首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glyphosate, the most used herbicide in the world, has a residue problem that cannot be ignored. However, glyphosate itself does not have fluorescence emission and lacks the conditions for fluorescence detection. In this work, a rapid and selective fluorescence detection method of glyphosate was designed by an ‘on–off–on’ fluorescent switch based on a luminous covalent organic framework (L-COF). Only the fixed concentration of Fe3+ as an intermediate could trigger the fluorescent switch and no incubation step was required. The proposed method showed good accuracy with a correlation coefficient of 0.9978. The method's limits of detection and quantitation were 0.88 and 2.93 μmol/L, which were lower than the maximum allowable residue limits in some regulations. Environmental water samples and tomatoes were selected as actual samples to verify the application in a complex matrix. A satisfactory mean recovery from 87% to 106% was gained. Furthermore, Fe3+ could induce fluorescence quenching of L-COF through the photo-induced electron transfer (PET) effect, while the addition of glyphosate could block the PET effect to achieve detection. These results demonstrated the proposed method had abilities to detect glyphosate and broaden the application of L-COF.  相似文献   

2.
Amyloid-β oligomers (AβOs) enrichment in brain is highly related to Alzheimer’s pathogenesis, but tracing them in the brain by imaging technique is still a great challenge due to their heterogeneity and metastability. Herein, a new near-infrared (NIR) fluorescent probe, namely, PTO-41, was designed and synthesized to specifically target AβOs. PTO-41 possesses excellent functional properties including optimal fluorescent properties (emission maxima at 680 nm upon interacting with AβOs), high affinity (Kd = 349 nM), low cell toxicity, desirable lipophilicity (log P = 2.24), and fast wash out from the brain (brain2 min/brain60 min = 5.0). Furthermore, PTO-41 exhibits a high sensitivity toward AβOs in vitro phantom imaging experiments. More importantly, PTO-41 shows great capacity to differentiate between 4-month-old APP/PS1 model mice from age-matched control mice using in vivo imaging. In summary, PTO-41 almost meets all the requirements as a versatile NIR fluorescent probe for the detection of AβOs both in vitro and in vivo.  相似文献   

3.
A 1,8-naphthalimide–Cu(II) ensemble was rationally designed and synthesized as a new turn-on fluorescent probe utilizing the ‘chemosensing ensemble’ method for detections of thiols (Cys, Hcy and GSH) with high selectivity over other α-amino acids at pH 7.4 in organic aqueous media (EtOH/HEPES, v/v = 9:1). The recognition mechanism was attributed to the remove Cu(II) from the 1,8-naphthalimide–Cu(II) ensemble by thiols and the release of flurescence of ligand 1. Remarkable fluorescence enhancements were therefore observed in the sensing process of thiols by the 1,8-naphthalimide–Cu(II) ensemble. Furthermore, the 1,8-naphthalimide–Cu(II) ensemble was successfully applied to the fluorescence imaging of thiols in CHO cells with high sensitivity and selectivity.  相似文献   

4.
Aluminum, classified as one of the toxic heavy metals, has a recommended daily consumption limit of 3–10 mg, as specified by the World Health Organization (WHO). Herein, the selective and sensitive aluminum(III) fluorescence sensor based on TMU-16 metal–organic frameworks (MOFs) in aqueous medium, is reported. A sensing pathway was found via the cation exchange between aluminum(III) and zinc(II) ions, and caused selectivity and sensitivity detection of aluminum(III) with a 5–100 ppm linear range and 1.99 ppm limit of detection (LOD). This sensor offers the advantage of accurately determining the concentration range of aluminum(III) ions. At low concentrations, only fluorescence quenching was observed, while at higher concentrations, fluorescence emission not only undergoes quenching but also exhibits a blue shift in wavelength. Notably, the sensor demonstrates no interference from cation solutions of mercury(II), zinc(II), nickel(II), lead(II), cobalt(II), cadmium(II), silver(I), chromium(III), and iron(III). Another significant feature of this sensor is its selectivity toward copper(II) and aluminum(III) ions, due to quenching fluorescence in the presence of copper(II) ion. The results presented the sensor's selectivity toward copper(II) at low concentrations and aluminum(III) at high concentrations.  相似文献   

5.
A new electrochemical sensor based on a novel organic–inorganic material (PNFCTs) was proposed for detection of paracetamol in this paper. First, PNFCTs were prepared with multi-walled carbon nanotubes (MWNTs) and a derivative of 3,4,9,10-perylenetetracarboxylic dianhydride (PTC-NH2) via cross-linking method. Then, PNFCTs were coated onto the surface of the glassy carbon electrode (GCE) to form porous organic conducting polymer films (PNFCTs/GCE), which could not only increase the loading of paracetamol efficiently but also provide an interface with exceptional electrical conductivity for paracetamol. Finally, gold nanoparticles (GNPs) were attached to the electrode surface through electrodepositing method, which obtained GNPs/PNFCTs/GCE electrode. The electrochemical behavior of paracetamol on GNPs/PNFCTs/GCE was explored by cyclic voltammetrys (CVs) and differential pulse voltammograms (DPVs). The results showed that the GNPs/PNFCTs/GCE exhibited excellent electrocatalytic activity to paracetamol, which should be attributed to remarkable properties of the new composite nanomaterials with porous nanostructure and exceptional electrical conductivity. The wide liner range and detection limit were 0.3–575 and 0.1 μM, respectively. Finally, it was successfully used to detect paracetamol in dilution human serum and commercial tablets. The sensor shows great promise for simple, sensitive, and selective detection paracetamol and provides a promising approach in paracetamol clinical research and overdose diagnostic applications.  相似文献   

6.
The radiowave dielectric dispersions of DNA in different water–organic co-solvent mixtures have been measured in the frequency range from 100 kHz to 100 MHz, where the polarization mechanism is generally attributed to the confinement of counterions within some specific lengths, either along tangential or perpendicular to the polyion chain. The dielectric dispersions have been analyzed on the basis of two partially different dielectric models, a continuum counterion fluctuation model proposed by Mandel and a discrete charged site model, proposed by Minakata. The influence of the quality of the solvent on the dielectric parameters has been investigated in water–methanol and water–glycerol mixtures at different composition, by varying the permittivity ?m and the viscosity η of the solvent phase. The analysis of the dielectric spectra in solvents where electrostatic and hydrodynamic interactions vary with the solvent composition suggests that both the two models are able, in principle, to account for the observed high-frequency dielectric behavior. However, while some certain assumptions are necessary about the polyion structure within the Mandel model, no structural prerequisite is needed within the Minakata model, where the polarization mechanism invoked considers a radial counterion exchange with the outer medium, which is largely independent of the local polyion conformation.  相似文献   

7.
Developing effective means for detecting contamination in milk during production, processing, and storage is both important and challenging. Tetracycline (TC), due to its use in treating animal infections, is among the most prevalent organic pollutants in milk, posing potential and significant threats to human health. However, efficient and in situ monitoring of TC remains lacking. Nevertheless, we have successfully developed a highly sensitive and selective fluorescence method for detecting TC in milk using a metal–organic framework material made from Yb-TCPP (ytterbium-tetra(4-carboxyphenyl)porphyrin). The calculated Stern–Volmer constant (KSV) was 12,310.88 M−1, and the detection limit was 2.44 × 10−6 M, surpassing previous reports. Crucially, Yb-TCPP fluoresces in the near-infrared region, promising its development into a specific fluorescence detection product for practical TC detection in milk, offering potential application value.  相似文献   

8.
The paper describes the determination of deoxynivalenol (DON) in 55 wheat food and feed samples, 26 from conventional and 29 from organic production. Immunoaffinity columns prepared by entrapping anti-DON antibodies by the sol–gel method were used for sample clean-up. DON was quantified by high performance liquid chromatography (HPLC) and ultraviolet (UV) detection. In general, the incidence of DON contamination was rather low. In eight samples (14.5%) the DON concentration was above the LOQ (380 ng/g), in six samples (10.9%) DON was detected but could not be quantified (>LOD (200 ng/g), <LOQ). In seven conventional samples (two pasta, two cookie, two snack and one feed sample) but only in one organic sample (a snack) the DON concentration was >LOQ. The data indicate both a higher incidence of DON contamination and higher DON concentrations in food and feed samples from conventional than in those from organic production.  相似文献   

9.
10.
An amperometric biosensor for the detection of polyphenols in wine has been developed immobilizing the two enzymes Tyrosinase and Laccase on graphite screen printed electrodes modified with ferrocene. Different immobilization procedures have been carried out, the sensor operational parameters have been optimized, determining the best conditions and the analytical method for the analysis of samples. The biosensor has been then tested with real samples, using wines and musts supplied by Astra, experimental winery, in Imola (Italy). The biosensor gave good results when employed for wine analysis, showing a good agreement with the spectrophotometric data obtained with the Folin-Ciocalteu test, the official method for polyphenols’ analysis in wine. On the other hand, the measurements on musts and wines recently bottled, were seriously affected by the presence of an high level of free sulphur dioxide. SO2 is the likely responsible for enzyme activity inhibition on the sensor. Further studies are currently proceeding to find out the most suitable conditions to obtain results not influenced by the presence of sulphur dioxide.  相似文献   

11.
Carbon, ecological, and water footprints (CF, EF, and WF) are accounting tools that can be used to understand the connection between consumption activities and environmental pressures on the Earth's atmosphere, bioproductive areas, and freshwater resources. These indicators have been gaining acceptance from researchers and policymakers but are not harmonized with one another, and ecological and water footprints are lacking in their representation of product supply chains. In this paper we integrate existing methods for calculating EF and WF within a multi-regional input–output (MRIO) modelling framework that has already been successfully applied for CF estimation. We introduce a new MRIO method for conserving the high degree of product detail found in existing physical EF and WF accounts. Calculating EF and WF in this way is consistent with the current best practice for CF accounting, making results more reliable and easier to compare across the three indicators. We discuss alternatives for linking the MRIO model and the footprint datasets and the implications for results. The model presented here is novel and offers significant improvements in EF and WF accounting through harmonization of methods with CF accounting, preservation of product-level detail, comprehensive inclusion of sectors of the global economy, and clear representation of flows along supply chains and international trade linkages. The matrix organization of the model improves transparency and provides a structure upon which further improvements in footprint calculation can be built. The model described here is the first environmentally extended MRIO model that harmonizes EF and WF accounts and aligns physical unit data of product use with standard economic and environmental accounting.  相似文献   

12.
The family Chlamydiaceae contains nine species pathogenic to humans and animals, but their routine identification is hampered by inadequate detection methods. In an attempt to find a new region for PCR detection and discrimination of the Chlamydiaceae species, the 3 end of the omp2 gene of Chlamydiaceae has been examined. Since sequence data for this part of the genes of Chlamydophila felis and Chlamydia suis had not been available, the near full length of the omp2 genes of these species were cloned and sequenced. Consensus primers enabling amplification of a previously untargeted region spanning 1,030 bp at the 3 end of the gene were designed. Discrimination of all nine Chlamydiaceae species was achieved via RFLP analysis of the amplicons with RsaI and HinfI or RsaI and TaqI endonucleases or via electrophoretic mobility analysis of the RsaI restriction fragments in agarose gel with bisbenzimide-PEG. Intraspecies uniformity of the RFLP patterns was evaluated by the typing of reference strains, isolates of human and animal origin from culture collections, and clinical specimens, and by computer analysis of GenBank sequences. The 3 end of the omp2 gene was shown to be an appropriate marker region suitable for rapid identification of Chlamydiaceae species and can be used for characterization of collection strains and new isolates in taxonomic, epidemiological, and clinical purposes.  相似文献   

13.
Aqueous ethanol mixtures are studied through molecular dynamics simulations with the focus on exploring how various force field models reproduce the association and its influence on selected thermo-physical properties of these mixtures. The most important conclusion seems to be the inadequacy of all classical force fields to reproduce the very peculiar shape of the excess enthalpy of these mixtures, as a function of the ethanol concentration, neither quantitatively nor qualitatively. The Kirkwood–Buff (KB) integrals calculated using the simulation data follow the same trends as the experimental ones. This suggests complicated correlation of the excess enthalpy with the concentration fluctuation and clustering in these mixtures. The KB force field shows better overall agreement with experimental results than the other studied models.  相似文献   

14.
Water contamination by various recalcitrant organic aromatic compounds is an emerging environmental issue that is increasingly attracting the attention of environmental scientists. A great majority of these recalcitrant pollutants are industrial wastes, textile dyes, pharmaceuticals, hormones, and personal care products that are discharged into wastewater. Not surprisingly, various chemical, physical, and biological strategies have been proposed and developed to remove and/or degrade these pollutants from contaminated water bodies. Biological approaches, specifically using oxidoreductase enzymes (such as peroxidases and laccases) for pollutant degradation are a relatively new and a promising research area that has potential advantages over other methods due to their higher efficiency and the ease of handling. This review focuses on the application of different classes of oxidoreductase enzymes to degrade various classes of organic pollutants. In addition to classifying these enzymes based on structural differences, the major factors that can affect their remediation ability, such as the class of peroxidases employed, pH, molecular structure of the pollutant, temperature, and the presence of redox mediators are also examined and discussed. Interestingly, a literature survey combined with our unpublished data suggests that “peroxidases” are a very heterogeneous and diverse family of enzymes and have different pH profiles, temperature optima, thermal stabilities, requirements for redox mediators, and substrate specificities as well as varying detoxification abilities. Additionally, remediation of real-life polluted samples by oxidoreductases is also highlighted as well as a critical look at current challenges and future perspectives.  相似文献   

15.
The fabrication of stable fluorescent MoNCs (molybdenum nanoclusters) in aqueous media is quite challenging as it is not much explored yet. Herein, we report a facile and efficient strategy for fabricating MoNCs using 2,3 dialdehyde maltose-cysteine Schiff base (DAM-cysteine) as a ligand for detecting myoglobin and γ-aminobutyric acid (GABA) in biofluids with high selectivity and sensitivity. The DAM-cysteine-MoNCs displayed fluorescence of bright blue color under a UV light at 365 nm with an emission peak at 444 nm after excitation at 370 nm. The synthesized DAM-cysteine-MoNCs were homogeneously distributed with a mean size of 2.01 ± 0.98 nm as confirmed by the high-resolution transmission electron microscopy (HR-TEM). Further, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) techniques were utilized to confirm the elemental oxidation states and surface functional groups of the DAM-cysteine-MoNCs. After the addition of myoglobin and GABA, the emission peak of DAM-cysteine-MoNCs at 444 nm was significantly quenched. This resulted in the development of a quantitative assay for the detection of myoglobin (0.1–0.5 μM) and GABA (0.125–2.5 μM) with the lower limit of detection as 56.48 and 112.75 nM for myoglobin and GABA, respectively.  相似文献   

16.
The analysis of protein–protein interactions is important for developing a better understanding of the functional annotations of proteins that are involved in various biochemical reactions in vivo. The discovery that a protein with an unknown function binds to a protein with a known function could provide a significant clue to the cellular pathway concerning the unknown protein. Therefore, information on protein–protein interactions obtained by the comprehensive analysis of all gene products is available for the construction of interactive networks consisting of individual protein–protein interactions, which, in turn, permit elaborate biological phenomena to be understood. Systems for detecting protein–protein interactions in vitro and in vivo have been developed, and have been modified to compensate for limitations. Using these novel approaches, comprehensive and reliable information on protein–protein interactions can be determined. Systems that permit this to be achieved are described in this review.K. Kuroda, M. Kato and J. Mima contributed equally to this work.  相似文献   

17.
Timm  Henn  Ivask  Mari  Möls  Tõnu 《Hydrobiologia》2001,464(1-3):153-164
A survey was started in 1990 of the benthic macroinvertebrate community and water quality in some Estonian streams affected by organic pollution, especially the spreading of slurry on fields. The study was expanded during 1991–1998 to involve 47 sampling sites. Long-term dependence was tested using the SAS/GLM contrast statement. All biological indices used (BMWP-ASPT, number of ASPT scoring families (NASPT), Danish Fauna Index, Belgian Biotic Index, EPT-index) were significantly related to the degree of organic pollution. Compared with the reference sites, the test sites revealed significantly lower water quality: higher BOD7, total P and NH4; lower pH and all hydrobiological indices. Season and stream size at the sampling site (expressed in km from the stream source) had significant effects on both hydrochemical and hydrobiological variables. On the contrary, discharge and precipitation had no significant influence on the studied water quality indicators, with the exception of pH in a few cases. At the same time, all but three variables for the reference and the test sites were different at the beginning of the sampling period; this difference remained only for a few sensitive indices such as ASPT and Danish Fauna Index at the end of the period, indicating general improvement in the environment.  相似文献   

18.
Two important marker proteins used in plant gene expression studies are green fluorescent protein (GFP) and β-glucuronidase (GUS). We have compared the utility of each in the analysis of a relatively weakArabidopsis thaliana promoter. The background green fluorescence of arabidopsis tissues and organs has been catalogued. This background fluorescence makes it difficult to detect weak promoter activity driving GFP, a problem compounded by the lack of amplification of the GFP signal. In the case of β-glucuronidase, due to diffusion of the enzymatic product, GUS may over-report promoter activity. However, because of the enzymatic amplification of the signal and the low β-glucuronidase activity of untransformed arabidopsis tissues, weak promoter activity is more easily and more accurately detected using GUS.  相似文献   

19.
This study introduces a novel chemiluminescence (CL) approach utilizing FeS2 nanosheets (NSs) catalyzed luminol–O2 CL reaction for the measurement of three pharmaceuticals, namely venlafaxine hydrochloride (VFX), imipramine hydrochloride (IPM), and cefazolin sodium (CEF). The CL method involved the phenomenon of quenching induced by the pharmaceuticals in the CL reaction. To achieve the most quenching efficacy of the pharmaceuticals in the CL reaction, the concentrations of reactants comprising luminol, NaOH, and FeS2 NSs were optimized accordingly. The calibration curves demonstrated exceptional linearity within the concentration range spanning from 4.00 × 10−7 to 1.00 × 10−3 mol L−1, 1.00 × 10−7 to 1.00 × 10−4 mol L−1, and 4.00 × 10−6 to 2.00 × 10−4 mol L−1 with detection limits (3σ) of 3.54 × 10−7, 1.08 × 10−8, and 2.63 × 10−6 mol L−1 for VFX, IPM, and CEF, respectively. This study synthesized FeS2 NSs using a facile hydrothermal approach, and then the synthesized FeS2 NSs were subjected to a comprehensive characterization using a range of spectroscopic methods. The proposed CL method was effective in measuring the aforementioned pharmaceuticals in pharmaceutical formulations as well as different water samples. The mechanism of the CL system has been elucidated.  相似文献   

20.
In this paper, we establish a novel fluorescence-sensing system for the detection of biotin based on the interaction between DNA and graphene oxide and on protection of the terminal of the biotinylated single-stranded DNA fluorescent probe by streptavidin. In this system, streptavidin binds to the biotinylated DNA, which protects the DNA from hydrolysis by exonuclease I. The streptavidin–DNA conjugate is then adsorbed to the graphene oxide resulting in the fluorescence being quenched. Upon the addition of free biotin, it competes with the labeled biotin for the binding sites of streptavidin and then the exonuclease I digests the unbound DNA probe from the 3′ to the 5′ terminal, releasing the fluorophore from the DNA. Because of the weak affinity between the fluorophore and graphene oxide, the fluorescence is recovered. Under optimal conditions, the fluorescence intensity is proportional to the concentration of biotin in the concentration range of 0.5–20 nmol/L. The detection limit for biotin is 0.44 nmol/L. The proposed fluorescence-sensing system was applied to the determination of biotin in some real samples with satisfactory reproducibility and accuracy. This work could provide a common platform for detecting small biomolecules based on protein–small molecule ligand binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号