首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Chromium and its salts induce cytotoxicity and mutagenesis, and vitamin E has been reported to attenuate chromate-induced cytotoxicity. These observations suggest that chromium produces reactive oxygen species which may mediate many of the untoward effects of chromium. We have therefore examined and compared the effects of Cr(III) (chromium chloride hexahydrate) and Cr(VI) (sodium dichromate) following single oral doses (0.50 ld50) on the production of reactive oxygen species by peritoneal macrophages, and hepatic mitochondria and microsomes in rats. The effects of Cr(III) and Cr(VI) on hepatic mitochondrial and microsomal lipid peroxidation and enhanced excretion of urinary lipid metabolites as well as the incidence of hepatic nuclear DNA damage and nitric oxide (NO) production were also examined. Increases in lipid peroxidation of 1.8- and 2.2-fold occurred in hepatic mitochondria and microsomes, respectively, 48 hr after the oral administration of 25 mg Cr(VI)/kg, while increases of 1.2- and 1.4-fold, respectively, were observed after 895 mg Cr(III)/kg. The urinary excretion of malondialdehyde (MDA), formaldehyde (FA), acetaldehyde (ACT) and acetone (ACON) were determined at 0–96 hr after Cr administration. Between 48 and 72 hr post-treatment, maximal excretion of the four urinary lipid metabolites was observed with increases of 1.5- to 5.4-fold in Cr(VI) treated rats. Peritoneal macrophages from Cr(VI) treated animals 48 hr after treatment resulted in 1.4- and 3.6-fold increases in chemiluminescence and iodonitrotetrazolium reduction, indicating enhanced production of Superoxide anion, while macrophages from Cr(III) treated animals showed negligible increases. Increases in DNA single strand breaks of 1.7-fold and 1.5-fold were observed following administration of Cr(VI) and Cr(III), respectively, at 48 hr post-treatment. Enhanced production of NO by peritoneal exudate cells (primarily macrophages) was monitored following Cr(VI) administration at both 24 and 48 hr post-treatment with enhanced production of NO being observed at both timepoints. The results indicate that both Cr(VI) and Cr(III) induce an oxidative stress at equitoxic doses, while Cr(VI) induces greater oxidative stress in rats as compared with Cr(III) treated animals.  相似文献   

2.
Recent studies have described lipid peroxidation to be an early and sensitive consequence of cadmium exposure, and free radical scavengers and antioxidants have been reported to attenuate cadmium-induced toxicity. These observations suggest that cadmium produces reactive oxygen species that may mediate many of the untoward effects of cadmium. Therefore, the effects of cadmium (II) chloride on reactive oxygen species production were examined following a single oral exposure (0.50 LD50) by assessing hepatic mitochondrial and microsomal lipid peroxidation, glutathione content in the liver, excretion of urinary lipid metabolites, and the incidence of hepatic nuclear DNA damage. Increases in lipid peroxidation of 4.0- and 4.2-fold occurred in hepatic mitochondria and microsomes, respectively, 48 h after the oral administration of 44 mg cadmium (II) chloride/kg, while a 65% decrease in glutathione content was observed in the liver. The urinary excretion of malondialdehyde (MDA), formaldehyde (FA), acetaldehyde (ACT), and acetone (ACON) were determined at 0–96 h after Cd administration. Between 48 and 72 h posttreatment maximal excretion of the four urinary lipid metabolites was observed with increases of 2.2- to 3.6-fold in cadmium (II) chloride-treated rats. Increases in DNA single-strand breaks of 1.7-fold were observed 48 h after administration of cadmium. These results support the hypothesis that cadmium induces production of reactive oxygen species, which may contribute to the tissue-damaging effects of this metal ion.  相似文献   

3.
Previous studies in our laboratory have shown that the protein toxin ricin induces an oxidative stress in mice, resulting in increased urinary excretion of malondialdehyde (MDA), formaldehyde (FA), and acetone (ACON). Other toxicants have been shown to induce oxidative stress by macrophage activation with subsequent release of reactive oxygen species and tumor necrosis factor alpha (TNF-α). Therefore, the ability of TNF-α antibody to modulate ricin-induced urinary carbonyl excretion as well as hepatic lipid peroxidation, glutathione depletion, and DNA single-strand breaks was assessed. Ricin-induced urinary MDA, FA, and ACON were reduced significantly in mice receiving antibody (15,000 U/kg) 2 hours before treatment with ricin (5 μ/kg). At 48 hours following ricin treatment, MDA, FA, and ACON concentrations in the urine of TNF antibody-treated mice decreased 25.7, 53.2, and 64.5%, respectively, relative to ricin-treated mice receiving no antibody. In addition, anti-TNF-α (1500 U/kg) significantly decreased hepatic lipid peroxidation and DNA single-strand breaks, induced by 5 μg ricin/kg, by 49.3 and 44.2%, respectively. The results suggest that macrophage activation and subsequent release of TNF-α are involved in ricin toxicity.  相似文献   

4.
Excretions of the lipid peroxidation products, formaldehyde (FA), acetaldehyde (ACT), malondialdehyde (MDA), and acetone (ACON), were simultaneously identified and quantitated in the urine of female Sprague-Dawley rats by gas chromatography-mass spectroscopy (GC-MS) and high pressure liquid chromatography (HPLC) following the acute administration of carbon tetra-chloride, a model alkylating agent that does not induce glutathione depletion, and the redox cycling compounds paraquat and menadione. All three xenobiotics are well-known inducers of oxidative stress. Oxidative stress was induced by oral administration of single doses of 2.5 mL of carbon tetrachloride/kg, 60 mg menadione/kg, and 75 mg paraquat/kg. These doses are approximately 50% of the LD50's for the three xenobiotics. Urinary excretion of FA, ACT, MDA, and ACON increased relative to control animals following treatment with all xenobiotics. Over the 48 hours of the study, the greatest increases in the excretion of MDA, FA, ACT, and ACON occurred after paraquat administration, with increases of approximately 2.7-, 2.6-, 4.3-, and 11.0-fold, respectively. This technique may have wide-spread applicability as an effective biomarker for investigating altered lipid metabolism in disease states and exposure to environmental pollutants/xenobiotics.  相似文献   

5.
It has been postulated that tumor suppressor genes are involved in the cascade of events leading to the toxicity of diverse xenobiotics. Therefore, we have assessed the comparative effects of 0.01, 0.10, and 0.50 median lethal doses (LD(50)) of 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD), endrin, naphthalene, and sodium dichromate (VI) [Cr(VI)] on lipid peroxidation, DNA fragmentation, and enhanced production of superoxide anion (cytochrome c reduction) in liver and brain tissues of p53-deficient and standard C57BL/6NTac mice to determine the role of p53 gene in the toxic manifestations produced by these diverse xenobiotics. In general, p53-deficient mice are more susceptible to all four xenobiotics than C57BL/6NTac mice, with dose-dependent effects being observed. Specifically, at a 0.50 LD(50) dose, naphthalene and Cr(VI) induced the greatest toxicity in the liver tissue of mice, and naphthalene and endrin exhibited the greatest effect in the brain tissue. At this dose, TCDD, endrin, naphthalene, and Cr(VI) induced 2.3- to 3.7-fold higher increases in hepatic lipid peroxidation and 1.8- to 3.0-fold higher increases in brain lipid peroxidation in p53-deficient mice than in C57BL/6NTac mice. At a 0. 10 LD(50) dose, TCDD, endrin, naphthalene, and Cr(VI) induced 1.3- to 1.8-fold higher increases in hepatic lipid peroxidation and 1.4- to 1.9-fold higher increases in brain lipid peroxidation in p53-deficient mice than in C57BL/6NTac mice. Similar results were observed with respect to DNA fragmentation and cytochrome c reduction (superoxide anion production). For example, at the 0.10 LD(50) dose, the four xenobiotics induced increases of 1.6- to 3. 0-fold and 1.5- to 2.1-fold in brain and liver DNA fragmentation, respectively, and increases of 1.5- to 2.3-fold and 1.4- to 2.5-fold in brain and liver cytochrome c reduction (superoxide anion production), respectively, in p53-deficient mice compared with control C57BL/6NTac mice. These results suggest that the p53 tumor suppressor gene may play a role in the toxicity of structurally diverse xenobiotics.  相似文献   

6.
Rahimi, R. Creatine supplementation decreases oxidative DNA damage and lipid peroxidation induced by a single bout of resistance exercise. J Strength Cond Res 25(12): 3448-3455, 2011-Creatine (Cr), or methyl guanidine-acetic acid, can be either ingested from exogenous sources, such as fish or meat, or produced endogenously by the body, primarily in the liver. It is used as an ergogenic aid to improve muscle mass, strength, and endurance. Heretofore, Cr's positive therapeutic benefits in various oxidative stress-associated diseases have been reported in the literature and, recently, Cr has also been shown to exert direct antioxidant effects. Therefore, the purpose of this study was to investigate the effects of an acute bout of resistance exercise (RE) on oxidative stress response and oxidative DNA damage in male athletes and whether supplementation with Cr could negate any observed differences. Twenty-seven resistance-trained men were randomly divided into a Cr supplementation group (the Cr group [21.6 ± 3.6 years], taking 4 × 5 g Cr monohydrate per day) or a placebo (PL) supplementation group (the PL group [21.2 ± 3.2 years], taking 4 × 5 g maltodextrin per day). A double-blind research design was employed for a 7-day supplementation period. Before and after the seventh day of supplementation, the subjects performed an RE protocol (7 sets of 4 exercises using 60-90 1 repetition maximum) in the flat pyramid loading pattern. Blood and urine samples taken before, immediately, and 24-hour postexercise were analyzed for plasma malondialdehyde (MDA) and urinary 8-hydroxy-2-deoxyguanosine (8-OHdG) excretion. Before the supplementation period, a significant increase in the urinary 8-OHdG excretion and plasma MDA levels was observed after RE. The Cr supplementation induces a significant increase in athletics performance, and it attenuated the changes observed in the urinary 8-OHdG excretion and plasma MDA. These results indicate that Cr supplementation reduced oxidative DNA damage and lipid peroxidation induced by a single bout of RE.  相似文献   

7.
An equal concentration (100 μM) of Cr(III)- and Cr(VI)-induced changes in activities of antioxidative enzymes and metabolites of ascorbate-glutathione cycle was studied in 7-d-old black gram (Vigna mungo L Hepper cv. Co4) seedlings for 5-d after infliction of Cr stress. Seeds were germinated and grown in the presence or absence of Cr under controlled environmental conditions. Uptake and translocation of Cr rate was relatively higher during first 12 h of treatment with both speciation of Cr, Cr(III)- and Cr(VI)-treated black gram roots retained 15 times more Cr than the shoots. Significantly increased lipid peroxidation was observed in the form of accumulation of malondialdehyde (MDA) and production of hydrogen peroxide (H2O2) molecule and superoxide (O2 ) radical after 6 h of infliction with Cr(VI) and after 12 h in Cr(III)-treated black gram roots. Superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities were significantly increased under Cr(VI)-treatment after 12 and 6 h, respectively. However, catalase (CAT) and monodehydroascorbate reductase (MDHAR) activities were not significantly increased under Cr(Ill)-treatment. There was a steep increase of 2.71 μmol g-1 FW in ascorbic acid (AA) content was observed between 6 and 24 h of Cr(VI)-treatment. Oxidized glutathione (GSSG) content was steadily increased through the course of Cr(III)- and Cr(VI)-treatments, where as reduced glutathione (GSH) level was decreased after 24 h of treatment. GSH/GSSG ratio was rapidly decreased in treatment with Cr(III) than the Cr(VI). There was significant increase of 99 nmol g-1 FW in non-protein thiol (NPT) content was recorded between 6 and 24 h of Cr(VI)-treatment. The present results showed differential response to AA and H2O2 signaling by Cr(III) and Cr(VI), AA in combination with APX was more effective in mitigating oxidative stress as against the role of GSH as an antioxidant.  相似文献   

8.
Liu D  Zou J  Wang M  Jiang W 《Bioresource technology》2008,99(7):2628-2636
The effects of different concentrations (10(-6)M, 10(-5)M and 10(-4)M) of K2Cr2O7Cr(VI) on some minerals (Mn, Fe, Cu and Zn), lipid peroxidation, activities of antioxidant enzymes, photosynthetic function, and chlorophyll fluorescence characteristics were investigated in hydroponically grown Amaranthus viridis L. Results indicated that chromium was accumulated primarily in roots. In the roots and shoots, the Cr content increased with the increasing Cr(VI) concentrations, and induced decrease of Mn, Fe, Cu and Zn. Chromium Cr(VI) induced oxidation stress and lipid peroxidation in A. viridis L. shown by the increased concentration of MDA. The increased activities of POD and SOD indicated that they could serve as important components of antioxidant defense mechanisms to minimize Cr induced oxidative injury. The net photosynthetic rate, transpiration rate, stomatal conductance and intercellular CO2 concentration were reduced only by high Cr(VI) treatments (10(-5)M and 10(-4)M). The chlorophyll fluorescence parameters Fv/Fm, Fv(')/Fm('), Phi PSII and qP, decreased in Cr(VI)-treated, but qN and NPQ showed an increase in Cr(VI) treated plants.  相似文献   

9.
The kidney has been regarded as a critical organ of toxicity induced by acute exposure to hexavalent chromium [Cr(VI)] compounds. Reactive intermediates and free radicals generated during reduction process might be responsible for Cr(VI) toxicity. In this study, the effects of pretreatment or posttreatment of taurine on Cr(VI)-induced oxidative stress and chromium accumulation in kidney tissue of Swiss albino mice were investigated. Single intraperitoneal (ip) potassium dichromate treatment (20 mgCr/kg), as Cr(VI) compound, significantly elevated the level of lipid peroxidation as compared with the control group (p<0.05). This was accompanied by significant decreases in nonprotein sulfhydryls (NPSH) level, superoxide dismutase (SOD), and catalase (CAT) enzyme activities as well as a significant chromium accumulation (p<0.05). Taurine administration (1 g/kg, ip) before or after Cr(VI) exposure resulted in reduction of lipid peroxidation levels and improvement in SOD enzyme activity (p<0.05). On the other hand, administration of the antioxidant before Cr(VI) exposure restored the NPSH level and CAT enzyme activity and also reduced tissue chromium levels (p<0.05), whereas postreatment had only slight effects on these parameters. In view of the results, taurine seems to exert some beneficial effects against Cr(VI)-induced oxidative stress and chromium accumulation in mice kidney tissue.  相似文献   

10.
Several studies have demonstrated beneficial effects of supplemental trivalent Cr in subjects with reduced insulin sensitivity with no documented signs of toxicity. However, recent studies have questioned the safety of supplemental trivalent Cr complexes. The objective of this study was to evaluate the cytotoxic and genotoxic potential of the Cr(III) complexes (histidinate, picolinate, and chloride) used as nutrient supplements compared with Cr(VI) dichromate. The cytotoxic and genotoxic effects of the Cr complexes were assessed in human HaCaT keratinocytes. The concentrations of Cr required to decrease cell viability were assessed by determining the ability of a keratinocyte cell line (HaCaT) to reduce tetrazolium dye, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. DNA damage using the Comet assay and the production of 8-hydroxy-2′-deoxyguanosine were also determined with and without hydrogen peroxide-induced stress. The LC50 for human cultured HaCaT keratinocytes was 50 μM for hexavalent sodium dichromate and more than 120-fold higher for Cr chloride (6 mM) and Cr histidinate (10 mM). For Cr picolinate at saturating concentration (120 μM) the LC50 was not attained. High Cr(III) concentrations, 250 μM Cr as Cr chloride and Cr histidinate and 120 μM Cr picolinate (highest amount soluble in the system), not only did not result in oxidative DNA damage but exhibited protective antioxidant effects when cells were exposed to hydrogen peroxide-induced oxidative stress. These data further support the low toxicity of trivalent Cr complexes used in nutrient supplements.  相似文献   

11.
The biliary excretion and distribution of 51Cr after intravenous administration of 51Cr(III) (61CrCl5) or 51Cr(VI) (Na252CrO4 . 4 H2O) was studied in rats. The cumulative biliary excretion of 51Cr reached 24 hrs after the injection was significantly higher after administration of 51Cr(VI) than after 51Cr(III) 3.51+/-0.7% and 0.51+/-0.05% of administered dose, respectively). This difference was especially due to a higher rate of biliary excretion of 51Cr in the first hours after 51Cr(VI) administration. The excretion of 51Cr via faeces was also higher after administration of 51Cr(VI) (7.35+/-0.45%) OF ADMINISTERED DOSE, AS AGAINST 4.23+/-0.23% after 51Cr(III). On the other hand, no significant difference in urinary excretion of 51Cr was found. Statistically significant differences were also observed in the distribution of 51Cr in the organism after administration of both valence states of the metal.  相似文献   

12.
The urinary excretion of the hydroxylated DNA base 8-hydroxydeoxyguanosine (8-OHdG) and the lipid peroxidation product malondialdehyde (MDA) was monitored in 11 patients with hematological malignancies undergoing total body irradiation and high-dose chemotherapy preceding bone marrow transplantation. Nine patients showed a prompt increase in urinary 8-OHdG (8-25 times the initial baseline level) on days 0-7 after irradiation onset; the excretion then decreased during the aplastic period and increased again when engraftment took place (in 7 patients). A significant positive correlation was found between urinary 8-OHdG and whole blood leukocyte count, both on day 5 (p =.04, r =.72) and on day 22 (p =.009, r =.80) after irradiation onset. One patient who lacked the first peak of 8-OHdG excretion showed low blood leukocyte counts (less than 2 x 10(9)/l) before therapy onset; this patient, however, later had a successful engraftment and then also showed considerable increases in both 8-OHdG excretion and leukocyte count. These observations suggest leukocytes play a part in the excretion of 8-OHdG after conditioning therapy preceding bone marrow transplantation. As opposed to the biphasic 8-OHdG excretion, the excretion of MDA showed a single peak appearing on days 11-19 after radiochemotherapy onset, i.e., during the period in which the patients suffered from cytopenia, mucositis, and other side effects of the treatment. It is suggested, therefore, that these clinical manifestations are associated with increased lipid peroxidation. Altogether, these findings illustrate the utility of serial urinary samples for monitoring oxidative stress due to conditioning therapy in clinical practice. They also demonstrate that different oxidative stress markers may behave quite differently regarding their appearance in the urine after whole-body oxidative stress.  相似文献   

13.
Recent studies suggest that adipose tissue hormone, leptin, is involved in the pathogenesis of arterial hypertension. However, the mechanism of hypertensive effect of leptin is incompletely understood. We investigated whether antioxidant treatment could prevent leptin-induced hypertension. Hyperleptinemia was induced in male Wistar rats by administration of exogenous leptin (0.25 mg/kg twice daily s.c. for 7 days) and separate groups were simultaneously treated with superoxide scavenger, tempol, or NAD(P)H oxidase inhibitor, apocynin (2 mM in the drinking water). After 7 days, systolic blood pressure was 20.6% higher in leptin-treated than in control animals. Both tempol and apocynin prevented leptin-induced increase in blood pressure. Plasma concentration and urinary excretion of 8-isoprostanes increased in leptin-treated rats by 66.9% and 67.7%, respectively. The level of lipid peroxidation products, malonyldialdehyde + 4-hydroxyalkenals (MDA+4-HNE), was 60.3% higher in the renal cortex and 48.1% higher in the renal medulla of leptin-treated animals. Aconitase activity decreased in these regions of the kidney following leptin administration by 44.8% and 45.1%, respectively. Leptin increased nitrotyrosine concentration in plasma and renal tissue. Urinary excretion of nitric oxide metabolites (NO(x)) was 57.4% lower and cyclic GMP excretion was 32.0% lower in leptin-treated than in control group. Leptin decreased absolute and fractional sodium excretion by 44.5% and 44.7%, respectively. Co-treatment with either tempol or apocynin normalized 8-isoprostanes, MDA+4-HNE, aconitase activity, nitrotyrosine, as well as urinary excretion of NO(x), cGMP and sodium in rats receiving leptin. These results indicate that oxidative stress-induced NO deficiency is involved in the pathogenesis of leptin-induced hypertension.  相似文献   

14.
Acute exposure to hexavalent chromium [Cr(VI)] compounds can cause hepatotoxicity. Reactive intermediates and free radicals generated during reduction process may be responsible for Cr(VI) toxicity. In this study, the effects of pretreatment or posttreatment of taurine on Cr(VI)-induced oxidative stress and chromium accumulation in liver tissue of Swiss Albino mice were investigated. Single intraperitoneal (ip) potassium dichromate treatment (20 mgCr/kg), as Cr(VI) compound, significantly elevated the level of lipid peroxidation as compared with control group (p < 0.05). This was accompanied by significant decreases in nonprotein sulfhydryls (NPSHs) level, superoxide dismutase (SOD), and catalase (CAT) enzyme activities as well as a significant chromium accumulation in the tissue (p < 0.05). Taurine administration (1 g/kg, ip) before or after Cr(VI) exposure resulted in reduction of lipid peroxidation (p < 0.05) showed rebalancing effect on tissue NPSH levels either in pretreatment or in posttreatment (p < 0.05). Enzyme activities of SOD and CAT were restored by taurine pretreatment (p < 0.05), whereas posttreatment had less pronounced effects on these parameters. On the other hand, taurine treatment, before or after exposure, could exert only slight decreases in tissue Cr levels (p > 0.05). In view of the results, taurine seems to exert some beneficial effects against Cr(VI)-induced oxidative stress in liver tissue.  相似文献   

15.
Chronic hyperleptinemia induces arterial hypertension in experimental animals and may contribute to the development of hypertension in obese humans; however, the mechanism of hypertensive effect of leptin is not completely elucidated. We investigated the effect of leptin on whole-body oxidative stress, nitric oxide production, and renal sodium handling. The study was performed on male Wistar rats divided into 3 groups: 1) control, fed standard chow ad libitum, 2) leptin-treated group, receiving leptin injections (0.25 mg/kg twice daily s.c. for 7 days), 3) pair-fed group, in which food intake was adjusted to the leptin group. Leptin caused 30.5% increase in systolic blood pressure. Plasma concentration and urinary excretion of 8-isoprostanes in animals receiving leptin was 46.4% and 49.2% higher, respectively. The level of lipid peroxidation products, malonyldialdehyde + 4-hydroxyalkenals, increased by 52.5% in the renal cortex and by 48.4% in the renal medulla following leptin treatment, whereas aconitase activity decreased in these regions of the kidney by 45.3% and 39.2%, respectively. Urinary excretion of nitric oxide metabolites (NOx) was 55.0% lower, and fractional excretion of NOx was 55.8% lower in the leptin-treated group. Urinary excretion of cGMP decreased in leptin-treated rats by 26.3%. Following leptin treatment, absolute and fractional sodium excretion decreased by 35.0% and 41.2%, respectively. These results indicate that hyperleptinemia induces systemic and intrarenal oxidative stress, decreases the amount of bioactive NO possibly due to its degradation by reactive oxygen species, and causes renal sodium retention by stimulating tubular sodium reabsorption. NO deficiency and abnormal renal Na+ handling may contribute to leptin-induced hypertension.  相似文献   

16.
Aim: Chromium (Cr(VI)) would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. Cr(VI) toxicity is often associated with oxidative stress, caused by the excessive formation of reactive oxygen species (ROS). In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. Salicylic acid (SA) plays a key role in the signal transduction pathways of various stress responses, demonstrating the protective effect of SA against abiotic stress factors. So, the present investigation was carried out to study the amelioration of pernicious effects of different concentration of Cr(VI) (0.0, 2.0, and 4.0?mg Cr(VI) kg?1 soil in the form of potassium dichromate) by treatments of salicylic acid solution viz. pretreatment and foliar spray via antioxidative enzymes and their metabolites.

Results: With different treatments of salicylic acid solution, the reinstatement from ill effects of Cr(VI) toxicity was contemplated but the most conspicuous effect was observed when salicylic acid solution was supplied through the foliar spray (0.50?mM). This was accompanied with an increase in ascorbate peroxidase activity and hydrogen peroxide content and decrease in peroxidase activity and ascorbic acid content.

Significance of the study: This study suggests that salicylic acid when applied through pre-treatment of seeds or through a foliar spray can be used to ameliorate the toxic effects of chromium (VI). Salicylic acid has the great potential for reducing the toxicity of heavy metals without negatively impacting the growth of the plants.  相似文献   

17.
The recently developed strain TA102, particularly suited to the detection of oxidative mutagens (Levin et al., 1983), was the most sensitive out of 9 strains of S. typhimurium his- in revealing the mutagenicity of Cr(VI) compounds (sodium dichromate, calcium chromate and chromium trioxide). The rank of sensitivity was the following: TA102, TA100, TA97, TA92, TA1978, TA98, TA1538 and TA1537, TA1535 being the only insensitive strain. Cr(III) compounds (chromic acetate, chromic nitrate and chromic potassium sulfate) were totally inactive with all strains. The direct mutagenicity of Cr(VI) was markedly decreased, through NADPH-requiring mechanisms, by rat-liver S9 fractions and, to a lower extent, by human lung S12 fractions, which supports the hypothesis of a metabolically regulated threshold in chromium pulmonary carcinogenicity.  相似文献   

18.
Physiological changes induced by chromium stress in plants: an overview   总被引:1,自引:0,他引:1  
This article presents an overview of the mechanism of chromium (Cr) stress in plants. Toxic effects of Cr on plant growth and development depend primarily on its valence state. Cr(VI) is highly toxic and mobile whereas Cr(III) is less toxic. Cr-induced oxidative stress involves induction of lipid peroxidation in plants that cause severe damage to cell membranes which includes degradation of photosynthetic pigments causing deterioration in growth. The potential of plants with the adequacy to accumulate or to stabilize Cr compounds for bioremediation of Cr contamination has gained engrossment in recent years.  相似文献   

19.
Growth, lipid peroxidation, H2O2 produciton and the response of the antioxidant enzymes and metabolites of the ascorbate glutathione pathway to oxidative stress caused by two concentrations (50 and 100 µM) of Cr(III) and Cr(VI) was studied in 15 day old seedlings of sorghum (Sorghum bicolor (L.) Moench cv CO 27) after 10 days of treatment. Cr accumulation in sorghum plants was concentration and organ dependant. There was no significant growth retardation of plants under 50 µM Cr(III) stress. 100 µM Cr(VI) was most toxic of all the treatments in terms of root and leaf growth and oxidative stress. 50 µM Cr(VI) treated roots exhibited high significant increase in superoxide dismutase (SOD), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) (p < 0.01) and significant increases in catalse (CAT), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) (p < 0.05). A high increase in ascorbic acid (AA) level was seen in roots of 50 µM Cr(VI) treated plants in comparison with control. Levels of reduced glutathione (GSH) showed a varied and complex response in all the treatments in both plant parts. GSH/GSSG ratio was not affected by Cr(III) treatment in leaves, in contrast, roots exhibited significant reduction in the ratio. Results indicate that GSH depletion increased sensitivity to oxidative stress (Cr(VI) roots and leaves and Cr(III) 100 µM roots) and AA in tandem with APX compensated for GSH depletion by acting directly on H2O2 and the mechanism of defensive response in roots as well as leaves varied in its degree and effectiveness due to the concentration dependant differences observed in translocation of the element itself, reactive oxygen species (ROS) generation and enzyme inhibition based on the oxidation state supplied to the plants.  相似文献   

20.
The urinary excretion of seven aldehydes, acetone, coproporphyrin III and 8-hydroxy-2'-deoxyguanosine (8-OH-dG) as non-invasive biomarkers of oxidative damage was measured in rats treated with diquat or N-nitrosodimethylamine (NDMA), two compounds causing hepatic damage by different mechanisms. Furthermore, the effect of co-administration of the aldehyde dehydrogenase inhibitor, calcium carbimide (CC) on the urinary excretion of the aldehydes was determined. Slight hepatotoxicity was found at the end of the experiment after treatment with NDMA (0.5, 4 and 8 mg/kg at t = 0, 48 and 96 h, respectively) or diquat (6.8 and 13.6 mg/kg at t = 0 and 48 h, respectively). In diquat treated rats slight nephrotoxicity was also found. Urinary excretion of aldehydes, acetone and coproporphyrin III remained largely unchanged in rats treated with NDMA. In the rats treated with diquat, the urinary excretion of several aldehydes was several-fold increased. An increase was also found in the urinary excretion of 8-OH-dG after the second dose of diquat. Treatment of rats with CC did not significantly influence the urinary excretion of aldehydes in control and NDMA rats. However, in rats treated with diquat, CC caused a potentiating effect on the excretion of acetaldehyde, hexanal and malondialdehyde (MDA), indicating that oxidation of aldehydes to carbonylic acids by aldehyde dehydrogenases (ALDHs) might be an important route of metabolism of aldehydes. In conclusion, increased urinary excretion of various aldehydes, acetone, coproporphyrin III and 8-OH-dG was observed after administration of diquat, probably reflecting oxidative damage induced by this compound. No such increases were found after NDMA administration, which is consistent with a different toxicity mechanism for NDMA. Therefore, excretion of aldehydes, acetone, coproporphyrin III and 8-OH-dG might be used as easily accessible urinary biomarkers of free radical damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号