首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This paper reports chemical modification of silk sericin in LiCl/dimethyl sulfoxide (DMSO) solvent with 4-cyanophenyl isocyanate. Sericin is a highly hydrophilic protein secreted by Bombyx mori, serving as a protein glue in a cocoon. LiCl/DMSO was found to be a good solvent of sericin and useful for homogeneous modification of its abundant hydroxyl groups under nonaqueous condition. Fourier transform infrared (FTIR) analysis of the modified sericins revealed that 4-cyanophenyl groups were incorporated into sericin molecules mainly through urethane linkages. Several characteristics of the modified sericins such as solubility characteristic, hygroscopic property, and thermal stability were investigated. Secondary structure analysis using FTIR spectra suggested that formation of strong intermolecular hydrogen bonds was inhibited by the modification that is probably attributable to the incorporation of bulky 4-cyanophenyl groups. These results demonstrate that chemical modification of sericin using LiCl/DMSO solvent markedly alters its characteristics.  相似文献   

2.
Protein extraction is a critical step in a two-dimensional electrophoresis (2-DE)-based proteomic analysis. Dimethyl sulfoxide (DMSO), a small organic molecule, is widely used as a solvent in biological sciences. In this study, we modified the cleanup step of the commonly used trichloroacetic acid (TCA)/acetone method of protein extraction by using 20?% DMSO/acetone as a solvent to wash TCA?Cacetone-precipitated pellets. The improved protocol (TCA/acetone?CDMSO) was compared with the TCA/acetone and phenol extraction method based on the protein yield, the number of spots, and resolution on 2-DE maps. TCA/acetone?CDMSO washing increased protein yield, and improved the resolution in 2-DE with less background, streaking, and smearing. This method also produced the highest number of protein spots. To our knowledge, the present study is the first to use DMSO as a cleanup solvent for TCA/acetone-precipitated proteins to enhance their quality prior to 2-DE.  相似文献   

3.
Smirnov VI  Badelin VG 《Biofizika》2004,49(3):395-400
The enthalpies of dissolving glycine, glycyl-glycine and diglycyl-glycine (deltaH(soln)0) in a mixed water-dimethylsulfoxide (DMSO) solvent was determined by the calorimetric method in the range of concentrations of the organic component 0 < X2 < 0.4 m.d. at 298.15 K. The enthalpies of solvation ((deltaH(solv)0) and transfer ((deltaH(tr)0) of these compounds from water to a mixed solvent were calculated. The dependencies deltaH(tr)0 =f(X2) were found to be extreme, indicating complex intermolecular interactions between the solution components. The influence of the structure and the properties of the substances dissolved and the composition of the mixture and the nature of organic solvent on their thermochemical characteristics was studied. The coefficients of enthalpy for pair interactions of glycine and its oligomers with DMSO molecules were calculated. These have positive values and increase in the order: glycyl-glycine < glycine < diglycyl-glycine. The changes in the thermochemical characteristics of dissolving, transfer, and solvation of glycine and its olygomers were shown to be determined by the energy of the mixed solvent formation, the nature of the organic solvents, and the structure of amino acids and peptides.  相似文献   

4.
Strong intermolecular interaction can prevent an organic molecule from dissolving in a reaction solution, thereby jeopardizing its reactivity and usefulness. Nucleobases and nucleosides (especially many purines and their derivatives) are notoriously difficult to dissolve in most organic solvents, generally attributed to their strong intermolecular interactions caused by the aromaticity, polarity and hydrogen-bonding. Guided by our computational study and prediction, to address this challenge, we have found that by doping the reaction solution with toluene (an inert aromatic compound), the added solvent molecules are capable of generating the stacking interaction with the solute molecules (e.g., purine derivatives) and disrupting the intermolecular stacking of the solute molecules. Thus, this inert doping can successfully address the insoluble challenge, dissolve the poorly soluble reactants (such as purine phosphoramidites), and restore the amidite reactivity for oligonucleotide synthesis. Our research has offered a simple strategy to efficiently synthesize labile oligonucleotides, via disrupting stacking interaction with inert aromatic molecules.  相似文献   

5.
Li W  Wang Q  Cui SW  Burchard W  Yada R 《Carbohydrate research》2007,342(11):1434-1441
Cereal beta-glucans can form aggregates in aqueous solution. The presence of aggregates in cereal beta-glucan solutions led to inaccurate determination of molecular weights and it was believed that intermolecular hydrogen bonding caused the aggregation. To eliminate aggregates, a carbanilation method for molecular weight determination of cereal beta-glucans was developed. Wheat beta-glucan samples were selected for investigation. The carbanilation method can prevent intermolecular hydrogen bonding by blocking hydroxyl groups with phenyl carbamate groups. The carbanilates of cereal beta-glucans were prepared by the reaction of cereal beta-glucans with phenylisocyanate catalyzed by DMSO and pyridine. To avoid degradation during the carbanilation reaction, relatively mild conditions were used, which led to incomplete substitution (DS: approximately 2). However, after the carbanilation reaction, the carbanilates dissolved completely in 1,4-dioxane solution without any detectable aggregates, which allowed accurate molecular weight determination. The degree of substitution (DS) of carbanilates was determined by both a nitrogen content method and an FT-IR method. The FT-IR method proved to be the more effective for DS estimation. Using this method, the converted molecular weights of cereal beta-glucans were in good agreement with the results measured in 0.5M NaOH solution, which previously was shown to be a good solvent for cereal beta-glucans. After the carbanilation reaction, conformational changes of carbanilates were studied by static and dynamic light scattering techniques. The fractal dimension (d(f)=2.27) and the structure sensitive parameters (rho >2) suggested a porous globular structure for partially carbanilated beta-glucans.  相似文献   

6.
The monoanion of 7-hydroxy-1-naphthalenesulphonic acid (HNS) undergoes pseudo-first-order dissociation and its conjugate base undergoes second-order protonation in the lowest excited singlet state. The proton transfer kinetics in water containing dimethylsulphoxide (DMSO), up to a mole fraction of about 0.4, have been evaluated as a function of DMSO concentration. At mole fractions above 0.5 of DMSO, proton-transfer does not measurably occur. At mole fractions below 0.5, steady-state and pulsed-source fluorimetries show the rate constant for dissociation to decrease exponentially with increasing mole fraction of DMSO. This is believed to be due to penetration and disruption of the aqueous solvent cage of HNS by DMSO, resulting in impairment of the Grotthus proton-transfer mechanism. The rate of neutralization of the conjugate base by hydrogen ion is found to vary only slightly with solvent composition and depends on the bulk dielectric properties of the solvent.  相似文献   

7.
Xu X  Zhang X  Zhang L  Wu C 《Biomacromolecules》2004,5(5):1893-1898
Triple helical lentinan, beta-(1-->3)-D-glucan from Lentinus edodes, was denatured in dimethlysulfoxide (DMSO) into single random coils. The DMSO solutions of randomly coiled lentinan were diluted with pure water to different wH (the weight fraction of water in the mixed solvent), and their specific optical rotation [alpha]D, reduced viscosity (lnetar)/c, and hydrodynamic radius Rh were investigated as a function of wH and storage time t. With an increase of wH from 0.1 to 0.2, [alpha]D increased sharply, suggesting that transition of conformation of the macromolecules has occurred. When wH was lower than 0.1, (lnetar)/c of lentinan in water-diluted DMSO exhibited the almost same value as that in pure DMSO and changed hardly with increasing t. Interestingly, (lnetar)/c decreased to reach a minimum with a further increase of wH from 0.1 to 0.25 and then increased with a continuous increase of wH from 0.25 to 0.5. Both (lnetar)/c and Rh of the denatured lentinan in water-diluted DMSO with wH of approximately 0.25 both exhibited a minimum, indicating that collapsed coil chains have occurred. All of the experimental findings revealed that the behaviors of lentinan in water-diluted DMSO solution with wH < 0.1 were consistent with that in good solvent, DMSO. When wH = 0.25, the quality of the mixed solvents became worse, and the dominant intramacromolecular hydrogen-bond interaction enhanced, leading to minimum of viscosity and size of the chains as a result of the collapsed coils. When wH > 0.25, the quality of the mixture weakens further, and the intermolecular hydrogen-bond interaction enhanced and was dominant, leading to aggregation of the collapsed chains.  相似文献   

8.
The solution structure of a hexapeptide, cyclo(Gln-Trp-Phe-Gly-Leu-Met), which is a selective NK-2 antagonist, has been studied by a combination of two-dimensional nmr and molecular dynamics (MD) techniques. The simulation based on nmr and MD data resulted in the convergence to a family of structures. Free molecular dynamics for 50 ps in the presence of DMSO solvent molecules shows that the structure is energetically stable. One intramolecular hydrogen bond between the amide proton of Gin and the carbonyl oxygen of Gly was revealed. This result is consistent with the results from the measurement of the temperature coefficient of the amide protons. The extent of intermolecular hydrogen bonding between the amide protons of the peptide and DMSO was also revealed by the free MD simulation. The resulting structure of the cyclic peptide contains a variation type I′ β-turn in the Gly-Leu-Met-Gln segment. Comparison of the structure of this peptide with that of other NK-2 antagonist cyclic hexapeptides was made, and the activity of cyclic antagonists appears to be inversely related to the conformational rigidity of the cyclic peptides. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
This paper extends a previous study in which a discontinuity in the specific rotation of open chain α-l,4-linked glucopyranosides in the water–dimethyl sulfoxide (H2O–DMSO) system was attributed to a symmetry change about a polymer chain segment. Optical rotation of amylose, cyclohexamylose, methyl β-maltoside, and dextran was measured in the following mixed solvent systems: formamide–dimethyl sulfoxide (F-DMSO), ethylenediamine–dimethyl sulfoxide (E–DMSO), and hexamethylphosphoramide–dimethyl sulfoxide (HMPA–DMSO). Refractive index measurements were used in an attempt to detect hydrogen bonding between solvent components. The specific rotation of amylose corrected for variation in refractive index (CSR), as a function of solvent composition, showed a discontinuity at solvent compositions corresponding to about 1 mole F to 2 moles DMSO and to 1 mole E to at least 8 moles DMSO. A discontinuity in the CSR function of amylose in the H2O-DMSO mixed solvent that occurs at 25°C is not observed at 70°C. The CSR function of methyl-β-maltoside exhibits a discontinuity in solvent composition corresponding to mole ratios between 2F–DMSO and 3F–DMSO. Present results indicate that an amylose chain segment may undergo a symmetry change in solvent compositions corresponding to mole ratios between F–DMSO and F–2DMSO. Our CSR measurements of amylose and model compounds in E–DMSO and HMPA–DMSO do not permit us to distinguish between possible changes in amylose chain segment symmetry and solvent interactions that could affect symmetry properties of the glucopyranose ring.  相似文献   

10.
A simple biosensor for the detection of hydrogen peroxide in organic solvents has been developed and coupled to a flow injection analysis (FIA) system. Catalase was entrapped in polyacrylamide gel and placed on the surface of platinum (working electrode) fixed in a Teflon holder with Ag-wire (auxiliary electrode), followed by addition of filter paper soaked in KCl. The entrapped catalase gel was held on the electrode using membranes. The effects of cellulose and polytetrafluroethylene (PTFE) membranes on the electrode response towards hydrogen peroxide have been studied. The modified electrode has been used to study the detection of hydrogen peroxide in solvents like water, dimethyl sulfoxide (DMSO), and 1,4-dioxane using amperometric techniques like cyclic voltammetry (CV) and FIA. The CV of modified catalase electrode showed a broad oxidation peak at -150 mV and a clear reduction peak at -212 mV in the presence of hydrogen peroxide. Comparison of CV with hydrogen peroxide in various solvents has been carried out. The electrode showed an irreversible kinetics with DMSO as the solvent. A flow cell has been designed in order to carry on FIA studies to obtain calibration plots for hydrogen peroxide with the modified electrode. The calibration plots in several solvents such as water, dimethyl sulfoxide, 1,4-dioxane have been obtained. The throughput of the enzyme electrode was 10 injections per hour. Due to the presence of membrane the response time of the electrode is concentration dependent.  相似文献   

11.
The effect of solvent on the rate of leuprolide degradation and on the structure of the degradation products was explored. Leuprolide solutions (370 mg/mL) were prepared in water and dimethyl sulfoxide (DMSO) for delivery in DUROS osmotic implants. Both solvent systems demonstrated better than 90% stability after 1 year at 37 degrees C, where the DMSO formulation afforded better stability than the aqueous formulation and was used in subsequent clinical trials. The rate of leuprolide degradation in DMSO was also observed to accelerate with increasing moisture content, indicating that the aprotic solvent minimized chemical degradation. Interestingly, leuprolide degradation products varied with formulation vehicle. The proportions of leuprolide degradation products observed to form in water and DMSO at 37 degrees C were hydrolysis > aggregation > isomerization > oxidation and aggregation > oxidation > hydrolysis > isomerization, respectively. Specifically, more N-terminal hydrolysis and acetylation were observed under aqueous conditions, and increased Trp oxidation and Ser beta-elimination were seen under non-aqueous conditions. Furthermore, the major chemical degradation pathway changed with temperature in the DMSO formulation (decreasing oxidation with increasing temperature), but not in the aqueous formulation.  相似文献   

12.
Beware of proteins in DMSO   总被引:6,自引:0,他引:6  
The effect on the secondary structure of representative alpha-helical, beta-sheet and disordered proteins by varying concentrations of dimethyl sulphoxide (DMSO) in 2H2O has been investigated by Fourier transform infrared spectroscopy. Significant perturbations of protein secondary structure are induced by DMSO and DMSO/2H2O mixtures. For highly structured proteins, such as myoglobin and concanavalin A, the infrared spectra point to a progressive destabilisation of the secondary structure until at moderate DMSO concentrations (around 0.33 mol fraction) intermolecular beta-sheet formation and aggregation are induced, as indicated by the appearance of a strong band at 1621 cm-1. This is a direct consequence of the disruption of intramolecular peptide group interactions by DMSO (partial unfolding). At higher DMSO concentrations (above 0.75 mol fraction), such aggregates are dissociated by disruption of the intermolecular C = O...2H-N deuterium bonds. The presence of a single amide I band at 1662 cm-1 corresponding to free amide C = O groups indicates that at high concentrations and in pure DMSO the proteins are completely unfolded, lacking any secondary structure. While low concentrations of DMSO showed no detectable effect upon the gross secondary structure of myoglobin and concanavalin A, the thermal stability of both proteins was markedly reduced. In alpha-casein, a highly unstructured protein, the situation is one of direct competition. The amide I maximum in 2H2O, at 1645 cm-1, is typical of unordered proteins with C = O groups deuterium-bonded predominantly to 2H2O. Addition of DMSO disrupts such interactions by competing with the peptide C = O group for the deuterium bond donor capacity of the 2H2O, and so progressively increases the amide I maximum until it stabilizes at 1663 cm-1, a position indicative of free C = O groups.  相似文献   

13.
(-)-Epigallocatechin 3-O-gallate (EGCG) a molecule found in green tea and known for a plethora of bioactive properties is an inhibitor of heat shock protein 90 (HSP90), a protein of interest as a target for cancer and neuroprotection. Determination of the spectral properties of EGCG fluorescence in environments similar to those of binding sites found in proteins provides an important tool to directly study protein-EGCG interactions. The goal of this study is to examine the spectral properties of EGCG fluorescence in an aqueous buffer (AB) at pH=7.0, acetonitrile (AN) (a polar aprotic solvent), dimethylsulfoxide (DMSO) (a polar aprotic solvent), and ethanol (EtOH) (a polar protic solvent). We demonstrate that EGCG is a highly fluorescent molecule when excited at approximately 275 nm with emission maxima between 350 and 400 nm depending on solvent. Another smaller excitation peak was found when EGCG is excited at approximately 235 nm with maximum emission between 340 and 400 nm. We found that the fluorescence intensity (FI) of EGCG in AB at pH=7.0 is significantly quenched, and that it is about 85 times higher in an aprotic solvent DMSO. The Stokes shifts of EGCG fluorescence were determined by solvent polarity. In addition, while the emission maxima of EGCG fluorescence in AB, DMSO, and EtOH follow the Lippert-Mataga equation, its fluorescence in AN points to non-specific solvent effects on EGCG fluorescence. We conclude that significant solvent-dependent changes in both fluorescence intensity and fluorescence emission shifts can be effectively used to distinguish EGCG in aqueous solutions from EGCG in environments of different polarity, and, thus, can be used to study specific EGCG binding to protein binding sites where the environment is often different from aqueous in terms of polarity.  相似文献   

14.
In drug discovery programs, dimethyl sulfoxide (DMSO) is a standard solvent widely used in biochemical assays. Despite the extensive use and study of enzymes in the presence of organic solvents, for some enzymes the effect of organic solvent is unknown. Macromolecular targets may be affected by the presence of different solvents in such a way that conformational changes perturb their active site structure accompanied by dramatic variations in activity when performing biochemical screenings. To address this issue, in this work we studied the effects of two organic solvents, DMSO and methanol (MeOH), in the isothermal titration calorimetry (ITC) kinetic assays for the catalyzed reaction of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Trypanosoma cruzi. The solvent effects on T. cruzi GAPDH had not yet been studied. This enzyme was shown here to be affected by the organic solvents content up to 5.0% for MeOH and up to 7.5% for DMSO. The results show that when GAPDH is assayed in the presence of DMSO (5%, v/v) using the ITC experiment, the enzyme exhibits approximately twofold higher activity than that of GAPDH with no cosolvent added. When MeOH (5%, v/v) is the cosolvent, the GAPDH activity is sixfold higher. The favorable effects of the organic solvents on the Michaelis-Menten enzyme-substrate complex formation ensure the consistency of the biological assays, structural integrity of the protein, and reproducibility over the measurement time. The reaction was also kinetically monitored by standard spectrophotometric assays to establish a behavioral performance of T. cruzi GAPDH when used for screening of potential inhibitors.  相似文献   

15.
Candida rugosa lipase (CRL) has been widely used as a biocatalyst for non-aqueous synthesis in biotechnological applications, which, however, often suffers significant loss of activity in organic solvent. Experimental results show that trehalose could actively counteract the organic-solvent-induced protein denaturation, while the molecular mechanisms still don’t unclear. Herein, CRL was used as a model enzyme to explore the effects of trehalose on the retention of enzymatic activity upon incubation in N,N-dimethylformamide (DMF). Results showed that both catalytic activity and conformation changes of CRL influenced by DMF solvent were inhibited by trehalose in a dose-dependent fashion. The simulations further indicated that the CRL protein unfolded in binary DMF solution, but retained the native state in the ternary DMF/trehalose system. Trehalose as the second osmolyte added into binary DMF solution decreased DMF-CRL hydrogen bonds efficiently, whereas increased the intermolecular hydrogen bondings between DMF and trehalose. Thus, the origin of its denaturing effects of DMF on protein is thought to be due to the preferential exclusion of trehalose as well as the intermolecular hydrogen bondings between trehalose and DMF. These findings suggest that trehalose protect the CRL protein from DMF-induced unfolding via both indirect and direct interactions.  相似文献   

16.
Acylated hyaluronan (HA) in aqueous (DMSO/H2O) and nonaqueous (DMSO) solutions was studied by means of nuclear magnetic resonance, differential scanning calorimetry (DSC), mass spectrometry and UV/vis spectroscopy. It has been demonstrated that structural and conformational properties of the acylated hyaluronan derivates are strongly dependent on the nature of reaction solvent. Acylation in DMSO was more selective than that carried out in DMSO/H2O, though in both cases in average a maximum of one acyl chain was detected per HA dimer. The hydrophobic functionalization of hyaluronan induced its interaction with hydrophobic dye as a consequence of acyl chain aggregation. The higher the degree of acylation the more hydrophobic dye was interacting with HA. For concentrated samples, aggregation was more evident in case of acylated HA in aqueous solution. This phenomenon was explained by its different conformational arrangement in solution which was further supported by DSC data indicating an existence of hydrophobic cavities. The formation of self-aggregated assemblies indicates potential applications of this type of HA derivate as drug delivery system.  相似文献   

17.
Proton nuclear magnetic resonance studies have revealed several structural and dynamic properties of the glutamine-binding protein of Escherichia coli. When this protein binds L-glutamine, six low-field, exchangeable proton resonances appear in the region from +5.5 to +10 parts per million downfield from water (or +10.2 to +14.7 parts per million downfield from the methyl proton resonance of 2,2-dimethyl-2-silapentane-5-sulfonate). This suggests that the binding of L-glutamine induces specific conformational changes in the protein molecule, involving the formation of intermolecular and intramolecular hydrogen bonds between the glutamine-binding protein and L-glutamine, and within the protein molecule. The oxygen atom of the gamma-carbonyl group of L-glutamine is likely to be involved in the formation of an intermolecular hydrogen bond between the ligand and the binding protein. We have shown that at least one phenylalanine and one methyl-containing residue are spatially close to this intermolecular hydrogen-bonded proton. The intermolecular and intramolecular hydrogen-bonded protons of the ligand-protein complex undergo solvent exchange. The local conformations around these intermolecular and intramolecular hydrogen bonds are quite stable when subjected to pH and temperature variations. From these results, the utility of proton nuclear magnetic resonance spectroscopy for investigating such binding proteins has been shown, and a picture of the ligand-binding process can be drawn.  相似文献   

18.
Javier Miragaya 《Steroids》2009,74(9):735-361
A norbornyl-2-acetyl derivative of cholic acid ([3β,5β,7α,12α]-3[(norbornyl-2-acetyl)-amino]-7,12-dihydroxycholan-24-oic acid -NbCH2CA-) was synthesized and recrystallized in two dipolar aprotic solvents (acetone, DMSO) and in one protic solvent (2-propanol). In DMSO and acetone the crystals are orthorhombic, P212121 (all their parameters being very similar) while in 2-propanol the crystal is monoclinic, P21. The inclusion complexes with the solvent have a 1:1 stochiometry with DMSO and acetone and 1:2 with 2-propanol. All solvents are forming a hydrogen bond with the amide bond of the bridge between the norbornyl residue and the steroid nucleus of the bile acid. In DMSO and acetone the β side of the steroid groups lies in the same region facilitating hydrophobic interactions, and the molecules are disposed in an antiparallel orientation (the methyl groups having a β interdigitation) forming bilayers. The width of the bilayers is 9.231 Å and 8.859 Å in DMSO and acetone, respectively. A lamellar structure is also evident for the crystal in 2-propanol (the width being 11.908 Å), but the packing is different from the previous one since a sliding between the steroid groups is observed and the methyl groups are not interdigitated. Four different hydrogen bonds are established by every steroid molecule in the NbCH2CA/DMSO (or acetone) crystal. This hydrogen bond network interconnects the hydrophilic regions of the lamellar structure. The hydrogen bond network of the NbCH2CA:2-propanol crystal is different because of the different abilities of 2-propanol to form hydrogen bonds. The side chain has a ttti conformation in the two orthorhombic crystals, and a tgtg one in the monoclinic crystal.  相似文献   

19.
The synthesis of Leu-enkephalin selectively 17O-enriched in Gly2 and Gly3 is reported. The 17O-nmr chemical shifts of [17O-Gly2, Leu5]- and [17O-Gly3, Leu5]-enkephalins in H2O are almost identical and independent of the pH. Since hydrogen bonding is the dominant factor governing the chemical shifts of the peptide oxygen, it can be concluded that the hydration state of both oxygens is identical and independent of the pH. The 17O chemical shifts of the [17O-Leu5]-enkephalin terminal carboxyl group at pH approximately 1.9 and 5.6 are very different in H2O but very similar in CH3CN/DMSO (4:1) solution. This suggests that the protonation state of the carboxyl group at both pH values in CH3CN/DMSO solution is the same and consequently that Leu-enkephalin exists in the neutral form at pH approximately 5.6. In this organic mixed solvent system both Gly2 and Gly3 oxygen resonances exhibit a significant shift to high frequency by the same extent (delta delta approximately 30 ppm). It is concluded that both peptide oxygens are not hydrogen bonded to an appreciable extent and that no specific 2----5 hydrogen bonding exists to an appreciable extent. This conclusion is in agreement with the energy of activation for molecular rotation, as determined from T1 measurements, which was found to be almost identical for both [17O-Gly2, Leu5]- and [17O-Gly3, Leu5]-enkephalins in CH3CN/DMSO (4:1) mixed solvent.  相似文献   

20.
General acid-base catalysis in nucleobase amino proton exchange: cytidine   总被引:2,自引:0,他引:2  
A useful property of DMSO solvent has been exploited to reveal a new catalytic route for cytidine amino proton exchange, relevant to exchange in the macromolecular state, but hidden in aqueous solution. Additional exchange mechanisms in aqueous monomeric cytidine (and adenosine) are obscured by the formation of a fast-exchanging endocyclic-protonated intermediate, which dominates the kinetics. Endocyclic nucleobase protonation could be circumvented in the presence of buffer conjugate acid by the use of DMSO/water solvent, permitting the first unequivocal observation buffer acid-catalyzed exchange from the neutral, unprotonated nucleobase, i.e., general acid catalysis. Because buffer ionization is greatly reduced in DMSO through anion desolvation, nucleobase protonation is suppressed in the presence of buffer acid. Evidence is presented to describe this catalytic route as one involving hydrogen bond formation between the buffer acid and the endocyclic protonation site, C(N-3). Since this same configuration is found in Watson-Crick hydrogen bonding, experiments are presented to demonstrate faster cytidine amino proton exchange with the formation of the G-C base pair in DMSO. The importance of this mechanism in past aqueous monomer studies and in the interpretation of macromolecular (DNA) hydrogen exchange is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号