首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background information. In eukaryotic cells, proper formation of the spindle is necessary for successful cell division. For faithful segregation of sister chromatids, each sister kinetochore must attach to microtubules that extend to opposite poles (chromosome bi‐orientation). At the metaphase—anaphase transition, cohesion between sister chromatids is removed, and each sister chromatid is pulled to opposite poles of the cell by microtubule‐dependent forces. Results. We have studied the role of the minus‐end‐directed motor protein dynein by analysing kinetochore dynamics in fission yeast cells deleted for the dynein heavy chain (Dhc1) or the light chain (Dlc1). In these mutants, we found an increased frequency of cells showing defects in chromosome segregation, which leads to the appearance of lagging chromosomes and an increased rate of chromosome loss. By following simultaneously kinetochore dynamics and localization of the checkpoint protein Mad2, we provide evidence that dynein function is not necessary for spindle‐assembly checkpoint inactivation. Instead, we have demonstrated that loss of dynein function alters chromosome segregation and activates the Mad2‐dependent spindle‐assembly checkpoint. Conclusions. These results show an unexpected role for dynein in the control of chromosome segregation in fission yeast, most probably operating during the process of bi‐orientation during early mitosis.  相似文献   

2.
A DNA structure checkpoint can be defined as any checkpoint which responds to changes in the structure of the DNA either through the cell cycle, or in response to outside events such as DNA damage. Genetic analysis of DNA structure checkpoints in fission yeast has identified several distinct pathways responding to different circumstances. Three checkpoints have been identified which inhibit the onset of mitosis. (1) A radiation checkpoint which prevents mitosis after DNA damage. (2) A checkpoint linking S phase and mitosis (the S-M checkpoint) that prevents mitosis when DNA synthesis is incomplete. (3) A checkpoint linking G1 to mitosis (the G1-M checkpoint) that prevents the onset of mitosis in cells which are arrested in the G1 period of the cycle. A large number of genetic loci that are required for these checkpoints have been identified through mutant analysis, and the involvement of the relevant genes with the individual checkpoint pathways has been investigated. The largest class of checkpoint genes, known as the ‘checkpoint rad’ genes, are required for all the DNA structure checkpoints and the evidence suggests that they may also be involved in regulating DNA synthesis following precursor deprivation (hydroxyurea treatment) or when the replication fork encounters DNA damage. In this review, the available genetic and physiological evidence has been interpreted to suggest a close association between the ‘checkpoint rad’ class of gene products and the DNA-protein complexes that regulate and perform DNA synthesis. Biochemical evidence will be required in order to prove or disprove this hypothesis.  相似文献   

3.
A fission yeast chromosome can replicate autonomously in mouse cells   总被引:11,自引:0,他引:11  
To test the functional capacity of a fission yeast chromosome in mouse cells, a strain of the fission yeast Schizosaccharomyces pombe, ED628 Int5, was constructed. A plasmid bearing the SV2NEO gene, which can confer G418 resistance to mouse cells, was integrated at the ura4 locus on S. pombe chromosome III. S. pombe Int5 chromosomes were introduced into mouse C127 cells by PEG-facilitated protoplast fusion. Here we describe two independent G418-resistant cell lines with distinct growth characteristics, F1.1 and F7.1, and examine the structure of material derived from S. pombe Int5 chromosome III in these lines. F1.1 is shown to contain a single rearranged block of chromatin from S. pombe chromosome III integrated into a mouse chromosome, maintained in the absence of selection. In contrast, the data for F7.1 are consistent with the presence of linear, unintegrated copies of S. pombe chromosome III, which are apparently intact and maintained in an unstable but autonomous state. The unstable maintenance of this chromosome may be due to defective centromere function leading to missegregation at mitosis or to over- or underreplication.  相似文献   

4.
Prometaphase kinetochores interact with spindle microtubules (MTs) to establish chromosome bi-orientation. Before becoming bi-oriented, chromosomes frequently exhibit poleward movements (P-movements), which are commonly attributed to minus end-directed, MT-dependent motors. In fission yeast there are three such motors: dynein and two kinesin-14s, Pkl1p and Klp2p. None of these enzymes is essential for viability, and even the triple deletion grows well. This might be due to the fact that yeasts kinetochores are normally juxtapolar at mitosis onset, removing the need for poleward chromosome movement during prometaphase. Anaphase P-movement might also be dispensable in a spindle that elongates significantly. To test this supposition, we have analyzed kinetochore dynamics in cells whose kinetochore-pole connections have been dispersed. In cells recovering from this condition, the maximum rate of poleward kinetochore movement was unaffected by the deletion of any or all of these motors, strongly suggesting that other factors, like MT depolymerization, can cause such movements in vivo. However, Klp2p, which localizes to kinetochores, contributed to the effectiveness of P-movement by promoting the shortening of kinetochore fibers.  相似文献   

5.
Interactions between homologous chromosomes (pairing, recombination) are of central importance for meiosis. We studied entire chromosomes and defined chromosomal subregions in synchronous meiotic cultures of Schizosaccharomyces pombe by fluorescence in situ hybridization. Probes of different complexity were applied to spread nuclei, to delineate whole chromosomes, to visualize repeated sequences of centromeres, telomeres, and ribosomal DNA, and to study unique sequences of different chromosomal regions. In diploid nuclei, homologous chromosomes share a joint territory even before entry into meiosis. The centromeres of all chromosomes are clustered in vegetative and meiotic prophase cells, whereas the telomeres cluster near the nucleolus early in meiosis and maintain this configuration throughout meiotic prophase. Telomeres and centromeres appear to play crucial roles for chromosome organization and pairing, both in vegetative cells and during meiosis. Homologous pairing of unique sequences shows regional differences and is most frequent near centromeres and telomeres. Multiple homologous interactions are formed independently of each other. Pairing increases during meiosis, but not all chromosomal regions become closely paired in every meiosis. There is no detectable axial compaction of chromosomes in meiotic prophase. S. pombe does not form mature synaptonemal complexes, but axial element-like structures (linear elements), which were analyzed in parallel. Their appearance coincides with pairing of interstitial chromosomal regions. Axial elements may define minimal structures required for efficient pairing and recombination of meiotic chromosomes.  相似文献   

6.
Typically cells replicate their genome only once per division cycle, but under some circumstances, both natural and unnatural, cells synthesize an overabundance of DNA, either in a disorganized manner (“overreplication”) or by a systematic doubling of chromosome number (“endoreplication”). These variations on the theme of DNA replication and division have been studied in strains of fission yeast, Schizosaccharomyces pombe, carrying mutations that interfere with the function of mitotic cyclin-dependent kinase (Cdk1:Cdc13) without impeding the roles of DNA-replication loading factor (Cdc18) and S-phase cyclin-dependent kinase (Cdk1:Cig2). Some of these mutations support endoreplication, and some overreplication. In this paper, we propose a dynamical model of the interactions among the proteins governing DNA replication and cell division in fission yeast. By computational simulations of the mathematical model, we account for the observed phenotypes of these re-replicating mutants, and by theoretical analysis of the dynamical system, we provide insight into the molecular distinctions between overreplicating and endoreplicating cells. In the case of induced overproduction of regulatory proteins, our model predicts that cells first switch from normal mitotic cell cycles to growth-controlled endoreplication, and ultimately to disorganized overreplication, parallel to the slow increase of protein to very high levels.  相似文献   

7.
Pairing of homologous chromosomes is important for homologous recombination and correct chromosome segregation during meiosis. It has been proposed that telomere clustering, nuclear oscillation, and recombination during meiotic prophase facilitate homologous chromosome pairing in fission yeast. Here we examined the contributions of these chromosomal events to homologous chromosome pairing, by directly observing the dynamics of chromosomal loci in living cells of fission yeast. Homologous loci exhibited a dynamic process of association and dissociation during the time course of meiotic prophase. Lack of nuclear oscillation reduced association frequency for both centromeric and arm regions of the chromosome. Lack of telomere clustering or recombination reduced association frequency at arm regions, but not significantly at centromeric regions. Our results indicate that homologous chromosomes are spatially aligned by oscillation of telomere-bundled chromosomes and physically linked by recombination at chromosome arm regions; this recombination is not required for association of homologous centromeres.  相似文献   

8.
The meiotic cohesin Rec8 is required for the stepwise segregation of chromosomes during the two rounds of meiotic division. By directly measuring chromosome compaction in living cells of the fission yeast Schizosaccharomyces pombe, we found an additional role for the meiotic cohesin in the compaction of chromosomes during meiotic prophase. In the absence of Rec8, chromosomes were decompacted relative to those of wild-type cells. Conversely, loss of the cohesin-associated protein Pds5 resulted in hypercompaction. Although this hypercompaction requires Rec8, binding of Rec8 to chromatin was reduced in the absence of Pds5, indicating that Pds5 promotes chromosome association of Rec8. To explain these observations, we propose that meiotic prophase chromosomes are organized as chromatin loops emanating from a Rec8-containing axis: the absence of Rec8 disrupts the axis, resulting in disorganized chromosomes, whereas reduced Rec8 loading results in a longitudinally compacted axis with fewer attachment points and longer chromatin loops.  相似文献   

9.
10.
Li  Dmitriy  Roca  Marianne  Yuecel  Raif  Lorenz  Alexander 《Chromosoma》2019,128(3):385-396
Chromosoma - Schizosaccharomyces pombe, also known as fission yeast, is an established model for studying chromosome biological processes. Over the years, research employing fission yeast has made...  相似文献   

11.
12.
NotI and SfiI genomic restriction maps were used to detect and characterize a ring chromosome II in a Schizosaccharomyces pombe strain with a meiotic defect on chromosome II. The ring chromosome was formed by an intrachromosomal fusion near, or at, the very ends of chromosome II.  相似文献   

13.
Morphology and structural integrity of fungal cells depend on cell wall polysaccharides. The chemical structure and biosynthesis of two types of these polysaccharides, chitin and (1-->3)-beta-glucan, have been studied extensively, whereas little is known about alpha-glucan. Here we describe the chemical structure of alpha-glucan isolated from wild-type and mutant cell walls of the fission yeast Schizosaccharomyces pombe. Wild-type alpha-glucan was found to consist of a single population of linear glucose polymers, approximately 260 residues in length. These glucose polymers were composed of two interconnected linear chains, each consisting of approximately 120 (1-->3)-linked alpha-d-glucose residues and some (1-->4)-linked alpha-D-glucose residues at the reducing end. By contrast, alpha-glucan of an alpha-glucan synthase mutant with an aberrant cell morphology and reduced alpha-glucan levels consisted of a single chain only. We propose that alpha-glucan biosynthesis involves an ordered series of events, whereby two alpha-glucan chains are coupled to create mature cell wall alpha-glucan. This mature form of cell wall alpha-glucan is essential for fission-yeast morphogenesis.  相似文献   

14.
Centromere structure and function in budding and fission yeasts   总被引:16,自引:0,他引:16  
  相似文献   

15.
In fission yeast, erroneous attachments of spindle microtubules to kinetochores are frequent in early mitosis. Most are corrected before anaphase onset by a mechanism involving the protein kinase Aurora B, which destabilizes kinetochore microtubules (ktMTs) in the absence of tension between sister chromatids. In this paper, we describe a minimal mathematical model of fission yeast chromosome segregation based on the stochastic attachment and detachment of ktMTs. The model accurately reproduces the timing of correct chromosome biorientation and segregation seen in fission yeast. Prevention of attachment defects requires both appropriate kinetochore orientation and an Aurora B-like activity. The model also reproduces abnormal chromosome segregation behavior (caused by, for example, inhibition of Aurora B). It predicts that, in metaphase, merotelic attachment is prevented by a kinetochore orientation effect and corrected by an Aurora B-like activity, whereas in anaphase, it is corrected through unbalanced forces applied to the kinetochore. These unbalanced forces are sufficient to prevent aneuploidy.  相似文献   

16.
Mitochondrial fission is facilitated by a multiprotein complex assembled at the division site. The required components of the fission machinery in Saccharomyces cerevisiae include Dnm1, Fis1, and Mdv1. In the present study, we determined the protein structure of yeast Fis1 using NMR spectroscopy. Although the six alpha-helices, as well as their folding, in the yeast Fis1 structure are similar to those of the tetratricopeptide repeat (TPR) domains of the human Fis1 structure, the two structures differ in their N termini. The N-terminal tail of human Fis1 is flexible and unstructured, whereas a major segment of the longer N terminus of yeast Fis1 is fixed to the concave face formed by the six alpha-helices in the TPR domains. To investigate the role of the fixed N terminus, exogenous Fis1 was expressed in yeast lacking the endogenous protein. Expression of yeast Fis1 protein rescued mitochondrial fission in delta fis1 yeast only when the N-terminal TPR binding segment was left intact. The presence of this segment is also correlated to the recruitment of Mdv1 to mitochondria. The conformation of the N-terminal segment embedded in the TPR pocket indicates an intra-molecular regulation of Fis1 bioactivity. Although the TPR-like helix bundle of Fis1 mediates the interaction with Dnm1 and Mdv1, the N terminus of Fis1 is a prerequisite to recruit Mdv1 to facilitate mitochondrial fission.  相似文献   

17.
E R Nimmo  G Cranston    R C Allshire 《The EMBO journal》1994,13(16):3801-3811
The sequence requirements for in vivo telomere function in the fission yeast, Schizosaccharomyces pombe, have been investigated. A 258 bp tract of previously characterized cloned fission yeast terminal repeats adjacent to 800 bp of telomere-associated sequences is sufficient to seed new telomeres onto linearized ars-containing plasmids when introduced into cells. The resulting transformants contain unrearranged, acentric, linear episomes. Cloned telomeres, with and without telomere-associated sequences adjacent to the 258 bp terminal repeats, were utilized to introduce chromosome breaks at specific sites in a non-essential minichromosome. Truncated minichromosome derivatives were recovered containing the ura4 or ade6 gene adjacent to a newly formed telomere. These telomeres exert reversible position effects on the expression of the adjacent ura4 or ade6 genes.  相似文献   

18.
Using green fluorescent protein probes and rapid acquisition of high-resolution fluorescence images, sister centromeres in budding yeast are found to be separated and oscillate between spindle poles before anaphase B spindle elongation. The rates of movement during these oscillations are similar to those of microtubule plus end dynamics. The degree of preanaphase separation varies widely, with infrequent centromere reassociations observed before anaphase. Centromeres are in a metaphase-like conformation, whereas chromosome arms are neither aligned nor separated before anaphase. Upon spindle elongation, centromere to pole movement (anaphase A) was synchronous for all centromeres and occurred coincident with or immediately after spindle pole separation (anaphase B). Chromatin proximal to the centromere is stretched poleward before and during anaphase onset. The stretched chromatin was observed to segregate to the spindle pole bodies at rates greater than centromere to pole movement, indicative of rapid elastic recoil between the chromosome arm and the centromere. These results indicate that the elastic properties of DNA play an as of yet undiscovered role in the poleward movement of chromosome arms.  相似文献   

19.
Ding  Da-Qiao  Matsuda  Atsushi  Okamasa  Kasumi  Hiraoka  Yasushi 《Chromosoma》2021,130(2-3):149-162
Chromosoma - The structure of chromosomes dramatically changes upon entering meiosis to ensure the successful progression of meiosis-specific events. During this process, a multilayer proteinaceous...  相似文献   

20.
Underlying higher order chromatin organization are Structural Maintenance of Chromosomes (SMC) complexes, large protein rings that entrap DNA. The molecular mechanism by which SMC complexes organize chromatin is as yet incompletely understood. Two prominent models posit that SMC complexes actively extrude DNA loops (loop extrusion), or that they sequentially entrap two DNAs that come into proximity by Brownian motion (diffusion capture). To explore the implications of these two mechanisms, we perform biophysical simulations of a 3.76 Mb-long chromatin chain, the size of the long Schizosaccharomyces pombe chromosome I left arm. On it, the SMC complex condensin is modeled to perform loop extrusion or diffusion capture. We then compare computational to experimental observations of mitotic chromosome formation. Both loop extrusion and diffusion capture can result in native-like contact probability distributions. In addition, the diffusion capture model more readily recapitulates mitotic chromosome axis shortening and chromatin compaction. Diffusion capture can also explain why mitotic chromatin shows reduced, as well as more anisotropic, movements, features that lack support from loop extrusion. The condensin distribution within mitotic chromosomes, visualized by stochastic optical reconstruction microscopy (STORM), shows clustering predicted from diffusion capture. Our results inform the evaluation of current models of mitotic chromosome formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号