首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrafiltration and diafiltration (UF/DF) processes by tangential flow filtration (TFF) are frequently used for removal of solvents and small molecule impurities and for buffer exchange for biopharmaceutical products. Antibody-drug conjugates (ADCs) as an important class of biological therapeutics, carry unique solvents and small molecule impurities into the final UF/DF step as compared to standard antibody preparation. The production process of ADCs involves multiple chemical steps, for example, reduction and conjugation. The clearance of these solvents and small molecules by UF/DF, specifically the DF step, has been assessed and described herein. The rates of clearance for all the impurities in this study are close to the ideal clearance with no apparent interaction with either the protein or the TFF membrane and system. The effect of process variables during DF, such as pH, temperature, membrane loading, transmembrane pressure, and cross flow rate, has also been evaluated and found to have minimal impact on the clearance rate. These results demonstrate efficient clearance of solvents and small molecule impurities related to the ADC process by the DF process and provide a general data package to facilitate risk assessments based on the sieving factors and program specific needs.  相似文献   

2.
β-Glucan process-related impurities can be introduced into biopharmaceutical products via upstream or downstream processing or via excipients. This study obtained a comprehensive process-mapping dataset for five monoclonal antibodies to assess β-glucan introduction and clearance during development and production runs at various scales. Overall, 198 data points were available for analysis. The greatest β-glucan concentrations were found in the depth-filtration filtrate (37–2,745 pg/ml). Load volume correlated with β-glucan concentration in the filtrate, whereas flush volume was of secondary importance. Cation-exchange chromatography significantly cleared β-glucans. Furthermore, β-glucan leaching from the Planova 20N virus removal filter was reduced by increasing the flush volume (1 vs. 10 L/m2). β-glucan concentrations after filter flush with 10 L/m2 were consistently <10 pg/ml. No or only limited β-glucan clearance was attained via ultrafiltration/diafiltration (UF/DF). However, during the first run with monoclonal antibody (mAb) 4, β-glucan concentration in the UF/DF retentate was 10.8 pg/mg, potentially due to β-glucan leaching from the first run with a regenerated cellulose membrane. Overall, β-glucan levels in the final mAb drug substance were 1–12 pg/mg. Assuming high doses of 1,000–5,000 mg, a β-glucan contamination at 20 pg/mg would translate to 20–100 ng/dose, which is below the previously suggested threshold for product safety (≤500 ng/dose).  相似文献   

3.
Ultrafiltration/diafiltration (UF/DF) has been the hallmark for concentrating and buffer exchange of protein and peptide-based therapeutics for years. Here we examine the capabilities and limitations of UF/DF membranes to process oligonucleotides using antisense oligonucleotides (ASOs) as a model. Using a 3 kDa UF/DF membrane, oligonucleotides as small as 6 kDa are shown to have low sieving coefficients (<0.008) and thus can be concentrated to high concentrations (≤200 mg/mL) with high yield (≥95%) and low viscosity (<15 centipoise), provided the oligonucleotide is designed not to undergo self-hybridization. In general, the oligonucleotide should be at least twice the reported membrane molecular weight cutoff for robust retention. Regarding diafiltration, results show that a small amount of salt is necessary to maintain adequate flux at concentrations exceeding about 40 mg/mL. Removal of salts along with residual solvents and small molecule process-related impurities can be robust provided they are not positively charged as the interaction with the oligonucleotide can prevent passage through the membrane, even for common divalent cations such as calcium or magnesium. Overall, UF/DF is a valuable tool to utilize in oligonucleotide processing, especially as a final drug substance formulation step that enables a liquid active pharmaceutical ingredient.  相似文献   

4.
Commercial process development for biopharmaceuticals often involves process characterization (PC) studies to gain process knowledge and understanding in preparation for process validation. One common approach to conduct PC activities is by using design-of-experiment, which can help determine the impact process parameter deviations may have on product quality attributes. Qualified scale-down systems are typically used to conduct these studies. For an ultrafiltration/diafiltration (UF/DF) application, however, a traditional scale-down still requires hundreds of milliliters of material per run and can only conduct one experiment at a time. This poses a challenge in resources as there could be 20+ experiments required for a typical UF/DF PC study. One solution to circumvent this is the use of high-throughput systems, which enable parallel experimentation by only using a fraction of the resources. Sartorius Stedim Biotech has recently commercialized the ambr® crossflow high-throughput system to meet this need. In this study, the performance of this system during a monoclonal antibody UF/DF step was first compared with a pilot- and a manufacturing-scale tangential flow filtration (TFF) system at a single operating condition. Due to material limitations, it was then compared to only the pilot-scale TFF system across wider ranges of transmembrane pressure; crossflow rate; and diafiltration concentration in a PC study. Permeate flux, aggregate content, process yield, pH/conductivity traces, retentate concentration, axial pressure drop, and turbidity values were measured at both scales. A good agreement was attained across scales, further supporting its potential use as a scale-down system.  相似文献   

5.
6.
The need for high‐concentration formulations for subcutaneous delivery of therapeutic monoclonal antibodies (mAbs) can present manufacturability challenges for the final ultrafiltration/diafiltration (UF/DF) step. Viscosity levels and the propensity to aggregate are key considerations for high‐concentration formulations. This work presents novel frameworks for deriving a set of manufacturability indices related to viscosity and thermostability to rank high‐concentration mAb formulation conditions in terms of their ease of manufacture. This is illustrated by analyzing published high‐throughput biophysical screening data that explores the influence of different formulation conditions (pH, ions, and excipients) on the solution viscosity and product thermostability. A decision tree classification method, CART (Classification and Regression Tree) is used to identify the critical formulation conditions that influence the viscosity and thermostability. In this work, three different multi‐criteria data analysis frameworks were investigated to derive manufacturability indices from analysis of the stress maps and the process conditions experienced in the final UF/DF step. Polynomial regression techniques were used to transform the experimental data into a set of stress maps that show viscosity and thermostability as functions of the formulation conditions. A mathematical filtrate flux model was used to capture the time profiles of protein concentration and flux decay behavior during UF/DF. Multi‐criteria decision‐making analysis was used to identify the optimal formulation conditions that minimize the potential for both viscosity and aggregation issues during UF/DF. Biotechnol. Bioeng. 2017;114: 2043–2056. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Perodicals, Inc.  相似文献   

7.
A high cell density perfusion process of monoclonal antibody (MAb) producing Chinese hamster ovary (CHO) cells was developed in disposable WAVE Bioreactor? using external hollow fiber (HF) filter as cell separation device. Tangential flow filtration (TFF) and alternating tangential flow (ATF) systems were compared and process applications of high cell density perfusion were studied here: MAb production and cryopreservation. Operations by perfusion using microfiltration (MF) or ultrafiltration (UF) with ATF or TFF and by fed‐batch were compared. Cell densities higher than 108 cells/mL were obtained using UF TFF or UF ATF. The cells produced comparable amounts of MAb in perfusion by ATF or TFF, MF or UF. MAbs were partially retained by the MF using ATF or TFF but more severely using TFF. Consequently, MAbs were lost when cell broth was discarded from the bioreactor in the daily bleeds. The MAb cell‐specific productivity was comparable at cell densities up to 1.3 × 108 cells/mL in perfusion and was comparable or lower in fed‐batch. After 12 days, six times more MAbs were harvested using perfusion by ATF or TFF with MF or UF, compared to fed‐batch and 28× more in a 1‐month perfusion at 108 cells/mL density. Pumping at a recirculation rate up to 2.75 L/min did not damage the cells with the present TFF settings with HF short circuited. Cell cryopreservation at 0.5 × 108 and 108 cells/mL was performed using cells from a perfusion run at 108 cells/mL density. Cell resuscitation was very successful, showing that this system was a reliable process for cell bank manufacturing. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:768–777, 2013  相似文献   

8.
Diafiltration of a protein solution into a new buffer is a common final step in biopharmaceutical manufacturing. However, the excipient concentrations in the retentate are not always equal to their corresponding concentrations in the new buffer (diafiltration buffer). This phenomenon was observed repeatedly during diafiltration of different therapeutic monoclonal antibodies in which the concentrations of histidine and either sorbitol or sucrose (depending on which was chosen for the diafiltration buffer) in the retentate were lower than in the diafiltration buffer. Experimental studies and theoretical analyses of the ultrafiltration/diafiltration (UF/DF) step were carried out to determine the primary causes of the phenomenon and to develop a mathematical model capable of predicting retentate excipient concentrations. The analyses showed that retentate histidine concentration was low primarily because of repulsive charge interactions between positively‐charged histidine molecules and positively‐charged protein molecules, and that volume exclusion effects were secondary for like‐charged molecules. The positively‐charged protein molecules generate an electrical potential that cause an uneven distribution of charged histidine molecules. This interaction was used to construct a mathematical model based on the Poisson‐Boltzmann equation. The model successfully predicted the final histidine concentration in the diafiltered product (retentate) from the UF/DF development and production runs, with good agreement across a wide range of protein and histidine concentrations for four therapeutic monoclonal antibodies. The concentrations of uncharged excipients (sorbitol or sucrose) were also successfully predicted using previously established models, with volume exclusion identified as the primary cause of differences in uncharged excipient concentrations in the retentate and diafiltration buffer. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

9.
A study was performed to investigate the effect of different levels of dietary fibre (DF) and dietary protein on visceral organ size, digestibility, nitrogen balance and energy metabolism in rats. Thirty-six male Wistar rats, initial body weight about 76 g, were used in a factorial design consisting of three levels of DF (low, 100 g/kg DM; medium, 250 g/kg DM and high, 290 g/kg DM) and two levels of dietary protein (low, 120 g/kg DM and high, 223 g/kg DM). The added fibre source was soybean hulls and Danish fish meal was used as sole source of dietary protein. Measurements of gas-exchange were done on six rats (one group) while urine and faeces were collected individually. The ratio of food/empty body gain increased (P < 0.05) with increasing DF and decreasing levels of dietary protein. The weight of the digestive tract was larger (P < 0.05) in rats fed the high fibre diet than in those fed the low fibre diet. The digestibility of nutrients and energy decreased linearly with increasing level of soybean fibre (P < 0.05). An increased intake of DF was associated with a concomitant loss of protein and energy to faeces. The microbial degradation of NSP and other unabsorbed carbohydrates caused considerably changes in N metabolism of the colon. In rats fed the low protein diets increased levels of DF decreased N excretion in urine and increased N excretion in faeces, while the ratio of retained/digested protein remained constant. When rats were fed the high protein diet protein retention dropped in response to DF both absolute and relative to digested amount, indicating that energy intake could be a limiting factor. Heat production as a percentage of metabolizable energy (HP/ME) was higher (P < 0.05) in rats fed the low protein diet than in rats fed the high protein diet, but no significant difference was found among DF levels.  相似文献   

10.
A 3D printed ultrafiltration/diafiltration (UF/DF) module is presented allowing the continuous, simultaneous concentration of retained (bio-)molecules and reduction or exchange of the salt buffer. Differing from the single-pass UF concepts known from the literature, DF operation does not require the application of several steps or units with intermediating dilution. In contrast, the developed module uses two membranes confining the section in which the molecules are concentrated while the sample is passing. Simultaneously to this concentration process, the two membranes allow a perpendicular in and outflow of DF buffer reducing the salt content in this section. The module showed the continuous concentration of a dissolved protein up to a factor of 4.6 while reducing the salt concentration down to 47% of the initial concentration along a flow path length of only 5 cm. Due to single-pass operation the module shows concentration polarization effects reducing the effective permeability of the applied membrane in case of higher concentration factors. However, because of its simple design and the capability to simultaneously run UF and DF processes in a single module, the development could be economically beneficial for small scale UF/DF applications.  相似文献   

11.
Quantifying the clearance of extractables and leachables (E/L) throughout ultrafiltration/diafiltration (UFDF) operations allows for greater flexibility in the implementation of single‐use technologies in steps upstream of the UFDF process. A proof‐of‐concept study was completed in which the clearance of 7 E/L from single‐use technologies (trimethylsilanol, hexanoic acid, butyrolactone, t‐butyl alcohol, caprolactam, acetonitrile, and benzyl alcohol) in four representative proteins were measured and monitored during the UFDF process using quantitative NMR. This study demonstrated that the defined E/L spiked into a variety of protein solutions can be cleared to <1 ppm by 9 diavolumes from a maximum initial load concentration of 1,000 ppm. However, in some cases a rebound effect was observed in the recovered pool to >1 ppm, which is explained in detail. The overall clearance trend observed for both buffer control and protein‐containing solutions resembled the ideal clearance trend where no apparent interactions were observed between E/L with the protein, UFDF system, or with other defined E/L which may be present in the system. Additionally, the UFDF system is capable of clearing these potential E/L from single‐use technologies below 1 ppm irrespective of initial concentrations in the load (1,000 or 100 ppm), independently from the type of protein. In general, mass recoveries were within ±15% of each spiked compound in protein solutions and their respective buffer controls, suggesting spiked E/L do not interact strongly with protein. By demonstrating the product independent clearance trends of the spiked E/L across UFDF, these results will contribute to the simplification of the E/L toxicology assessment and allow modular manufacturing approach for single‐use technologies in biopharmaceutical manufacturing. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:718–724, 2016  相似文献   

12.
The pubertal transition has been identified as a time of risk for development of type 2 diabetes, particularly among vulnerable groups, such as African Americans (AAs). Documented ethnic differences in insulin secretory dynamics may predispose overweight AA adolescents to risk for type 2 diabetes. The objectives of this longitudinal study were to quantify insulin secretion and clearance in a cohort of 90 AA and European American (EA) children over the pubertal transition and to explore the association of genetic factors and adiposity with repeated measures of insulin secretion and clearance during this critical period. Insulin sensitivity was determined by intravenous glucose tolerance test (IVGTT) and minimal modeling; insulin secretion and clearance by C‐peptide modeling; genetic ancestry by admixture analysis. Mixed‐model longitudinal analysis indicated that African genetic admixture (AfADM) was independently and positively associated with first‐phase insulin secretion within the entire group (P < 0.001), and among lean children (P < 0.01). When examined within pubertal stage, this relationship became significant at Tanner stage 3. Total body fat was a significant determinant of first‐phase insulin secretion overall and among obese children (P < 0.001). Total body fat, but not AfADM, was associated with insulin clearance (P < 0.001). In conclusion, genetic factors, as reflected in AfADM, may explain greater first‐phase insulin secretion among peripubertal AA vs. EA; however, the influence of genetic factors is superseded by adiposity. The pubertal transition may affect the development of the β‐cell response to glucose in a manner that differs with ethnic/genetic background.  相似文献   

13.
Species richness of Protozoa in Japanese lakes   总被引:2,自引:0,他引:2  
N. Takamura  Y. Shen  P. Xie 《Limnology》2000,1(2):91-106
The protozoan fauna and species richness in the pelagic zone of 15 Japanese lakes were investigated in 1996 using polyurethane foam (PF) substrates. The most common species were flagellates, such as Cryptomonas erosa, Oikomonas termo, and Pleuromonas jaculans. Cinetochilum margaritaceum and Actinophrys sol were the most common species of the Ciliata and Sarcodina, respectively. The similarity of species occurrence was calculated from presence/absence data, but this revealed no clear trend with respect to the influence of lake properties such as trophic state, surface area, or mean depth. The occurrence pattern of Protozoa was most similar in L. Chuzenji and L. Biwa (north basin), two oligomesotrophic natural lakes. Log species richness was positively correlated with log total phosphorus (r = 0.54, P < 0.05) and negatively with log mean depth (r = −0.58, P < 0.05). The diversity index (Margalef's formula), highly correlated with the total species number (r = 0.85, P < 0.01), was negatively correlated with log lake area (r = −0.71, P < 0.01). The logarithm of Phytomastigophora number was positively correlated with log total nitrogen (r = 0.53, P < 0.05), and the logarithm of Ciliata number was negatively correlated with log lake area (r = −0.55, P < 0.05). The species richness of Protozoa on PF substrates was determined by both the nutrient status of the lake and the distance from the location of the suspended PF substrate to the lake bottom or shore. Received: September 25, 1999 / Accepted: January 6, 2000  相似文献   

14.
A recent study by Palmer, Sun, and Harris (Biotechnol. Prog., 25:189–199, 2009) demonstrated that tangential flow filtration (TFF) can be used to produce HPLC‐grade bovine and human hemoglobin (Hb). In this current study, we assessed the quality of bovine Hb (bHb) purified by introducing a 10 L batch‐mode diafiltration step to the previously mentioned TFF Hb purification process. The bHb was purified from bovine red blood cells (RBCs) by filtering clarified RBC lysate through 50 nm (stage I) and 500 kDa (stage II) hollow fiber (HF) membranes. The filtrate was then passed through a 100 kDa (stage III) HF membrane with or without an additional 10 L diafiltration step to potentially remove additional small molecular weight impurities. Protein assays, SDS‐PAGE, and LC‐MS of the purified bHb (stage III retentate) reveal that addition of a diafiltration step has no effect on bHb purity or yield; however, it does increase the methemoglobin level and oxygen affinity of purified bHb. Therefore, we conclude that no additional benefit is gained from diafiltration at stage III and a three stage TFF process is sufficient to produce HPLC‐grade bHb. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

15.
To achieve the high protein concentrations required for subcutaneous administration of biologic therapeutics, numerous manufacturing process challenges are often encountered. From an operational perspective, high protein concentrations result in highly viscous solutions, which can cause pressure increases during ultrafiltration. This can also lead to low flux during ultrafiltration and sterile filtration, resulting in long processing times. In addition, there is a greater risk of product loss from the hold-up volumes during filtration operations. From a formulation perspective, higher protein concentrations present the risk of higher aggregation rates as the closer proximity of the constituent species results in stronger attractive intermolecular interactions and higher frequency of self-association events. There are also challenges in achieving pH and excipient concentration targets in the ultrafiltration/diafiltration (UF/DF) step due to volume exclusion and Donnan equilibrium effects, which are exacerbated at higher protein concentrations. This paper highlights strategies to address these challenges, including the use of viscosity-lowering excipients, appropriate selection of UF/DF cassettes with modified membranes and/or improved flow channel design, and increased understanding of pH and excipient behavior during UF/DF. Additional considerations for high-concentration drug substance manufacturing, such as appearance attributes, stability, and freezing and handling are also discussed. These strategies can be employed to overcome the manufacturing process challenges and streamline process development efforts for high-concentration drug substance manufacturing.  相似文献   

16.
Regional fat distribution rather than overall fat volume has been considered to be important to understanding the link between obesity and metabolic disorders. We aimed to evaluate the independent associations of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) with metabolic risk factors in apparently healthy middle‐aged Japanese. Participants were 1,119 men and 854 women aged 38–60 years who were not taking medications for diabetes, hypertension, or dyslipidemia. VAT and SAT were measured by use of computed tomography (CT) scanning. VAT and SAT were significantly and positively correlated with each other in men (r = 0.531, P < 0.001) and women (r = 0.589, P < 0.001). In multiple regression analyses, either measure of abdominal adiposity (VAT or SAT) was positively associated with blood pressure, fasting plasma glucose, and log triglyceride (P < 0.001) and inversely with high‐density lipoprotein (HDL)‐cholesterol (P < 0.001). When VAT and SAT were simultaneously included in the model, the association of VAT with triglycerides was maintained (P < 0.001) but that of SAT was lost. The same was true for HDL‐cholesterol in women. For fasting plasma glucose, the association with VAT was strong (P < 0.001) and the borderline association with SAT was maintained (P = 0.060 in men and P = 0.020 in women). Both VAT and SAT were independently associated with blood pressure (P < 0.001). Further adjustment for anthropometric indices resulted in the independent association only with VAT for all risk factors. In conclusion, impacts of VAT and SAT differed among risk factors. VAT showed dominant impacts on triglyceride concentrations in both genders and on HDL‐cholesterol in women, while SAT also had an independent association with blood pressure.  相似文献   

17.
Objective: To assess whether changes in total and regional adiposity affect the odds for becoming hypercholesterolemic. Methods and Procedures: Changes in BMI and waist circumference were compared to self‐reported physician‐diagnosed hypercholesterolemia in 24,397 men and 10,023 women followed prospectively in the National Runners' Health Study. Results: Incident hypercholesterolemia were reported by 3,054 men and 519 women during (mean ± s.d.) 7.8 ± 1.8 and 7.5 ± 2.0 years of follow‐up, respectively. Despite being active, men's BMI increased by 1.15 ± 1.71 kg/m2 and women's BMI increased by 0.96 ± 1.89 kg/m2. The odds for developing hypercholesterolemia increased significantly in association with gains in BMI and waist circumferences in both sexes. A gain in BMI ≥2.4 kg/m2 significantly (P < 0.0001) increased the odds for hypercholesterolemia by 94% in men and 129% in women compared to those whose BMI declined (40 and 76%, respectively, adjusted for average of the baseline and follow‐up BMI, P < 0.0001). A gain of ≥6 cm in waist circumference increased men's odds for hypercholesterolemia by 74% (P < 0.0001) and women's odds by 70% (P < 0.0001) relative to those whose circumference declined (odds increased 40% at P < 0.0001 and 49% at P < 0.01, respectively adjusted for average circumference). BMI and waist circumference at the end of follow‐up were significantly associated (P < 0.0001) with the log odds for hypercholesterolemia in both men (e.g., coefficient ± s.e.: 0.115 ± 0.011 per kg/m2) and women (e.g., 0.119 ± 0.019 per kg/m2) when adjusted for baseline values, whereas baseline BMI and circumferences were unrelated to the log odds when adjusted for follow‐up values. Discussion: These observations are consistent with the hypothesis that weight gain acutely increases the risk for hypercholesterolemia.  相似文献   

18.
Ultrafiltration/diafiltration (UF/DF) is a typical step in protein drug manufacturing process to concentrate and exchange the protein solution into a desired formulation. However, significant offset of pH and composition from the target formulation have been frequently observed after UF/DF, posing challenges to the stability, performance, and consistency of the final drug product. Such shift can often be attributed to the Donnan and volume exclusion effects. In order to predict and compensate for those effects, a mechanistic model is developed based on the protein charge, mass and charge balances, as well as the equilibrium condition across the membrane. The integrated UF/DF model can be used to predict both the dynamic behavior and the final outcome of the process. Examples of the modeling results for the pH and composition variation during the UF/DF operations are presented for two monoclonal antibody proteins. The model predictions are in good agreement with a comprehensive experimental data set that covers different process steps, protein concentrations, solution matrices, and process scales. The results show that significant pH and excipient concentration shifts are more likely to occur for high protein concentration and low ionic strength matrices. As a special example, a self-buffering protein formulation shows unique pH behavior during DF, which could also be captured with the dynamic model. The capability of the model in predicting the performance of UF/DF process as a function of protein characteristics and formulation conditions makes it a useful tool to improve process understanding and facilitate process development.  相似文献   

19.
The aim of the study was to find out whether administration of selenium (Se) will protect the immature heart against ischemia/reperfusion. The control pregnant rats were fed laboratory diet (0.237 mg Se/kg diet); experimental rats received 2 ppm Na2SeO3 in the drinking water from the first day of pregnancy until day 10 post partum. The concentration of Se in the serum and heart tissue was determined by activation analysis, the serum concentration of NO by chemiluminescence, cardiac concentration of lipofuscin-like pigment by fluorescence analysis. The 10 day-old hearts were perfused (Langendorff); recovery of developed force (DF) was measured after 40 min of global ischemia. In acute experiments, 10 day-old hearts were perfused with selenium (75 nmol/l) before or after global ischemia. Sensitivity to isoproterenol (ISO, pD50) was assessed as a response of DF to increasing cumulative dose. Se supplementation elevated serum concentration of Se by 16%. Se increased ischemic tolerance (recovery of DF, 32.28 ± 2.37 vs. 41.82 ± 2.91%, P < 0.05). Similar results were obtained after acute administration of Se during post-ischemic reperfusion (32.28 ± 2.37 vs. 49.73 ± 4.40%, P < 0.01). The pre-ischemic treatment, however, attenuated the recovery (23.08 ± 3.04 vs. 32.28 ± 2.37%, P < 0.05). Moreover, Se supplementation increased the sensitivity to the inotropic effect of ISO, decreased cardiac concentration of lipofuscin-like pigment and serum concentration of NO. Our results suggest that Se protects the immature heart against ischemia/reperfusion injury. It seems therefore, that ROS may affect the function of the neonatal heart, similarly as in adults.  相似文献   

20.
Summary The influence of solvents on enzymatic activity and stability was investigated. As a model reaction the -chymotrypsin-catalyzed esterification of N-acetyl-l-phenylalanine with ethanol was used. The enzyme was adsorbed on porous glass beads and used in various solvents. Small amounts of water were added to increase the enzymatic activity. These enzyme preparations obeyed. Michaelis-Menten kinetics. K m,app decreased slightly with the log P value of the solvent while V app increased markedly with the log P value. Log P values were also useful for generalizing the influence of solvents on enzyme stability. The enzyme preparations showed a markedly higher thermostability in dry solvents having log P values >0.7 than in less hydrophobic solvents.Also the operational stability was better in the more hydrophobic solvents. The amount of water added to the enzyme preparations greatly influenced the initial reaction rates. For some solvents optimal water contents were determined. The thermostability decreased with increasing water content.The observations are summarized in the conclusion that more hydrophobic solvents are preferable to less hydrophobic ones. The log P value gives a good guidance when selecting an organic solvent for enzymatic conversions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号