increased with polymerization degree of acceptors reaching 50% at DP of 4–6. Longer oligosaccharide acceptors were galactosylated at internal sugar residues. All galactosyl residues were transferred exclusively to the primary hydroxyl group(s) at C-6 position of oligosaccharide acceptors. This is in accordance with the inability of the enzyme to transfer galactose to β-1,4-linked xylooligosaccharides. This is the first report of glycosyl transfer reaction to internal sugar residues of oligosaccharides catalyzed by a glycosidase. High affinity to oligosaccharide acceptors also opens a way toward enzymatic glycosylation of polysaccharides, thus modulating their physico-chemical and biological properties.  相似文献   

20.
The specific activity of dihydroorotate dehydrogenase, catalysing the conversion of l-5,6-dihydroorotate (l-DHO) to orotate, in Leishmania mexicana mexicana was found to be 22.1 ± 3.5 nmole/hr/mg protein in the amastigote, and 28.7 ± 4.6 nmole/hr/mg protein in the promastigote. The enzyme was found to be soluble and to require molecular O2 for activity in both forms of the parasite. Oxygen utilisation was not mediated through the mitochondrial cytochrome-containing respiratory chain, and phenazine methosulphate and ferricyanide could be used as electron acceptors by the enzyme in both aerobic and anaerobic conditions. The enzyme from both amastigote and promastigote had a pH optimum of 7.0, and the Km values for l-DHO were 11.8 ± 4.9 and 2.3 ± 0.4 μM, respectively. The pyrimidine analogs 5-methylorotate (Ki = 8.8 μM) and 5-aminoorotate (Ki = 57 μM) were shown to be competitive inhibitors of the promastigote enzyme, as was the reaction product orotate (Ki = 10 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号