首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On artificial polyethylene membranes providing a thigmotropic signal, uredospores of the broad bean rust fungus Uromyces viciae-fabae differentiated a series of infection structures which in nature are necessary to invade the host tissue through the stomata. Within 24 h germ tubes, appressoria, substomatal vesicles, infection hyphae and haustorial mother cells were developed successively. Alterations in protein metabolism during infection structure differentiation of this obligate plant pathogen were analyzed in the absence of the host plant by high resolution two-dimensional polyacrylamide gel electrophoresis (2-DE) and silver staining. The norm pattern representing the 2-DE protein patterns of the whole developmental sequence of infection structures of U. viciae-fabae showed 733 spots. During infection structure differentiation 55 proteins were newly formed, altered in quantity, or disappeared. Major alterations in the protein pattern occurred during uredospore germination and when infection hyphae were formed. Uredospore germination was characterized by a decrease of acidic proteins and an increase mainly of proteins with isoelectric points ranging from weakly acidic to basic.Abbreviations 2-DE two-dimensional polyacrylamide gel electrophoresis - DAPI 4,6-diamino-phenylindol - kDa kilo Dalton - pl isoelectric point - PMSF phenylmethylsulfonyl fluoride - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

2.
3.
In order to investigate the effect of calnexin deletion on the induction of the main ER molecular chaperone BiP, we cultured the wild-type and calnexin-disrupted Saccharomyces cerevisiae strains under normal and stressed conditions. The growth rate of the calnexin-disrupted yeast was almost the same as that of the wild-type yeast under those conditions. However, the induced level of BiP mRNA in the ER was evidently higher in calnexin-disrupted S. cerevisiae than in the wild-type at 37°C, but was almost the same in the two strains under normal conditions. The Western blot analysis results for BiP protein expression in the ER showed a parallel in the mRNA levels in the two strains. It is suggested that under heat stress conditions, the induction of BiP in the ER might recover part of the function of calnexin in calnexin-disrupted yeast, and result in the same growth rate as in wild-type yeast.  相似文献   

4.
5.
Summary Rust infected leaves of wheat plants were incubated with glucose-14C. Uredospores which were formed during the application of the tracer were analyzed. All isolated compounds were labeled with 14C. When germinating uredospores were incubated directly with 14C-glucose, the isolated glutamic acid, arginine and lysine had practically no radioactivity. These compounds did, however, contain considerable 14C-activity when they were isolated from uredospores formed on leaves that had been treated with the tracer. We therefore conclude that these amino acids were synthesized in the host and were taken up by the haustoria of the mycelium.High 14C-radioactivity was also found in all carbohydrates (chitin, glucomannan, polyols etc.). Hexoses isolated from the spore constituents chitin and glucomannan showed the same distribution of radioactivity as the applied glucose-1-14C or glucose-6-14C. It follows that the rust mycelium takes up glucose or a similar monosaccharide from the wheat plant. The C-6-skeleton is not degraded to smaller metabolites before it is taken up.  相似文献   

6.
Impaired secretion of the hydrophobic CY028 cutinase invokes an unfolded protein response (UPR) in Saccharomyces cerevisiae cells. Here we show that the UPR in CY028-expressing S. cerevisiae cells is manifested as an aberrant morphology of the endoplasmic reticulum (ER) and as extensive membrane proliferation compared to the ER morphology and membrane proliferation of wild-type CY000-producing S. cerevisiae cells. In addition, we observed oxidative stress, which resulted in a 21-fold increase in carbonylated proteins in the CY028-producing S. cerevisiae cells. Moreover, CY028-producing S. cerevisiae cells use proteasomal degradation to reduce the amount of accumulated CY028 cutinase, thereby attenuating the stress invoked by CY028 cutinase expression. This proteasomal degradation occurs within minutes and is characteristic of ER-associated degradation (ERAD). Our results clearly show that impaired secretion of the heterologous, hydrophobic CY028 cutinase in S. cerevisiae cells leads to protein aggregation in the ER, aberrant ER morphology and proliferation, and oxidative stress, as well as a UPR and ERAD.  相似文献   

7.
This study focuses on the different efficiencies of secretion of two fungal cutinases by Saccharomyces cerevisiae, a wild-type cutinase (CY000) and a hydrophobic mutant cutinase (CY028). Both cutinases are placed under control of the GAL7 promoter, by which the expression levels can be regulated. Wild-type cutinase was secreted at up to 25 mg per g (dry weight), while CY028 was secreted at a level of 2 mg per g (dry weight); this difference is nearly independent of the expression level. Pulse-chase experiments revealed that whereas CY000 cutinase is secreted, CY028 is irreversibly retained in the cell. Immunogold labelling followed by electron microscopy revealed colocalization of CY028 with immunoglobulin heavy-chain binding protein (BiP) in the endoplasmic reticulum (ER). The increase of wild-type cutinase expression did not result in higher levels of the molecular chaperone BiP, but BiP levels are raised by increased induction of the hydrophobic mutant cutinase. Immunoprecipitation studies showed that in contrast to the wild-type cutinase, the hydrophobic mutant cutinase interacts with BiP. These results indicate that the introduction of two exposed hydrophobic patches in cutinase results in a higher affinity for BiP which might cause the retention of this mutant cutinase in the ER.  相似文献   

8.
We have addressed the question of whether or not Golgi fragmentation, as exemplified by that occurring during drug-induced microtubule depolymerization, is accompanied by the separation of Golgi subcompartments one from another. Scattering kinetics of Golgi subcompartments during microtubule disassembly and reassembly following reversible nocodazole exposure was inferred from multimarker analysis of protein distribution. Stably expressed α-2,6-sialyltransferase and N-acetylglucosaminyltransferase-I (NAGT-I), both C-terminally tagged with the myc epitope, provided markers for the trans-Golgi/trans-Golgi network (TGN) and medial-Golgi, respectively, in Vero cells. Using immunogold labeling, the chimeric proteins were polarized within the Golgi stack. Total cellular distributions of recombinant proteins were assessed by immunofluorescence (anti-myc monoclonal antibody) with respect to the endogenous protein, β-1,4-galactosyltransferase (GalT, trans-Golgi/TGN, polyclonal antibody). ERGIC-53 served as a marker for the intermediate compartment). In HeLa cells, distribution of endogenous GalT was compared with transfected rat α-mannosidase II (medial-Golgi, polyclonal antibody). After a 1-h nocodazole treatment, Vero α-2,6-sialyltransferase and GalT were found in scattered cytoplasmic patches that increased in number over time. Initially these structures were often negative for NAGT-I, but over a two- to threefold slower time course, NAGT-I colocalized with α-2,6-sialyltransferase and GalT. Scattered Golgi elements were located in proximity to ERGIC-53-positive structures. Similar trans-first scattering kinetics was seen with the HeLa GalT/α-mannosidase II pairing. Following nocodazole removal, all cisternal markers accumulated at the same rate in a juxtanuclear Golgi. Accumulation of cisternal proteins in scattered Golgi elements was not blocked by microinjected GTPγS at a concentration sufficient to inhibit secretory processes. Redistribution of Golgi proteins from endoplasmic reticulum to scattered structures following brefeldin A removal in the presence of nocodazole was not blocked by GTPγS. We conclude that Golgi subcompartments can separate one from the other. We discuss how direct trafficking of Golgi proteins from the TGN/trans-Golgi to endoplasmic reticulum may explain the observed trans-first scattering of Golgi transferases in response to microtubule depolymerization.  相似文献   

9.
Many metabolic reactions in the endoplasmic reticulum (ER) require high levels of energy in the form of ATP, which is important for cell viability. Here, we report on an adenine nucleotide transporter residing in the ER membranes of Arabidopsis thaliana (ER-ANT1). Functional integration of ER-ANT1 in the cytoplasmic membrane of intact Escherichia coli cells reveals a high specificity for an ATP/ADP antiport. Immunodetection in transgenic ER-ANT1-C-MYC-tag Arabidopsis plants and immunogold labeling of wild-type pollen grain tissue using a peptide-specific antiserum reveal the localization of this carrier in ER membranes. Transgenic ER-ANT1-promoter-beta-glucuronidase Arabidopsis lines show high expression in ER-active tissues (i.e., pollen, seeds, root tips, apical meristems, or vascular bundles). Two independent ER-ANT1 Arabidopsis knockout lines indicate a high physiological relevance of ER-ANT1 for ATP transport into the plant ER (e.g., disruption of ER-ANT1 results in a drastic retardation of plant growth and impaired root and seed development). In these ER-ANT1 knockout lines, the expression levels of several genes encoding ER proteins that are dependent on a sufficient ATP supply (i.e., BiP [for luminal binding protein] chaperones, calreticulin chaperones, Ca2+-dependent protein kinase, and SEC61) are substantially decreased.  相似文献   

10.
An elaborate quality control system regulates endoplasmic reticulum (ER) homeostasis by ensuring the fidelity of protein synthesis and maturation. In budding yeast, genomic analyses and high‐throughput proteomic studies have identified ER resident proteins that restore homeostasis following local perturbations. Yet, how these folding factors modulate stress has been largely unexplored. In this study, we designed a series of polymerase chain reaction (PCR)‐based modules including codon‐optimized epitopes and fluorescent protein (FP) variants complete with C‐terminal H/KDEL retrieval motifs. These conserved sequences are inherent to most soluble ER resident proteins. To monitor multiple proteins simultaneously, H/KDEL cassettes are available with six different selection markers, providing optimal flexibility for live‐cell imaging and multicolor labeling in vivo. A single pair of PCR primers can be used for the amplification of these 26 modules, enabling numerous combinations of tags and selection markers. The versatility of pCY H/KDEL cassettes was demonstrated by labeling BiP/Kar2p, Pdi1p and Scj1p with all novel tags, thus providing a direct comparison among FP variants. Furthermore, to advance in vitro studies of yeast ER proteins, Strep‐tag II was engineered with a C‐terminal retrieval sequence. Here, an efficient purification strategy was established for BiP under physiological conditions.  相似文献   

11.
12.
Binding protein (BiP) is a chaperone protein involved in the folding of secretory proteins in the ER lumen. OsBiP1 is constitutively expressed in various tissues, whereas the expression of OsBiP4 and OsBiP5 (OsBiP4&5) is not detected in any tissue under normal conditions. However, expression of OsBiP4&5 was highly and specifically activated under ER stress conditions induced by DTT treatment, OsBiP1 knockdown, OsBiP1 overexpression, OsIRE1 overexpression, or various exogenous recombinant proteins in transgenic rice. In contrast, OsBiP4&5 did not accumulate in OsIRE1 knockdown transgenic rice even after DTT treatment. When the subcellular localization of OsBiP4&5 was investigated in seed endosperm cells under the ER stress condition, OsBiP4&5 were localized to the ER, but did not participate in ER-derived protein body (PB-I) formation in a different manner to OsBiP1. These results indicate that OsBiP4&5 levels were positively correlated with stress levels in the ER. Taken together, these results suggest that OsBiP4&5 are ER stress-related BiP proteins that are regulated by OsIRE1/OsbZIP50 pathway and that they may have a distinct function from that of OsBiP1 in rice.  相似文献   

13.
Ribosomes synthesizing secretory and membrane proteins are bound to the endoplasmic reticulum (ER) membrane and attach to ribosome-associated membrane proteins such as the Sec61 complex, which forms the protein-conducting channel in the membrane. The ER membrane-resident Hsp40 protein ERj1 was characterized as being able to recruit BiP to ribosomes in solution and to regulate protein synthesis in a BiP-dependent manner. Here, we show that ERj1 and Sec61 are associated with ribosomes at the ER of human cells and that the binding of ERj1 to ribosomes occurs with a binding constant in the picomolar range and is prevented by pretreatment of ribosomes with RNase. However, the affinity of ERj1 for ribosomes dramatically changes upon binding of BiP. This modulation by BiP may be responsible for the dual role of ERj1 at the ribosome, i.e. acting as a recruiting factor for BiP and regulating translation.  相似文献   

14.
Randall JJ  Sutton DW  Hanson SF  Kemp JD 《Planta》2005,221(5):656-666
Zeins are alcohol soluble seed storage proteins synthesized within the endosperm of maize and subsequently deposited into endoplasmic reticulum (ER) derived protein bodies. The genes encoding the beta and delta zeins were previously introduced into tobacco with the expectation of improving the nutritional quality of plants (Bagga et al. in Plant Physiol 107:13, 1997). Novel protein bodies are produced in the leaves of transgenic plants accumulating the beta or delta zein proteins. The mechanism of protein body formation within leaves is unknown. It is also unknown how zeins are retained in the ER since they do not contain known ER retention motifs. Retention may be due to an interaction of zeins with an ER chaperone such as binding luminal protein (BiP). We have demonstrated protein–protein interactions with the delta zeins, beta zeins, and BiP proteins using an E. coli two-hybrid system. In this study, four putative BiP binding motifs were identified within the delta zein protein using a BiP scoring program (Blond-Elguindi et al. in Cell 75:717, 1993). These putative binding motifs were mutated and their effects on protein interactions were analyzed in both a prokaryotic two-hybrid system and in plants. These mutations resulted in reduced BiP–zein protein interaction and also altered zein–zein interactions. Our results indicate that specific motifs are necessary for BiP–delta zein protein interactions and that there are specific motifs which are necessary for zein–zein interactions. Furthermore, our data demonstrates that zein proteins must be able to interact with BiP and zeins for their stability and ability to form protein bodies.  相似文献   

15.
The folding and trafficking of tropoelastin is thought to be mediated by intracellular chaperones, although the identity and role of any tropoelastin chaperone remain to be determined. To identify proteins that are associated with tropoelastin intracellularly, bifunctional chemical cross-linkers were used to covalently stabilize interactions between tropoelastin and associated proteins in the secretory pathway in intact fetal bovine auricular chondrocytes. Immunoprecipitation of tropoelastin from cell lysates after cross-linking and analysis by SDS-PAGE showed the presence of two proteins of ~74 kD (p74) and 78 kD (p78) that coimmunoprecipitated with tropoelastin. Microsequencing of peptide fragments from a cyanogen bromide digest of p78 identified this protein as BiP and sequence analysis identified p74 as the peptidyl-prolyl cis–trans isomerase, FKPB65. The appearance of BiP and FKBP65 in the immunoprecipitations could be enhanced by the addition of brefeldin A (BFA) and N-acetyl-leu-leu-norleucinal (ALLN) to the culture medium for the final 4 h of labeling. Tropoelastin accumulates in the fused ER/Golgi compartment in the presence of BFA if its degradation is inhibited by ALLN (Davis, E.C., and R.P. Mecham. 1996. J. Biol. Chem. 271:3787–3794). The use of BFA and other secretion-disrupting agents suggests that the association of tropoelastin with FKBP65 occurs in the ER. Results from this study provide the first identification of a ligand for an FKBP in the secretory pathway and suggest that the prolyl cis–trans isomerase activity of FKBP65 may be important for the proper folding of the proline-rich tropoelastin molecule before secretion.  相似文献   

16.
The study of host-parasite interactions has increased considerably in the last decades, with many studies focusing on the identification of parasite molecules (i.e. surface or excretory/secretory proteins (ESP)) as potential targets for new specific treatments and/or diagnostic tools. In parallel, in the last few years there have been significant advances in the field of extracellular vesicles research. Among these vesicles, exosomes of endocytic origin, with a characteristic size ranging from 30–100 nm, carry several atypical secreted proteins in different organisms, including parasitic protozoa. Here, we present experimental evidence for the existence of exosome-like vesicles in parasitic helminths, specifically the trematodes Echinostoma caproni and Fasciola hepatica. These microvesicles are actively released by the parasites and are taken up by host cells. Trematode extracellular vesicles contain most of the proteins previously identified as components of ESP, as confirmed by proteomic, immunogold labeling and electron microscopy studies. In addition to parasitic proteins, we also identify host proteins in these structures. The existence of extracellular vesicles explains the secretion of atypical proteins in trematodes, and the demonstration of their uptake by host cells suggests an important role for these structures in host-parasite communication, as described for other infectious agents.  相似文献   

17.
The parasitic plant Cuscuta australis (dodder) invades a variety of species by entwining the stem and leaves of a host and developing haustoria. The twining response prior to haustoria formation is regarded as the first sign for dodders to parasitize host plants, and thus has been the focus of studies on the host-parasite interaction. However, the molecular mechanism is still poorly understood. In the present work, we have investigated the different effects of blue and white light on the twining response, and identified a set of proteins that were differentially expressed in dodder seedlings using a proteomic approach. Approximately 1,800 protein spots were detected on each 2-D gel, and 47 spots with increased or decreased protein levels were selected and analyzed with MALDI-TOF-MS. Peptide mass fingerprints (PMFs) obtained for these spots were used for protein identification through cross-species database searches. The results suggest that the blue light-induced twining response in dodder seedlings may be mediated by proteins involved in light signal transduction, cell wall degradation, cell structure, and metabolism.  相似文献   

18.
What sequence features in integral membrane proteins determine which parts of the polypeptide chain will form transmembrane α-helices and which parts will be located outside the lipid bilayer? Previous studies on the integration of model transmembrane segments into the mammalian endoplasmic reticulum (ER) have provided a rather detailed quantitative picture of the relation between amino acid sequence and membrane-integration propensity for proteins targeted to the Sec61 translocon. We have now carried out a comparative study of the integration of Nout-Cin-orientated 19-residue-long polypeptide segments into the ER of the yeast Saccharomyces cerevisiae. We find that the ‘threshold hydrophobicity’ required for insertion into the ER membrane is very similar in S. cerevisiae and in mammalian cells. Further, when comparing the contributions to the apparent free energy of membrane insertion of the 20 natural amino acids between the S. cerevisiae and the mammalian ER, we find that the two scales are strongly correlated but that the absolute difference between the most hydrophobic and most hydrophilic residues is ∼ 2-fold smaller in S. cerevisiae.  相似文献   

19.
Parasitic plants infect other plants by forming haustoria, specialized multicellular organs consisting of several cell types, each of which has unique morphological features and physiological roles associated with parasitism. Understanding the spatial organization of cell types is, therefore, of great importance in elucidating the functions of haustoria. Here, we report a three-dimensional (3-D) reconstruction of haustoria from two Orobanchaceae species, the obligate parasite Striga hermonthica infecting rice (Oryza sativa) and the facultative parasite Phtheirospermum japonicum infecting Arabidopsis (Arabidopsis thaliana). In addition, field-emission scanning electron microscopy observation revealed the presence of various cell types in haustoria. Our images reveal the spatial arrangements of multiple cell types inside haustoria and their interaction with host roots. The 3-D internal structures of haustoria highlight differences between the two parasites, particularly at the xylem connection site with the host. Our study provides cellular and structural insights into haustoria of S. hermonthica and P. japonicum and lays the foundation for understanding haustorium function.

Three-dimensional image reconstruction visualized the spatial organization of cell types in the haustoria of the Orobanchaceae parasitic plants Striga hermonthica and Phtheirospermum japonicum.  相似文献   

20.
Thioredoxin h (TRX h) functions as a reducing protein and is present in all organisms. As a new approach for inducing the endoplasmic reticulum (ER) stress, TRX h (OsTRX23) was expressed as a secretory protein using the endosperm-specific glutelin GluB-1 promoter and a signal peptide. In transgenic rice seeds, the majority of the recombinant TRX h accumulated in the ER but some was also localized to the protein body IIs (PB-IIs). The rice grain quality was dependent on the TRX h accumulation level. Increased TRX h expression resulted in aberrant phenotypes, such as chalky and shriveled features, lower seed weight and lower seed protein content. Furthermore, the accumulation of some seed storage proteins (SSPs) was significantly suppressed and the morphology of the protein bodies (PB-Is and PB-IIs) changed according to the level of TRX h. SSPs, such as 13 kDa prolamin and GluA, were specifically modified via the reducing action of TRX h. These changes led to the activation of the ER stress response, which was accompanied by the expression of several chaperone proteins. Specifically, the ER stress markers BiP4 and BiP5 were significantly up-regulated by an increase in the level of TRX h. These results suggest that changes in the conformation of certain SSPs via the action of recombinant TRX h lead to an induced ER stress response in transgenic rice seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号