首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the major challenges faced in commercial production of lignocellulosic bioethanol is the inhibitory compounds generated during the thermo-chemical pre-treatment step of biomass. These inhibitory compounds are toxic to fermenting micro-organisms. The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds formed or released during thermo-chemical pre-treatment step such as acid and steam explosion. This review describes the application and/or effect of biological detoxification (removal of inhibitors before fermentation) or use of bioreduction capability of fermenting yeasts on the fermentability of the hydrolysates. Inhibition of yeast fermentation by the inhibitor compounds in the lignocellulosic hydrolysates can be reduced by treatment with enzymes such as the lignolytic enzymes, for example, laccase and micro-organisms such as Trichoderma reesei, Coniochaeta ligniaria NRRL30616, Trametes versicolor, Pseudomonas putida Fu1, Candida guilliermondii, and Ureibacillus thermosphaericus. Microbial and enzymatic detoxifications of lignocellulosic hydrolysate are mild and more specific in their action. The efficiency of enzymatic process is quite comparable to other physical and chemical methods. Adaptation of the fermentation yeasts to the lignocellulosic hydrolysate prior to fermentation is suggested as an alternative approach to detoxification. Increases in fermentation rate and ethanol yield by adapted micro-organisms to acid pre-treated lignocellulosic hydrolysates have been reported in some studies. Another approach to alleviate the inhibition problem is to use genetic engineering to introduce increased tolerance by Saccharomyces cerevisiae, for example, by overexpressing genes encoding enzymes for resistance against specific inhibitors and altering co-factor balance. Cloning of the laccase gene followed by heterologous expression in yeasts was shown to provide higher enzyme yields and permit production of laccases with desired properties for detoxification of lignocellulose hydrolysates. A combination of more inhibitor-tolerant yeast strains with efficient feed strategies such as fed-batch will likely improve lignocellulose-to-ethanol process robustness.  相似文献   

2.
Fermentation of wood hydrolysates to desirable products, such as fuel ethanol, is made difficult by the presence of inhibitory compounds in the hydrolysates. Here we present a novel method to increase the fermentability of lignocellulosic hydrolysates: enzymatic detoxification. Besides the detoxification effect, treatment with purified enzymes provides a new way to identify inhibitors by assaying the effect of enzymatic attack on specific compounds in the hydrolysate. Laccase, a phenol oxidase, and lignin peroxidase purified from the ligninolytic basidiomycete fungus Trametes versicolor were studied using a lignocellulosic hydrolysate from willow pretreated with steam and SO2. Saccharomyces cerevisiae was employed for ethanolic fermentation of the hydrolysates. The results show more rapid consumption of glucose and increased ethanol productivity for samples treated with laccase. Treatment of the hydrolysate with lignin peroxidase also resulted in improved fermentability. Analyses by GC-MS indicated that the mechanism of laccase detoxification involves removal of monoaromatic phenolic compounds present in the hydrolysate. The results support the suggestion that phenolic compounds are important inhibitors of the fermentation process. Received: 3 November 1997 / Received revision: 4 February 1998 / Accepted: 6 February 1998  相似文献   

3.
Chemical hydrolysis of lignocellulosic biomass (LB) produces a number of inhibitors in addition to sugars. These inhibitors include lignin-derived phenolics, carbohydrate-derived furans, and weak acids that have shown a marked effect on the productivities of various metabolites and the growth of biocatalysts in the fermentative reaction. In the past, a number of physicochemical and biological approaches have been proposed to overcome these fermentation inhibitors, including modified fermentative strategies. Additionally, the timely intervention of genetic engineering has provided an impetus to develop suitable technologies for the detoxification of lignocellulosics in biorefineries. However, the improvements in detoxification strategies for lignocellulose hydrolysates have resulted in significant loss of sugars after detoxification. Hydrolysis of myco-LB (LB after fungal pretreatment) has been recognized as a promising approach to avoid fermentation inhibitors and improve total sugar recovery. Biotechnological inventions have also made it possible to widen the range of suitable biocatalysts for biorefineries by microbial-routed induction of enzymatic expression for the elimination of inhibitors, eventually improving ethanol production from acid hydrolysates. This article aims to highlight the strategies that have been adopted to detoxify lignocellulosic hydrolysates and their effects on the chemical composition of the hydrolysates to improve the fermentability of lignocellulosics. In addition, genetic manipulation could widen the availability and variety of substrates and modify the metabolic routes to produce bioethanol or other value-added compounds in an efficient manner.  相似文献   

4.
Laccases: A Useful Group of Oxidoreductive Enzymes   总被引:1,自引:0,他引:1  
Using enzymes as decontaminating agents has received great attention. One of the most promising groups of enzymes, laccases, are used to decontaminate phenol-polluted systems and for bio technological applications. Higher plants and fungi, mostly wood-rotting fungi, are the main producers of laccases, but bacterial laccases also have been found. Belonging to the class of phenoloxidases, laccases catalyze the polymerization of several phenolic substances to polymeric products. In addition, they have transformed lignin and lignin-related compounds, showing a very broad substrate specificity. Specific compounds acting as protein-synthesis inducers historically have been used to improve the production of the enzyme. Recent success in fungal molecular and cellular engineering technology has contributed to significantly increase the industrial production of recombinant laccase. Kinetic (Michaelis-Menten parameters, optimum pH, kcat) and stability properties of laccases may vary according to the source of the enzymes. Laccases are used in a variety of applications, such as to remove toxic compounds from aquatic and terrestrial systems, to produce and treat beverages, as analytical tools, and as biosensors to estimate the quantity of phenols in natural juices or the presence of other enzymes. Laccases have been used successfully in immobilized form as well as dissolved in organic solvents.  相似文献   

5.
Laccase production at reactor scale by filamentous fungi   总被引:2,自引:0,他引:2  
Laccases have received much attention from researchers during the past decades due to their broad substrate specificity and to the fact that they use molecular oxygen as the final electron acceptor instead of hydrogen peroxide as used by peroxidases. This makes laccases highly interesting for a wide variety of processes, such as textile dye decolouration, pulp bleaching, effluent detoxification, biosensors and bioremediation.

The successful application of laccases to the above-mentioned processes requires the production of large quantities of enzyme at low cost. Filamentous fungi are able to produce laccases in high amounts, however, an efficient production system at bioreactor scale is still lacking. This is mainly due to the fact that laccase production by wild-type strains of filamentous fungi is linked to secondary metabolism, which implies that the following drawbacks must be overcome: uncontrolled fungal growth, the formation of polysaccharides around mycelia and the secretion of certain compounds (i.e. proteases) that inactivate laccases. This review summarizes the current status of laccase production by wild-type strains of filamentous fungi at the bioreactor scale.  相似文献   


6.
7.
木质纤维素预处理抑制物产生及脱除方法的研究进展   总被引:1,自引:0,他引:1  
利用纤维素酶将木质纤维素降解成可发酵性糖,然后发酵生产氢气、乙醇、丁醇等生物燃料及高附加值产品,是当今全球研究的热点。预处理是生物质转化过程中至关重要的步骤,而预处理过程中产生的抑制物对木质纤维素后续的酶解和发酵微生物有负面影响。因此了解预处理方法及其过程中产生的抑制物及脱除方法是能否高效转化生物质的基础。文中首先介绍了木质纤维素常用的两类预处理方法即化学法和物理化学法。随后阐述了不同抑制物的产生及其抑制机制,并重点介绍了多种脱毒方法。最后展望了脱除木质纤维素预处理抑制物的研究趋势:应用交联聚乙烯亚胺和金属有机骨架化合物等新型材料脱除抑制物或通过基因工程、代谢工程技术等构建抑制物耐受性菌株等。  相似文献   

8.
Laccase is a ligninolytic enzyme widely distributed in wood-rotting fungi and which is also found in a variety of molds and insects as well as some plants and bacteria. Its biological roles range from depolmerization of lignin, coal and humic acids via the oxidation of various mono- and diaromatic structures, to polymerization reactions and pigment formation in microbial cells or spores. Apart from its action in catabolic, depolymerizing and polymerizing processes, laccases have also been shown to be powerful enzymes for coupling two different molecules to create new low-molecular-weight products in high yield. In addition to their homomolecular coupling capabilities, laccases are also able to couple a hydroxylated aromatic substrate with a nonlaccase substrate of variable structure to create new heteromolecular hybrid molecules. Thus, laccases are increasingly finding applications in biotechnology in the fields of environment-friendly synthesis of fine chemicals and for the gentle derivatization of biologically active compounds e.g., antibiotics, amino acids, antioxidants, and cytostatics. Finally, oligomerization and polymerization reactions can lead to new homo- or heteropolymers and biomaterials. These may be useful in a wide range of applications including the production of polymers with antioxidative properties, the copolymerizing of lignin components with low-molecular mass compounds, the coating of cellulosic cotton fibers or wool, the coloring of hair and leathers, or the cross-linking and oligomerization of peptides.  相似文献   

9.
External nutrient supplementation and detoxification of hydrolysate significantly increase the production cost of cellulosic ethanol. In this study, we investigated the feasibility of fermenting cellulosic hydrolysates without washing, detoxification or external nutrient supplementation using ethanologens Escherichia coli KO11 and the adapted strain ML01 at low initial cell density (16 mg dry weight/L). The cellulosic hydrolysates were derived from enzymatically digested ammonia fiber expansion (AFEX)-treated corn stover and dry distiller's grain and solubles (DDGS) at high solids loading (18% by weight). The adaptation was achieved through selective evolution of KO11 on hydrolysate from AFEX-treated corn stover. All cellulosic hydrolysates tested (36-52 g/L glucose) were fermentable. Regardless of strains, metabolic ethanol yields were near the theoretical limit (0.51 g ethanol/g consumed sugar). Volumetric ethanol productivity of 1.2 g/h/L was achieved in fermentation on DDGS hydrolysate and DDGS improved the fermentability of hydrolysate from corn stover. However, enzymatic hydrolysis and xylose utilization during fermentation were the bottlenecks for ethanol production from corn stover at these experimental conditions. In conclusion, fermentation under the baseline conditions was feasible. Utilization of nutrient-rich feedstocks such as DDGS in fermentation can replace expensive media supplementation.  相似文献   

10.
Brown macroalgae are renewable and sustainable biomass resources for the production of biofuels and chemicals, owing to their high levels of carbohydrates and low levels of lignin. To increase the biological usage of brown macroalgae, it is necessary to depolymerize the polysaccharides that generate macroalgal monomeric sugars or sugar derivatives and to convert them into fermentable sugars for the production of biofuels and chemicals. In this review, we discuss the chemical and enzymatic saccharification of the major carbohydrates found in brown macroalgae and the use of the resulting constituents in the production of biofuels and chemicals, as well as high-value health-benefiting functional oligosaccharides and sugars. We also discuss recently reported experimental results, novel enzymes, and technological breakthroughs that are related to polysaccharide depolymerization, fermentable sugar production, and the biological conversion of non-favorable sugars for fermentation using industrial microorganisms. This review provides a comprehensive perspective of the efficient utilization of brown macroalgae as renewable resources for the production of biofuels and chemicals.  相似文献   

11.
《Process Biochemistry》2014,49(1):173-180
Xylitol can be obtained from the pentose-rich hemicellulosic fraction of agricultural residues, such as extracted olive pomace, by fermentation. Dilute acid hydrolysis of lignocellulosic materials, produces the release of potential inhibitory compounds mainly furan derivatives, aliphatic acids, and phenolic compounds. In order to study the potential on the increase of the hydrolysate fermentability, detoxification experiments based on diananofiltration membrane separation processes were made. Two membranes, NF270 and NF90, were firstly evaluated using hydrolysate model solutions under total recirculation mode, to identify the best membrane for the detoxification. NF270 was chosen to be used in the diananofiltration experiment as it showed the lowest rejection for toxic compounds and highest permeate flux. Diananofiltration experiments, for hydrolysate model solutions and hydrolysate liquor, showed that nanofiltration is able to deplete inhibitory compounds and to obtain solutions with higher xylose content. Conversely to non-detoxified hydrolysates, nanofiltration detoxified hydrolysates enabled yeast growth and xylitol production by the yeast Debaryomyces hansenii, clearly pointing out that detoxification is an absolute requirement for extracted olive pomace dilute acid hydrolysate bioconversion.  相似文献   

12.
Summary Hydrolysates obtained by enzymatic saccharification of wheat straw or cornstover pretreated by steam explosion in classical or acidic conditions, were found non fermentable into acetone-butanol (ABE). A simple treatment involving heating the hydrolysates in the presence of calcium or magnesium compounds such as Ca(OH)2 or MgCO3 at neutral pH values restored normal fermentability to these hydrolysates. The detoxification treatment could be included in the standard neutralization and sterilization procedures performed before fermentation.  相似文献   

13.
14.
《Biotechnology advances》2017,35(4):466-489
The adverse environmental impacts of the fossil fuel and the concerns of energy security necessitate the development of alternative clean energy sources from renewable feedstocks. Lignocellulosic biomass is a 2nd generation feedstock used in the production of biofuels and bio-based products that are conventionally derived from fossil resources. The biochemical conversion, which entails biomass pretreatment, enzymatic hydrolysis and fermentation, is one major platform used to transform lignocelluloses into biofuels. However, lignin presents many challenges to enzymatic hydrolysis leading to the need of high enzyme dose, low hydrolysis yield, low level of recyclability, high cost of enzymatic hydrolysis (because of the high cost of enzymes), and so on. Therefore, enzymatic hydrolysis, which is not cost effective, becomes one of major cost contributors. To mitigate the negative effects of lignin, extensive research has been conducted to explore the fundamental mechanisms of lignin-enzyme interactions to develop technologies to overcome the negative effects of lignin on enzymatic hydrolysis. Non-productive adsorption, which is characterized by hydrophobic, electrostatic and/or hydrogen bonding interactions, is widely known as the primary mechanism governing lignin-enzyme interactions. In addition, lignin-enzyme interaction is also influenced by steric hindrance (i.e., the physical blocking of enzyme access to carbohydrates by lignin). However, the mechanisms underlying the lignin-enzyme interactions remain unclear. This article aims to present a comprehensive review on the lignin-enzyme interactions (i.e. the mechanism, governing driving forces, modeling, and technologies for mitigating the negative effect of lignin). The current challenges inherent in this process and possible avenues of research in cellulosic biorefinery conclude this article.  相似文献   

15.
There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding to 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.  相似文献   

16.
Lignin hydrolysates contain many different chemical species, including ferulic acid, coumaric acid, vanillic acid, vanillin, syringaldehyde and furfural. From the perspective of biofuels, these compounds are problematic and can cause downstream loss of product if not removed prior to beginning the fermentative process. In contrast, a search for these compounds within the literature turns up many papers where the same compounds have beneficial properties pertaining to human health, including as antioxidants and in cancer prevention, or are involved in bacterial cell-to-cell signaling. Consequently, this article reviews the dual nature of these and other compounds found in lignin hydrolysates, highlighting both their detrimental and beneficial activities.  相似文献   

17.
In this work we compared the efficiency of a laccase treatment performed on steam-exploded wheat straw pretreated under soft conditions (water impregnation) or harsh conditions (impregnation with diluted acid). The effect of several enzymatic treatment parameters (pH, time of incubation, laccase origin and loading) was analysed. The results obtained indicated that severity conditions applied during steam explosion have an influence on the efficiency of detoxification. A reduction of the toxic effect of phenolic compounds by laccase polymerization of free phenols was demonstrated. Laccase treatment of steam-exploded wheat straw reduced sugar recovery after enzymatic hydrolysis, and it should be better performed after hydrolysis with cellulases. The fermentability of hydrolysates was greatly improved by the laccase treatment in all the samples. Our results demonstrate the action of phenolic compounds as fermentation inhibitors, and the advantages of a laccase treatment to increase the ethanol production from steam-exploded wheat straw.  相似文献   

18.
Lignocellulosic feedstocks can be converted to biofuels, which can conceivably replace a large fraction of fossil fuels currently used for transformation. However, lignin, a prominent constituent of secondary cell walls, is an impediment to the conversion of cell walls to fuel: the recalcitrance problem. Biomass pretreatment for removing lignin is the most expensive step in the production of lignocellulosic biofuels. Even though we have learned a great deal about the biosynthesis of lignin, we do not fully understand its role in plant biology, which is needed for the rational design of engineered cell walls for lignocellulosic feedstocks. This review will recapitulate our knowledge of lignin biosynthesis and discuss how lignin has been modified and the consequences for the host plant.  相似文献   

19.
Rice husk is one of the most abundant types of lignocellulosic biomass. Because of its significant amount of sugars, such as cellulose and hemicellulose, it can be used for the production of biofuels such as bioethanol. However, the complex structure of lignocellulosic biomass, consisting of cellulose, hemicellulose and lignin, is resistant to degradation, which limits biomass utilization for ethanol production. The protection of cellulose by lignin contributes to the recalcitrance of lignocelluloses to hydrolysis. Therefore, we conducted steam-explosion treatment as pretreatment of rice husk. However, recombinant Escherichia coli KO11 did not ferment the reducing sugar solution obtained by enzymatic saccharification of steam-exploded rice husk. When the steam-exploded rice husk was washed with hot water to remove inhibitory substances and M9 medium (without glucose) was used as a fermentation medium, E. coli KO11 completely fermented the reducing sugar solution obtained by enzymatic saccharification of hot water washing-treated steam-exploded rice husk to ethanol. We report here the efficient production of bioethanol using steam-exploded rice husk.  相似文献   

20.
In the last two decades, a significant amount of work aimed at studying the ability of the white-rot fungus Coriolopsis rigida strain LPSC no. 232 to degrade lignin, sterols, as well as several hazardous pollutants like dyes and aliphatic and aromatic fractions of crude oil, including polycyclic aromatic hydrocarbons, has been performed. Additionally, C. rigida in association with arbuscular mycorrhizal fungi appears to enhance plant growth, albeit the physiological and molecular bases of this effect remain to be elucidated. C. rigida's ability to degrade lignin and lignin-related compounds and the capacity to transform the aromatic fraction of crude oil in the soil might be partially ascribed to its ligninolytic enzyme system. Two extracellular laccases are the only enzymatic components of its lignin-degrading system. We reviewed the most relevant findings regarding the activity and role of C. rigida LPSC no. 232 and its laccases and discussed the work that remains to be done in order to assess, more precisely, the potential use of this fungus and its extracellular enzymes as a model in several applied processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号