首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forgery and low-quality products pose a danger to society. Therefore, there are increasing demands for the production of easy-to-recognize and difficult-to-copy anticounterfeiting materials. Products with smart photochromic and fluorescence properties can change colour and emission spectra responding to a light source. In this context, we devised a straightforward preparation of a luminescent polyvinyl alcohol/carboxymethyl cellulose (PVA/CMC) nanocomposite to function as a transparent labelling film. The lanthanide-doped aluminate (LdA) was prepared in the nanoparticle form to indicate diameters of 35–115 nm. Different ratios of the LdA were physically dispersed in the PVA/CMC nanocomposite label film to provide photochromic, ultraviolet protection, antimicrobial activity, and hydrophobic properties. Fluorescence peaks were detected at 365 and 519 nm to indicate a colour change to green. As a result of increasing the phosphor ratio, improved superhydrophobic activity was achieved as the contact angle was increased from 126.1° to 146.0° without affecting the film's original physical and mechanical properties. Both ultraviolet (UV) light protection and antibacterial activity were also investigated. The films showed a quick and reversible photochromic response without fatigue. The current strategy reported the development of a photochromic smart label that is transparent, cost effective, and flexible. As a result, numerous anticounterfeiting products can benefit from the current label for a better market. LdA-loaded PVA/CMC films demonstrated antibacterial activity between poor, good, very good, and outstanding as the percentage of LdA in the film matrix increased. The current film can be applied as a transparent photochromic security barcode for anticounterfeiting applications and smart packaging.  相似文献   

2.
Photochromic inks have been an attractive authentication strategy to improve the anti-counterfeiting efficiency of commercial products. However, recent reports have shown significant disadvantages with photochromic inks, including poor durability and high cost. In this context, we developed novel photochromic nanofibres for advanced anti-counterfeiting applications. Lanthanide-doped strontium aluminate (LdSA) nanoparticles (NPs) were prepared and immobilized into electrospun cellulose acetate nanofibres (CANF). Authentication materials immobilized with inorganic photochromic agents can warranty durability and photostability. Therefore, the ultraviolet-stimulated photochromism of LdSA-encapsulated cellulose acetate nanofibres (LdSA@CANF) demonstrated high reversibility and photostability. A broad range of cellulose acetate nanofibres with unique emission characteristics was developed when applying different ratios of LdSA NPs. LdSA@CANF appeared colourless under visible daylight, whereas a green emission was monitored under ultraviolet-light illumination. The shape and chemical content of the photochromic fibrous films were examined using various analytical techniques. The mechanical characteristics of LdSA@CANF-coated paper were investigated. The emission wavelength was detected at 514 nm to designate green colour, whereas the excitation wavelength was detected at 369 nm to indicate transparency. The prepared cellulose acetate nanofibrous film can be described as an efficient strategy for the anti-counterfeiting of commercialized items.  相似文献   

3.
Dy3+‐doped ZnO nanofibres with diameters from 200 to 500 nm were made using an electrospinning technique. The as‐fabricated amorphous nanofibres resulted in good crystalline continuous nanofibres through calcination. Dy3+‐doped ZnO nanofibres were characterized using scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDX), X‐ray diffraction (XRD), ultraviolet–visible (UV–vis) light spectroscopy, Fourier transform infrared spectroscopy (FTIR), and photoluminescence (PL). XRD showed the well defined peaks of ZnO. UV–vis spectra showed a good absorption band at 360 nm. FTIR spectra showed a Zn–O stretching vibration confirming the presence of ZnO. Photoluminescence spectra of Dy3+‐doped ZnO nanofibres showed an emission peak in the visible region that was free from any ZnO defect emission. Emissions at 480 nm and 575 nm in the Dy3+‐doped ZnO nanofibres were the characteristic peaks of dopant Dy3+ and implied efficient energy transfer from host to dopant. Luminescence intensity was found to be increased with increasing doping concentration and reduction in nanofibre diameter. Colour coordinates were calculated from photometric characterizations, which resembled the properties for warm white lighting devices.  相似文献   

4.
Poly(vinyl chloride) (PVC) was reinforced with electrospun glass nanofibres (EGN) to develop photochromic and afterglow materials such as smart windows and anti-counterfeiting prints. A colourless electrospun glass nanofibres@poly(vinyl chloride) (EGN@PVC) sheet was prepared by physical integration of lanthanide-doped aluminate nanoparticles (LANP). The low concentrations of LANP in the photochromic and photoluminescent EGN@PVC hybrids displayed fluorescence emission with instant reversibility. EGN@PVC with the highest phosphor concentrations showed persistent phosphorescence emission with slow reversibility. Based on the results of the Commission Internationale de l'éclairage Laboratory and luminescence spectroscopy, the translucent EGN@PVC samples became green in the presence of ultraviolet illumination and greenish-yellow in the absence of light. According to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses, the morphological study of EGN and LANP showed diameters of 75–95 and 11–19 nm, respectively. The morphology of the EGN@PVC substrates was studied using SEM, X-ray fluorescence, and energy-dispersive X-ray spectroscopy. The mechanical characteristics of PVC were enhanced by reinforcement with EGN as a roughening agent. When comparing the scratching resistance of LANP-free substrate to photoluminescent EGN@PVC substrates, it was observed that the latter was much superior. The photoluminescence spectra were reported to have an emission peak at 519 nm when excited at 365 nm. These findings demonstrated that the luminous transparent EGN@PVC composites had improved superhydrophobic and UV-blocking characteristics.  相似文献   

5.
Photocatalysis mediated by the anatase modification of titanium dioxide (TiO2) has shown antibacterial effects in medical applications. The aim of this study was to investigate the possibility of expanding the excitation wavelengths for photocatalytic antibacterial effects from ultraviolet (UV) into the visible light range. After deposition of salivary pellicle and adhesion of Streptococcus gordonii on anatase, different irradiation protocols were applied to induce photocatalysis: ultraviolet A (UV-A) > 320 nm; ultraviolet/visible (UV-A/VIS) light > 380 nm and > 390 nm; and VIS light 400–410 nm. A quartz crystal microbalance with dissipation (QCM-D) tests and microscopic examination were used to observe the photoinduced antibacterial effects. Salivary pellicle could be photocatalytically decomposed under all irradiation protocols. In contrast, effective photocatalytic attack of bacteria could be observed by UV-A as well as by UV-A/VIS at 380 nm < λ < 390 nm only. Wavelengths above 380 nm show promise for in situ therapeutic antifouling applications.  相似文献   

6.
Polypropylene textiles have been used in the development of various industrial products, such as automotives, plastic furniture, and medical tools. However, polypropylene resists dyeing due to a deficiency of active staining spots. Here, we developed a new strategy towards new afterglow and photochromic fibres from recycled polypropylene plastics using plasma-supported coloration with rare-earth activated aluminate nanoparticles (REANPs). Plasma curing was used to generate active dyeing sites on the polypropylene surface. A thin film of REANPs (2–10 nm) was deposited onto the plasma-pretreated polypropylene surface. Various analytical techniques were applied to inspect the morphology of the REANP-finished polypropylene fibres. The polypropylene dyeing activity was much improved after being exposed to plasma. Both photoluminescence analysis and Commission internationale de l’éclairage (CIE) laboratory coordinates proved that the polypropylene fibres exhibited a white colour in daylight and green in ultraviolet light. The thin afterglow layer immobilized onto the polypropylene surface exhibited an emission band of 524 nm upon excitation at 365 nm. The sliding angles dropped from 12° to 9°, but the contacting angles increased from 139.4° to 145.0° when the REANP ratio was raised. These findings show that REANP-finished polypropylene had good colourfastness, antimicrobial activity, and ultraviolet light blocking. Both stiffness and permeability to air of REANP-finished polypropylene were explored to designate excellent comfort characteristics.  相似文献   

7.
The purpose of this study was to investigate supposedly positive biological effects of coloured hailnets on microclimate, including photosynthetically active radiation (PAR), UV-B, air, soil, fruit and leaf temperature as well as humidity, which in turn may affect leaf anatomy, tree growth and fruit quality; apple was chosen as a model crop at Klein-Altendorf near Bonn, Germany; adjacent uncovered trees served as control. Red and green hailnets transmitted 3–6% more red or green light, without alteration of the red:far red (R–666 nm:FR–730 nm) ratio (0.99–1.01:1) and hence without affecting the phytochrome system. The microclimate was changed with a reduction by 12–23% in PAR and, to a larger extent, by 20–28% in UV, viz. shading. Light measurements at a 45° angle, to mimic the fruit or leaf position, showed that PAR was 90–210 µmol m−2 s−1 larger outside on a sunny summer day than under the white or red-white and 150–340 µmol m−2 s−1 larger than under red-black and green-black hailnets. Air temperature and relative humidity under coloured hailnets decreased by ca. 1.3°C and by ca 2% rh (cloudy) to 5% rh (sunny day), respectively, compared with outside; leaf temperature was decreased by up to 3°C and fruit temperature by up to 6°C. Soil temperatures at 5 cm depth were 0.5–1°C colder under red-black and green-black hailnets, but up to 0.9°C warmer under white and red-white hailnets compared with the uncovered control outside. Alternate bearing had a larger impact on vegetative growth in the affected year than the coloured hailnets; annual trunk diameter increments in cv. ‘Fuji’, i.e. the variety susceptible to alternate bearing, showed a larger variation than cv. ‘Pinova’ without alternate bearing. Reproductive growth, viz. return bloom and leaf anatomy were impaired by the coloured hailnets. Apple trees under dark hailnets developed thinner leaves with a thinner epidermis and fewer layers of palisade cells. These leaves were 3.5°C (dark hailnets) and 2.5°C (white hailnets) cooler than outside on a sunny day compared with ca. 1.5°C (dark hailnets) and 0.85°C (white hailnets) on a cloudy day. Transpirational cooling of cv. ‘Fuji’ leaves was 0.3–0.6°C outside and 1.4–1.6°C under the green-black hailnet on sunny days compared to <0.1°C on cloudy days. As a practical application, apple fruit colouration was dependent on light (PAR and UV-B) transmission of the respective hailnet colour.  相似文献   

8.
A new asymmetrical diarylethene containing a 1H‐imidazo [4,5‐f][1,10] phenanthroline unit was synthesized. The compound showed typical photochromism and functioned as a notable fluorescence switch upon alternating irradiation with ultraviolet (UV) and visible light. Its closed‐ring isomer could be used as a selective ‘naked‐eye’ colorimetric sensor for Cu2+, accompanied by a notable color change from blue to colorless. Furthermore, the compound was found to be selective towards Ca2+, Mg2+, and Sr2+ with significant fluorescence changes. On the basis of this characteristic, a logic circuit was constructed by utilizing both light and chemical stimuli as inputs and fluorescence intensity at 487 nm as output. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Several studies are currently ongoing to construct synthetic bone-like materials with composites of natural and polymeric materials with HA (hydroxyapatite). The present study aims to fabricate composite nanofibrous substrate of Chit/HA (chitosan/HA - 80:25) prepared by dissolving in TFA/DCM (trifluoroacetic acid/dichloromethane) (70:30, w/w) for 5 days and electrospun to fabricate a scaffold for bone tissue engineering. HA (25 wt %) was sonicated for 30 min to obtain a homogenous dispersion of nanoparticles within the Chit (80 wt %) matrix for fabricating composite nanofibrous scaffold (Chit/HA). The nanofibres of Chit and Chit/HA were obtained with fibre diameters of 274 ± 75 and 510 ± 198 nm, respectively, and characterized by FESEM (field emission scanning electron microscopy) and FTIR (Fourier transform infrared). The interaction of hFOBs (human fetal osteoblasts) and nanofibrous substrates were analysed for cell morphology (FESEM), mineralization [ARS (Alizarin Red-S) staining], quantification of minerals and finally identified the elements present in Chit/HA/osteoblasts by EDX (energy-dispersive X-ray) analysis. EDX analysis confirmed that the spherulites contain calcium and phosphorus, the major constituents in calcium phosphate apatite, the mineral phase of the bone. Mineralization was increased significantly (P<0.001) up to 108% in Chit/HA compared with Chit nanofibres. These results confirmed that the electrospun composite Chit/HA nanofibrous substrate is a potential biocomposite material for the proliferation and mineralization of hFOBs required for enhanced bone tissue regeneration.  相似文献   

10.
With carbazole and p‐cyanobromobenzene as raw materials, 4‐(3,6‐di (anthracen‐9‐yl)‐9H‐carbazol‐9‐yl)benzonitrile (DACB) and 4‐(3,6‐bis(anthracene ‐9‐ylethynyl)‐9H‐carbazol‐9‐yl)benzonitrile (BACB) were synthesized through the Suzuki coupling reaction and the Sonogashira coupling reaction, respectively. These structures were characterized using 1H nuclear magnetic resonance (NMR), elemental analysis and mass spectrometry. Their thermal properties, ultraviolet–visible (UV‐vis) absorption, fluorescence emission, fluorescence quantum yields and electrochemical properties were also investigated systematically. In addition, a electroluminescence (EL) device was made with BACB as the emitting layer and performance of the EL device was studied. Results showed that: (1) the temperature points with 5% and 10% of DACB weight loss were 443°C and 461°C, respectively, and were 475°C and 506°C with BACB weight loss of 5% and 10%, respectively. When the temperature was 50?300°C, no significantly thermal transition was observed which suggested that they had excellent thermal stability. (2) DACB and BACB had single emission peaks at 415 nm, and 479 nm with fluorescence quantum yields of 0.61 and 0.87, respectively, indicating that both compounds could emit strong blue light. (3) According to electrochemical measurement on BACB and DACB, their gaps were 3.07 eV and 2.76 eV, respectively, which further showed that these two compounds were very stable and acted as efficient blue light materials. (4) The turn‐on voltage of the device was 5 V, and the device emitted dark blue light with Commission Internationale de L'Eclairage (CIE) coordinates of (0.157, 0.079).  相似文献   

11.
The supramolecular interaction of mesalazine (MSZ) and β‐cyclodextrin (β‐CD) has been examined by ultraviolet–visible (UV–vis) light, infra‐red (IR) light and fluorescence spectroscopy. The formation of an inclusion complex has been confirmed based on the changes of the spectral properties. MSZ–β‐CD host–guest complex was formed in (1:1) stoichiometry and the inclusion constant (K = 1.359 × 102 L mol–1) was ascertained by typical double reciprocal plots. Furthermore, the thermodynamic parameters (ΔG°, ΔH° and ΔS°) of (MSZ–β‐CD) were obtained. Based on the remarkable enhancement of the fluorescence intensity of MSZ produced through complex formation, a simple, accurate, rapid and highly sensitive spectrofluorometric method for the determination of MSZ in aqueous solution in the presence of β‐CD was developed. The measurement of relative fluorescence intensity was carried with excitation at 330 nm and emission 493 nm. All variables affecting the reactions were studied and optimized. Beer's law was obeyed in the concentration range 0.1–0.45 µg/mL. Absorbance was found to increase linearly with increasing concentration of MSZ, which is corroborated by the calculated correlation coefficient values of 0.99989. The molar absorptivity, Sandell's sensitivity, detection and quantification limits were calculated. The validity of the described methods was assessed, and the method was successfully applied to the determination of MSZ in its pharmaceutical formulation. In addition, a solid inclusion complex was synthesized by co‐precipitation method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
As part of an investigation to identify potential new viral reduction strategies, ultraviolet‐C (UV‐C) light was examined. Although this technology has been known for decades to possess excellent virus inactivation capabilities, UV‐C light can also introduce significant unwanted damage to proteins. To study the effect on monoclonal antibodies, three different antibodies were subjected to varying levels of UV‐C light using a novel dosing device from Bayer Technology Services GmbH. The range of fluencies (or doses) covered was between 0 and 300 J/m2 at a wavelength of 254 nm. Product quality data generated from the processed pools showed only minimal damage done to the antibodies. Aggregate formation was low for two of the three antibodies tested. Acidic and basic variants increased for all three antibodies, with the basic species increasing more than the acidic species. Peptide maps made for the three sets of pools showed no damage to two of the three antibody backbones, whereas the third antibody had very low levels of methionine oxidation evident. Samples held at 2–8°C for 33 days showed no increase in aggregates or charge variants, indicating that the proteins did not degrade and were not damaged further by reactive or catalytic species that may have been created on exposure to UV‐C light. Overall, UV‐C light was shown to induce very little damage to monoclonal antibodies at lower fluencies and appears to be a viable option for viral inactivation in biotechnology applications. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

13.
The induction of cyclobutane pyrimidine dimers (CPDs) by ultraviolet‐B radiation (UV‐B, 280–315 nm) and repair mechanisms were studied in the lichen Cladonia arbuscula ssp. mitis exposed to different temperatures and water status conditions. In addition, the development and repair of CPDs were studied in relation to the different developmental stages of the lichen thallus podetial branches. Air‐dried lichen thalli exposed to UV‐B radiation combined with relatively high visible light (HL, 800 μmol m?2 s?1; 400–700 nm) for 7 days showed a progressive increase of CPDs with no substantial repair, although HL was present during and after irradiation with UV‐B. Fully hydrated lichen thalli, that had not been previously exposed to UV‐B radiation for 7 days, were given short‐term UV‐B radiation treatment at 25°C, and accumulated DNA lesions in the form of CPDs, with repair occurring when they were exposed to photoreactivating conditions (2 h of 300 μmol m?2 s?1, 400–700 nm). A different pattern was observed when fully hydrated thalli were exposed to short‐term UV‐B radiation at 2°C, in comparison with exposure at 25°C. High levels of CPDs were induced at 2°C under UV‐B irradiation, without significant repair under subsequent photoreactivating light. Likewise, when PAR (300 μmol m?2 s?1) and UV‐B radiation were given simultaneously, the CPD levels were not lowered. Throughout all experiments the youngest, less differentiated parts of the lichen thallus – namely ‘tips’, according to our arbitrary subdivision – were the parts showing the highest levels of CPD accumulation and the lowest levels of repair in comparison with the older thallus tissue (‘stems’). Thus the experiments showed that Cladonia arbuscula ssp. mitis is sensitive to UV‐B irradiation in the air‐dried state and is not able to completely repair the damage caused by the radiation. Furthermore, temperature plays a role in the DNA damage repairing capacity of this lichen, since even when fully hydrated, C. arbuscula ssp. mitis did not repair DNA damage at the low temperatures.  相似文献   

14.
Richard Malkin  Alan J. Bearden 《BBA》1975,396(2):250-259
Electron paramagnetic resonance studies of the primary reactants of Photosystems I and II have been conducted at cryogenic temperatures after laser-flash activation with monochromatic light.P-700 photooxidation occurs irreversibly in chloroplasts and in Photosystem I fragments after activation with a 730 nm laser flash at a temperature of 35 °;K. Flash activation of chloroplasts or Photosystem II chloroplast fragments with 660 nm light results in the production of a free-radical signal (g = 2.002, linewidth ~ 8 gauss) which decays with a half-time of 5.0 ms at 35 °;K. The half-time of decay is independent of temperature in the range of 10–77 °;K. This reversible signal can be eliminated by preillumination of the sample at 35 °;K with 660 nm light (but not by 730 nm light), by preillumination with 660 nm light at room temperature in the presence of 3-(3′, 4′-dichlorophenyl)-1,1′-dimethylurea (DCMU) plus hydroxylamine, or by adjustment of the oxidation-reduction potential of the chloroplasts to — 150 mV prior to freezing. In the presence of ferricyanide (20–50 mM), two free-radical signals are photoinduced during a 660 nm flash at 35 °;K. One signal decays with a half-time of 5 ms, whereas the second signal is formed irreversibly. These results are discussed in terms of a current model for the Photosystem II primary reaction at low temperature which postulates a back-reaction between P-680+ and the primary electron acceptor.  相似文献   

15.
Gold–silver core–shell triangular nanoprisms (Au/AgTNPs) were grown onto transparent indium tin oxide (ITO) thin film-coated glass substrate through a seed-mediated growth method without using peculiar binder molecules. The resulting Au/AgTNPs were characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction, UV–vis spectroscopy, and cyclic voltammograms. The peak of dipolar plasmonic resonance was located at near infrared region of ~700 nm, which showed the refractive index (RI) sensitivity of 248 nm/RIU. Moreover, thin gold shells were electrodeposited onto the surface of Au/AgTNPs in order to stabilize nanoparticles. Compared with the Au/AgTNPs, this peak of localized surface plasmon resonance (LSPR) was a little red-shift and decreased slightly in intensity. The refractive index sensitivity was estimated to be 287 nm/RIU, which showed high sensitivity as a LSPR sensing platform. Those triangular nanoprisms deposited on the ITO substrate could be further functionalized to fabricate LSPR biosensors. Results of this research show a possibility of improving LSPR sensor by using core–shell nanostructures.  相似文献   

16.
THE phytochrome reaction involved in the response of seeds of the lettuce cultivar Grand Rapids to light is such that exposure to short periods of illumination with red light (660 nm) promotes its germination, but far red light (730 nm) inhibits it at all temperatures from 5° to 25° C1–8. There is, however, considerable variation between different seed stocks, which depends largely on the history of the parent plant9 and of the seeds after harvest10.  相似文献   

17.
The wrasse,Suezichthys gracilis, is a diurnal fish which buries itself in sand during the night-time. The present paper deals with the locomotor activity rhythms ofS. gracilis, examined by using an actograph with infra-red photo-electric switches in a dark room. The fish were kept in eight experimental tanks (each 30l in capacity), with three different bottom conditions: sand (grain size about 1 mm in diameter and 5 cm deep); 1 or 2 stones (about 10cm in diameter) without sand; and transparent acrylic pellets (2 × 2 × 3 mm in size, 5 cm deep). The light intensities were 550–700 lux just above the water surface, decreasing to 21.3% under the acrylic pellets at a water depth of 20cm. The water temperatures were kept at 22.0–25.0°C during the experiments for 7 to 14 days. In the aquarium with bottom sand, diel activity rhythms ofS. gracilis were mostly synchronized to LD (LD12:12; 06:00–18:00 light, 18:00–06:00 dark), free-running activity rhythms continued distinctly under LL (constant illumination), and locomotor activity was greatly suppressed, with disappearance of the activity rhythm, under DD (constant darkness). In the aquarium without sand, locomotor activity ofS. gracilis could be summarized as follows. The fish moved throughout almost the entire period under LD, though more frequent movements were observed in light conditions than in dark ones. Under LL they showed continuous locomotor activity during the experiment, with no obvious periodicity. Under DD the activity of the species was somewhat suppressed, but irregular movement or indistinct periodicity was observed. In the aquarium with transparent acrylic pellets, locomotor activity under LD and DD, respectively, bore a close resemblance to activity patterns under the same light conditions with sand, whilst activity under LL was identical to that under LL without sand. Accordingly, it seems that maintenance of normal activity rhythms in the wrasse was due not only to the darkness, but also to the presence of bottom sand. It therefore seems that the biological clock inS. gracilis is not related to locomotor activity, but to burying behavior.  相似文献   

18.
Poly-L-alpha,beta-diaminopropionic acid) having azo aromatic side chain was synthesized by the water-soluble carbodiimide procedure. The photochemical properties of the azo polypeptide poly[N beta-p-(phenylazo)benzoyl-L-alpha,beta-diaminopropionic acid] (PPABLDPA) was investigated by absorption and circular dichroism (c.d.) spectroscopy in hexafluoro-2-propanol (HFIP) and dimethylformamide. The photochromism of the absorption band in the visible and ultraviolet wavelength regions was found to be mostly reversible as a function of irradiation time at different wavelengths due to the photostationary state (88% trans)-cis photoisomerization of the azo aromatic moieties. The c.d. spectra exhibited two and three-stage photochromism on irradiation by light. The reversible photo-induced solubility change was also studied. On irradiation PPABLDPA is soluble under ultraviolet light (cis) and precipitates under visible light (88% trans) in HFIP-water. A discussion was presented that includes our previous results on this azo aromatic polylysine homologue series.  相似文献   

19.
Natural levels of solar UVR were shown to break and alter the spiral structure of Arthrospira (Spirulina) platensis (Nordst.) Gomont during winter. However, this phenomenon was not observed during summer at temperatures of ~30°C. Since little has been documented on the interactive effects of solar UV radiation (UVR; 280–400 nm) and temperature on cyanobacteria, the morphology, photosynthesis, and DNA damage of A. platensis were examined using two radiation treatments (PAR [400–700 nm] and PAB [PAR + UV‐A + UV‐B: 280–700]), three temperatures (15, 22, and 30°C), and three biomass concentrations (100, 160, and 240 mg dwt [dry weight] · L?1). UVR caused a breakage of the spiral structure at 15°C and 22°C, but not at 30°C. High PAR levels also induced a significant breakage at 15°C and 22°C, but only at low biomass densities, and to lesser extent when compared with the PAB treatment. A. platensis was able to alter its spiral structure by increasing helix tightness at the highest temperature tested. The photochemical efficiency was depressed to undetectable levels at 15°C but was relatively high at 30°C even under the treatment with UVR in 8 h. At 30°C, UVR led to 93%–97% less DNA damage when compared with 15°C after 8 h of exposure. UV‐absorbing compounds were determined as negligible at all light and temperature combinations. The possible mechanisms for the temperature‐dependent effects of UVR on this organism are discussed in this paper.  相似文献   

20.
Ultraviolet light irradiation of bacterial spores in the presence of hydrogen peroxide has been shown to produce synergistic kills when compared with ultraviolet light (u.v.) and hydrogen peroxide used sequentially. This use in combination has been patented for the commercial sterilization of packaging before filling with UHT-processed products. Previous results have shown that lamps producing u.v. light with a maximum output at about 254 nm were extremely effective. Results obtained using a Synchrotron radiation source to produce a narrow band of irradiation now shows that the greatest kill of spores of Bacillus subtilis in the presence of hydrogen peroxide is obtained with radiation at ˜270 nm. Such results suggest that the action of the u.v. light is not directly on the spore DNA but may be related to the production of free hydroxyl radicals from hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号