首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In meiosis I sister centromeres are unified in their polarity on the spindle, and this unique behavior is known to require the function of meiosis-specific factors that set some intrinsic property of the centromeres. The fission yeast, Schizosaccharomyces pombe, possesses complex centromeres consisting of repetitive DNA elements, making it an excellent model in which to study the behavior of complex centromeres. In mitosis, during which sister centromeres mediate chromosome segregation by establishing bipolar chromosome attachments to the spindle, the central core of the S. pombe centromere chromatin has a unique irregular nucleosome pattern. Deletion of repeats flanking this core structure have no effect on mitotic chromosome segregation, but have profound effects during meiosis. While this demonstrates that the outer repeats are critical for normal meiotic sister centromere behavior, exactly how they function and how monopolarity is established remains unclear. In this study we provide the first analysis of the chromatin structure of a complex centromere during meiosis. We show that the nature and extent of the unique central core chromatin structure is maintained with no measurable expansion. This demonstrates that monopolarity of sister centromeres, and subsequent reversion to bipolarity, does not involve a global change to the centromeric chromatin structure.  相似文献   

2.
Fluorescence in situ hybridization (FISH) shows that fission yeast centromeres and telomeres make up specific spatial arrangements in the nucleus. Their positioning and clustering are cell cycle regulated. In G2, centromeres cluster adjacent to the spindle pole body (SPB), while in mitosis, their association with each other and with the SPB is disrupted. Similarly, telomeres cluster at the nuclear periphery in G2 and their associations are disrupted in mitosis. Mitotic centromeres interact with the spindle. They remain undivided until the spindle reaches a critical length, then separate and move towards the poles. This demonstrated, for the first time, that anaphase A occurs in fission yeast. The mode of anaphase A and B is similar to that of higher eukaryotes. In nda3 and cut7 mutants defective in tubulin of a kinesin-related motor, cells are blocked in early stages of mitosis due to the absence of the spindle, and centromeres dissociate but remain close to the SPB, whereas in a metaphase-arrested nuc2 mutant, they reside at the middle of the spindle. FISH is therefore a powerful tool for analyzing mitotic chromosome movement and disjunction using various mutants. Surprisingly, in top2 defective in DNA topoisomerase II, while most chromatid DNAs remain undivided, sister centromeres are separated. Significance of this finding is discussed. In contrast, most chromatid DNAs are separated but telomeric DNAs are not in cut1 mutant. In cut1, the dependence of SPB duplication on the completion of mitosis is abolished. In crm1 mutant cells defective in higher-order chromosome organization, the interphase arrangements of centromeres and telomeres are disrupted.  相似文献   

3.
During mitosis, sister kinetochores attach to microtubules that extend to opposite spindle poles (bipolar attachment) and pull the chromatids apart at anaphase (equational segregation). A multisubunit complex called cohesin, including Rad21/Scc1, plays a crucial role in sister chromatid cohesion and equational segregation at mitosis. Meiosis I differs from mitosis in having a reductional pattern of chromosome segregation, in which sister kinetochores are attached to the same spindle (monopolar attachment). During meiosis, Rad21/Scc1 is largely replaced by its meiotic counterpart, Rec8. If Rec8 is inactivated in fission yeast, meiosis I is shifted from reductional to equational division. However, the reason rec8Delta cells undergo equational rather than random division has not been clarified; therefore, it has been unclear whether equational segregation is due to a loss of cohesin in general or to a loss of a specific requirement for Rec8. We report here that the equational segregation at meiosis I depends on substitutive Rad21, which relocates to the centromeres if Rec8 is absent. Moreover, we demonstrate that even if sufficient amounts of Rad21 are transferred to the centromeres at meiosis I, thereby establishing cohesion at the centromeres, rec8Delta cells never recover monopolar attachment but instead secure bipolar attachment. Thus, Rec8 and Rad21 define monopolar and bipolar attachment, respectively, at meiosis I. We conclude that cohesin is a crucial determinant of the attachment manner of kinetochores to the spindle microtubules at meiosis I in fission yeast.  相似文献   

4.
Sister chromatid cohesion in meiosis is established by cohesin complexes, including the Rec8 subunit. During meiosis I, sister chromatid cohesion is destroyed along the chromosome arms to release connections of recombined homologous chromosomes (homologues), whereas centromeric cohesion persists until it is finally destroyed at anaphase II. In fission yeast, as in mammals, distinct cohesin complexes are used depending on the chromosomal region; Rec8 forms a complex with Rec11 (equivalent to SA3) mainly along chromosome arms, while Psc3 (equivalent to SA1 and SA2) forms a complex mainly in the vicinity of the centromeres. Here we show that separase activation and resultant Rec8 cleavage are required for meiotic chromosome segregation in fission yeast. A non-cleavable form of Rec8 blocks disjunction of homologues at meiosis I. However, displacing non-cleavable Rec8 restrictively from the chromosome arm by genetically depleting Rec11 alleviated the blockage of homologue segregation, but not of sister segregation. We propose that the segregation of homologues at meiosis I and of sisters at meiosis II requires the cleavage of Rec8 along chromosome arms and at the centromeres, respectively.  相似文献   

5.
The centromere is the region of the eukaryotic chromosome that determines kinetochore formation and sister chromatid cohesion. Centromeres interact with spindle microtubules to ensure chromatid segregation during mitosis and homologous chromosome segregation during meiosis I. In recent years, the overall organization of centromeres in several eukaryotic species has been described, yet the mechanisms of centromere definition remain elusive. Understanding the evolutionary origin of the centromere may well elucidate aspects of its function. With such intention, we hypothesize that centromeres were derived from telomeres during the evolution of the eukaryotic chromosome. We propose that the proto-eukaryotic cell could not have evolved a nucleus without concurrently evolving a new tubulin-based cytoskeleton, the microtubules, and a specific chromosomal region that enabled the chromosome-microtubule interaction, the centromere. The repetitive nature of the subtelomeric regions that gave rise to the centromeres forced the concerted evolution of the centromeres. Although this implies the absence of a conserved primary sequence, a conserved centromere-specific structural motif could still exist and determine where in the chromosome the centromere is to be formed.To support the “centromeres-from-telomeres” hypothesis, we discuss several situations, in meiosis and mitosis, where telomeric regions took over centromeric roles. The recently discovered phenomenon of centromere repositioning is also discussed because it has revealed new insights into how neocentromeres evolve.  相似文献   

6.
In mitosis, the centromeres of sister chromosomes are pulled toward opposite poles of the spindle. In meiosis I, the opposite is true: the sister centromeres move together to the same pole, and the homologous chromosomes are pulled apart. This change in segregation patterns demands that between the final mitosis preceding meiosis and the first meiotic division, the kinetochores must be restructured. In budding yeast, unlike mammals, kinetochores are largely stable throughout the mitotic cycle. In contrast, previous work with budding and fission yeast showed that some outer kinetochore proteins are lost in early meiosis. We use quantitative mass spectrometry methods and imaging approaches to explore the kinetochore restructuring process that occurs in meiosis I in budding yeast. The Ndc80 outer kinetochore complex, but not other subcomplexes, is shed upon meiotic entry. This shedding is regulated by the conserved protein kinase Ipl1/Aurora-B and promotes the subsequent assembly of a kinetochore that will confer meiosis-specific segregation patterns on the chromosome.  相似文献   

7.
The spindle checkpoint ensures proper chromosome segregation by delaying anaphase until all chromosomes are correctly attached to the mitotic spindle. We investigated the role of the fission yeast bub1 gene in spindle checkpoint function and in unperturbed mitoses. We find that bub1 + is essential for the fission yeast spindle checkpoint response to spindle damage and to defects in centromere function. Activation of the checkpoint results in the recruitment of Bub1 to centromeres and a delay in the completion of mitosis. We show that Bub1 also has a crucial role in normal, unperturbed mitoses. Loss of bub1 function causes chromosomes to lag on the anaphase spindle and an increased frequency of chromosome loss. Such genomic instability is even more dramatic in Δbub1 diploids, leading to massive chromosome missegregation events and loss of the diploid state, demonstrating that bub1 + function is essential to maintain correct ploidy through mitosis. As in larger eukaryotes, Bub1 is recruited to kinetochores during the early stages of mitosis. However, unlike its vertebrate counterpart, a pool of Bub1 remains centromere-associated at metaphase and even until telophase. We discuss the possibility of a role for the Bub1 kinase after the metaphase–anaphase transition.  相似文献   

8.
The segregation of centromeres and telomeres at mitosis is coordinated at multiple levels to prevent the formation of aneuploid cells, a phenotype frequently observed in cancer. Mitotic instability arises from chromosome segregation defects, giving rise to chromatin bridges at anaphase. Most of these defects are corrected before anaphase onset by a mechanism involving Aurora B kinase, a key regulator of mitosis in a wide range of organisms. Here, we describe a new role for Aurora B in telomere dispersion and disjunction during fission yeast mitosis. Telomere dispersion initiates in metaphase, whereas disjunction takes place in anaphase. Dispersion is promoted by the dissociation of Swi6/HP1 and cohesin Rad21 from telomeres, whereas disjunction occurs at anaphase after the phosphorylation of condensin subunit Cnd2. Strikingly, we demonstrate that deletion of Ccq1, a telomeric shelterin component, rescued cell death after Aurora inhibition by promoting the loading of condensin on chromosome arms. Our findings reveal an essential role for telomeres in chromosome arm segregation.  相似文献   

9.
In fission yeast meiotic prophase, telomeres are clustered near the spindle pole body (SPB; a centrosome-equivalent structure in fungi) and take the leading position in chromosome movement, while centromeres are separated from the SPB. This telomere position contrasts with mitotic nuclear organization, in which centromeres remain clustered near the SPB and lead chromosome movement. Thus, nuclear reorganization switching the position of centromeres and telomeres must take place upon entering meiosis. In this report, we analyze the nuclear location of centromeres and telomeres in genetically well-characterized meiotic mutant strains. An intermediate structure for telomere-centromere switching was observed in haploid cells induced to undergo meiosis by synthetic mating pheromone; fluorescence in situ hybridization revealed that in these cells, both telomeres and centromeres were clustered near the SPB. Further analyses in a series of mutants showed that telomere-centromere switching takes place in two steps; first, association of telomeres with the SPB and, second, dissociation of centromeres from the SPB. The first step can take place in the haploid state in response to mating pheromone, but the second step does not take place in haploid cells and probably depends on conjugation-related events. In addition, a linear minichromosome was also co-localized with authentic telomeres instead of centromeres, suggesting that telomere clustering plays a role in organizing chromosomes within a meiotic prophase nucleus.  相似文献   

10.
The chromosomal passenger complex protein INCENP is required in mitosis for chromosome condensation, spindle attachment and function, and cytokinesis. Here, we show that INCENP has an essential function in the specialized behavior of centromeres in meiosis. Mutations affecting Drosophila incenp profoundly affect chromosome segregation in both meiosis I and II, due, at least in part, to premature sister chromatid separation in meiosis I. INCENP binds to the cohesion protector protein MEI-S332, which is also an excellent in vitro substrate for Aurora B kinase. A MEI-S332 mutant that is only poorly phosphorylated by Aurora B is defective in localization to centromeres. These results implicate the chromosomal passenger complex in directly regulating MEI-S332 localization and, therefore, the control of sister chromatid cohesion in meiosis.  相似文献   

11.
In the meiotic prophase nucleus of the fission yeast Schizosaccharomyces pombe, chromosomes are arranged in an oriented manner: telomeres cluster in close proximity to the spindle pole body (SPB), while centromeres form another cluster at some distance from the SPB. We have isolated a mutant, kms1, in which the structure of the meiotic prophase nucleus appears to be distorted. Using specific probes to localize the SPB and telomeres, multiple signals were observed in the mutant nuclei, in contrast to the case in wild-type. Genetic analysis showed that in the mutant, meiotic recombination frequency was reduced to about one-quarter of the wild-type level and meiotic segregation was impaired. This phenotype strongly suggests that the telomere-led rearrangement of chromosomal distribution that normally occurs in the fission yeast meiotic nucleus is an important prerequisite for the efficient pairing of homologous chromosomes. The kms1 mutant was also impaired in karyogamy, suggesting that the kms1 + gene is involved in SPB function. However, the kms1 + gene is dispensable for mitotic growth. The predicted amino acid sequence of the gene product shows no significant similarity to known proteins.  相似文献   

12.
13.
Pairing of homologous chromosomes is important for homologous recombination and correct chromosome segregation during meiosis. It has been proposed that telomere clustering, nuclear oscillation, and recombination during meiotic prophase facilitate homologous chromosome pairing in fission yeast. Here we examined the contributions of these chromosomal events to homologous chromosome pairing, by directly observing the dynamics of chromosomal loci in living cells of fission yeast. Homologous loci exhibited a dynamic process of association and dissociation during the time course of meiotic prophase. Lack of nuclear oscillation reduced association frequency for both centromeric and arm regions of the chromosome. Lack of telomere clustering or recombination reduced association frequency at arm regions, but not significantly at centromeric regions. Our results indicate that homologous chromosomes are spatially aligned by oscillation of telomere-bundled chromosomes and physically linked by recombination at chromosome arm regions; this recombination is not required for association of homologous centromeres.  相似文献   

14.
Time of replication of yeast centromeres and telomeres   总被引:45,自引:0,他引:45  
R M McCarroll  W L Fangman 《Cell》1988,54(4):505-513
The time of replication of centromeres and telomeres of the yeast S. cerevisiae was determined by performing Meselson-Stahl experiments with synchronized cells. The nine centromeres examined become hybrid in density early in S phase, eliminating the possibility that a delay in the replication of centromeres until mitosis is responsible for sister chromatid adherence and proper chromosome segregation at anaphase. The conserved sequence element Y', present at most telomeres, replicates late in S phase, as do the unique sequences adjacent to five specific telomeres. The early and late replication times of these structural elements may be either essential for their proper function or a consequence of some architectural feature of the chromosome.  相似文献   

15.
The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation, called meiosis I and meiosis II. While meiosis II is similar to mitosis in that sister kinetochores are bi-oriented and segregate to opposite poles, recombined homologous chromosomes segregate during the first meiotic division. Formation of chiasmata, mono-orientation of sister kinetochores and protection of centromeric cohesion are three major features of meiosis I chromosomes which ensure the reductional nature of chromosome segregation. Here we show that sister chromatids frequently segregate to opposite poles during meiosis I in fission yeast cells that lack both chiasmata and the protector of centromeric cohesion Sgo1. Our data are consistent with the notion that sister kinetochores are frequently bi-oriented in the absence of chiasmata and that Sgo1 prevents equational segregation of sister chromatids during achiasmate meiosis I.Key words: meiosis, chromosome segregation, recombination, kinetochore, Sgo1, fission yeast  相似文献   

16.
The chromosome-like mitotic stability of the yeast 2 micron plasmid is conferred by the plasmid proteins Rep1-Rep2 and the cis-acting locus STB, likely by promoting plasmid-chromosome association and segregation by hitchhiking. Our analysis reveals that stable plasmid segregation during meiosis requires the bouquet proteins Ndj1 and Csm4. Plasmid relocalization from the nuclear interior in mitotic cells to the periphery at or proximal to telomeres rises from early meiosis to pachytene. Analogous to chromosomes, the plasmid undergoes Csm4- and Ndj1-dependent rapid prophase movements with speeds comparable to those of telomeres. Lack of Ndj1 partially disrupts plasmid–telomere association without affecting plasmid colocalization with the telomere-binding protein Rap1. The plasmid appears to engage a meiosis-specific motor that orchestrates telomere-led chromosome movements for its telomere-associated segregation during meiosis I. This hitherto uncharacterized mode of germ-line transmission by a selfish genetic element signifies a mechanistic variation within the shared theme of chromosome-coupled plasmid segregation during mitosis and meiosis.  相似文献   

17.
The centromere is a specific chromosomal locus that organizes the assembly of the kinetochore. It plays a fundamental role in accurate chromosome segregation. In most eukaryotic organisms, each chromosome contains a single centromere the position and function of which are epigenetically specified. Occasionally, centromeres form at ectopic loci, which can be detrimental to the cell. However, the mechanisms that protect the cell against ectopic centromeres (neocentromeres) remain poorly understood. Centromere protein-A (CENP-A), a centromere-specific histone 3 (H3) variant, is found in all centromeres and is indispensable for centromere function. Here we report that the overexpression of CENP-ACnp1 in fission yeast results in the assembly of CENP-ACnp1 at noncentromeric chromatin during mitosis and meiosis. The noncentromeric CENP-A preferentially assembles near heterochromatin and is capable of recruiting kinetochore components. Consistent with this, cells overexpressing CENP-ACnp1 exhibit severe chromosome missegregation and spindle microtubule disorganization. In addition, pulse induction of CENP-ACnp1 overexpression reveals that ectopic CENP-A chromatin can persist for multiple generations. Intriguingly, ectopic assembly of CENP-Acnp1 is suppressed by overexpression of histone H3 or H4. Finally, we demonstrate that deletion of the N-terminal domain of CENP-Acnp1 results in an increase in the number of ectopic CENP-A sites and provide evidence that the N-terminal domain of CENP-A prevents CENP-A assembly at ectopic loci via the ubiquitin-dependent proteolysis. These studies expand our current understanding of how noncentromeric chromatin is protected from mistakenly assembling CENP-A.  相似文献   

18.
Ling  Yick Hin  Lin  Zhongyang  Yuen  Karen Wing Yee 《Chromosoma》2020,129(1):1-24
Chromosoma - Endogenous chromosomes contain centromeres to direct equal chromosomal segregation in mitosis and meiosis. The location and function of existing centromeres is usually maintained...  相似文献   

19.
The decatenation activity of topoisomerase II (Top2), which is widely conserved within the eukaryotic domain, is essential for chromosomal segregation in mitosis. It is less clear, however, whether Top2 performs the same function uniformly across the whole genome, and whether all its functions rely on decatenation. In the fission yeast, Schizosaccharomyces pombe, telomeres are bound by Taz1, which promotes smooth replication fork progression through the repetitive telomeric sequences. Hence, replication forks stall at taz1Δ telomeres. This leads to telomeric entanglements at low temperatures (⩽20°C) that cause chromosomal segregation defects and loss of viability. Here, we show that the appearance of entanglements, and the resulting cold sensitivity of taz1Δ cells, is suppressed by mutated alleles of Top2 that confer slower catalytic turnover. This suppression does not rely on the decatenation activity of Top2. Rather, the enhanced presence of reaction intermediates in which Top2 is clamped around DNA, promotes the removal of telomeric entanglements in vivo, independently of catalytic cycle completion. We propose a model for how the clamped enzyme–DNA complex promotes proper chromosomal segregation.  相似文献   

20.
The regulation of chromosomal behavior in meiosis in partly fertile wheat-rye amphihaploids was studied using the centromere specific probes pAWRC1 and Ae. tauschii pAet6-09. Comparative analysis of the probe localization patterns in mitosis, normal meiosis in wheat Triticum aestivum L. and rye Secale cereale L., and meiosis in amphihaploids was performed. The differences in the structure of centromeres in monopolar- and bipolaroriented chromosomes were revealed. Single dense hybridization signals were observed in the diplotene and the metaphase of the first meiotic division, while hybridization signals appeared as stretched bands with diffuse structure located across the centromere region in mitosis and the second round of meiotic division. Based upon the obtained data, we used the corresponding centromere-specific probes as a tool for the analysis of chromosomal behavior in meiosis in amphihaploids. In meiocytes with three types of chromosome behavior (reductional, equational plus reductional, and equational), dense point-like hybridization signals for the pAet6-09 probe were observed for univalents with the reductional division type and stretched bands with diffuse structure for those with the equational division type. Thus, pAet6-09 probe localization patterns suggest some structural and functional specificities of centromeres in the meiosis in wheat-rye amphihaploids that reflect special regulation of chromosomal behavior during equational division. Meiocytes with true mitotic division were also observed in anthers predominantly containing meiocytes with chromosomes undergoing equational division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号