首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well established that misfolded forms of cellular prion protein (PrP [PrPC]) are crucial in the genesis and progression of transmissible spongiform encephalitis, whereas the function of native PrPC remains incompletely understood. To determine the physiological role of PrPC, we examine the neurophysiological properties of hippocampal neurons isolated from PrP-null mice. We show that PrP-null mouse neurons exhibit enhanced and drastically prolonged N-methyl-D-aspartate (NMDA)-evoked currents as a result of a functional upregulation of NMDA receptors (NMDARs) containing NR2D subunits. These effects are phenocopied by RNA interference and are rescued upon the overexpression of exogenous PrPC. The enhanced NMDAR activity results in an increase in neuronal excitability as well as enhanced glutamate excitotoxicity both in vitro and in vivo. Thus, native PrPC mediates an important neuroprotective role by virtue of its ability to inhibit NR2D subunits.  相似文献   

2.
NMDA receptors are ionotropic glutamate receptors assembled of subunits of the NR1 and of the NR2 family (NR2A–NR2D). The subunit diversity largely affects the pharmacological properties of NMDA receptors and, hence, gives rise to receptor heterogeneity. As an overall result of studies on recombinant and native NMDA receptors, ethanol inhibits the function of receptors containing the subunits NR2A and/or NR2B to a greater extent than those containing NR2C or NR2D. For example, in rat cultured mesencephalic neurons, NR2C expression was developmentally increased, whereas expression of NR2A and NR2B was decreased. These changes coincided with a developmental loss of sensitivity of NMDA responses to ethanol and ifenprodil, a non-competitive NMDA receptor antagonist that shows selectivity for NR2B-containing receptors. Also in rat locus coeruleus neurons, the low ethanol sensitivity of somatic NMDA receptors could be explained by a prominent expression of NR2C. The inhibitory site of action for ethanol on the NMDA receptor is not yet known. Patch–clamp studies suggest a target site exposed to or only accessible from the extracellular environment. Apparently, amino acid residue Phe639, located in the TM3 domain of NR1, plays a crucial role in the inhibition of NMDA receptor function by ethanol. Since this phenylalanine site is common to all NMDA and non-NMDA receptor (AMPA/kainate receptor) subunits, this observation is consistent with accumulating evidence for a similar ethanol sensitivity of a variety of NMDA and non-NMDA receptors, but it cannot explain the differences in ethanol sensitivity observed with different NR2 subunits.  相似文献   

3.
Cellular prion protein (PrPC) appears to be involved in numerous physiological processes. We have recently shown a novel modulation of NMDA receptors by PrPC that results in neuroprotection via silencing of NMDA receptors containing NR2D subunits, whereas no effects on AMPA receptor function could be observed (Khosravani, et al. J Cell Biol 2008; 181:551). Here we show that PrP-null mice show a normal response to long-term depression stimuli requiring AMPA receptor activity, thus further supporting our previous findings of a selective action on NMDA receptors among ionotropic glutamate receptors.Key words: AMPA receptor, NMDA receptor, PrP, long term depression, LTDThe role of prion proteins in the pathophysiology of transmissible spongiform encephalopathies is well documented.1 Although there is a growing body of literature associating normal cellular prion protein (PrPC) with functions such as regulation of cell proliferation and survival, cell signalling and immune function,1 the spectrum of physiological roles attributable to PrPC remains to be determined. This may in part be due to the fact that mice lacking PrPC display a relatively mild phenotype, unless subjected to insults such as ischemia or seizures, where increased mortality of the PrP-null mice has been reported.25 Interestingly, the increased neuronal damage in PrP-null mice following excitotoxicity is alleviated upon treatment with the N-Methyl-D-Aspartate (NMDA) receptor (NMDAR) inhibitor MK-801,6 suggesting a neuroprotective role of PrPC via an action on NMDARs, but the mechanism was unclear.We recently described a novel action of PrPC on NMDAR function.7 By examining the neurophysiological properties of hippocampal neurons isolated from PrP-null mice, we were able to show that PrP-null mouse neurons exhibit enhanced and drastically prolonged NMDA evoked currents due to a functional upregulation of NMDARs containing NR2D subunits. Biochemical analyses suggested that NR2D subunits, but not NR2B subunits, co-immunoprecipitated with PrPC, indicating that PrPC and NMDARs form physical signaling complexes in neurons. The increased NMDAR function could be phenocopied by RNA interference and were rescued upon overexpression of exogenous PrPC. The enhanced NMDAR activity resulted in increased neuronal excitability, as well as enhanced glutamatergic-based excitotoxicity in both in vitro and in vivo experiments were neurons were transiently exposed to the selective agonist NMDA. Hence, native PrPC appears to mediate an important neuroprotective role by virtue of its ability to silence NR2D containing NMDARs. In contrast, minor effects on amplitude and rise and decay-time kinetics were observed for both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and GABAA (miniature and evoked) currents in synaptically mature hippocampal cultures.AMPA and NMDA receptors have been linked to synaptic plasticity, in particular long term potentiation (LTP) and long term depression (LTD). LTP is believed to mostly reflect a strengthening of the postsynaptic response, caused by a brief period of hyperexcitability that releases significant amounts of glutamate such as during a brief tetanic stimulation. This is thought to result in the opening of AMPA receptors, which depolarize the postsynaptic membrane. This in turn increases the activity of postsynaptic NMDARs, because magnesium ions that normally inhibit NMDAR activity, are dislodged by the postsynaptic depolarization, thus allowing NMDARs to become active. This functional activation of NMDARs results in the influx of calcium ions, which in turn initiate a signaling cascade that results in the membrane insertion of additional AMPA receptors, thus strengthening the synapse. This process is thought to involve NMDA receptor isoforms that predominantly contain the NR2A subunits.8A synaptic depotentiation process also can take place that results in the opposite effects of LTP; this process is known as long-term depression or LTD, which also has an NMDAR-dependent component. In contrast to brief tetanic stimulation, as is used in the induction of LTP, establishing LTD requires low frequency stimulation (e.g., 1 Hz for 15 min). Successful and repeatable induction of LTD depends on the parameters used for the conditioning stimulus and more importantly on the age of the animal. In juvenile animals (P12–P21) a low frequency protocol is effective and the mechanism of LTD is believed to depend on the activity of NMDA receptors containing NR2B subunits.8 Although a clear distinction of the roles between NR2A and NR2B containing NMDARs, in LTP and LTD respectively, has remained controversial,9 it is clear that both NR2A and NR2B are key mediators of alterations in synaptic plasticity. In older animals, the conditioning protocol is reported to require modification to include paired-pulses. This is thought to be due to the involvement of predominantly AMPA (and perhaps kainate) receptors in addition to mGluRs responsible for the synaptic depotentiation (reviewed in ref. 10).As mentioned earlier, our data obtained from hippocampal cultures indicated only a minor effect of PrPC knockout on AMPA receptor function. Hence, we hypothesized that AMPA receptor-mediated LTD should be similar in both wild type and PrP-null mice. We therefore examined the effect of PrP on LTD in hippocampal slices obtained from P30–P45 wild type mice and Zurich 1 PrPC knockout mice. Extracellular potentials were recorded using a patch pipette filled with 150 mM NaCl. First, 10 minutes of baseline evoked (every 30 sec) potentials were recorded to ensure stability of the preparation. LTD was then evoked by application of conditioning paired pulses (Δt = 60 ms) delivered at 1 Hz for 15 min. Thereafter, the field response was sampled every 30 sec for 40 min. As shown in Figure 1, this protocol evoked reliable LTD in wild type mice that partially recovered over the time course of about 20 minutes (Fig. 1). In the PrPC-null slices, LTD was indistinguishable from that observed in the wild type slices (Fig. 1).Open in a separate windowFigure 1LTD in the CA1 region of hippocampal slices from adult (P30–P45) WT and PrP-null mice. The conditioning pulse (arrow head) was delivered as paired-pulses (Δt = 60 ms) at 1 Hz for 15 min at the Schaffer collaterals. Analysis of field excitatory postsynaptic potential (fEPSP) slope revealed no statistically significant differences (Student''s t-test, p > 0.05) in the extent of induced LTD or the time course of its recovery to baseline. Numbers in parentheses indicate number of slices.The age of the animals, combined with the paired pulse protocol used in our experiments was designed to isolate AMPA receptor mediated LTD.10 The notion that LTD was unaltered in PrP-null mice is consistent with the observation that AMPA currents were not altered in these mice, and that AMPA receptor-mediated spontaneous synaptic events showed only minute changes compared with wild type animals. These data are also consistent with the notion that PrP-null mice show only mild phenotypes in spatial learning, with no apparent overall short-term memory deficits. Collectively, these data further support a selective action of PrP on NMDA receptors, rather than overall glutamatergic synaptic transmission.  相似文献   

4.
《朊病毒》2013,7(2):48-50
Cellular prion protein (PrPC) appears to be involved in numerous physiological processes. We have recently shown a novel modulation of NMDA receptors by PrPC that results in neuroprotection via silencing of NMDA receptors containing NR2D subunits, whereas no effects on AMPA receptor function could be observed (Khosravani et al. 2008, J Cell Biol. 181, 551). Here we show that PrP-null mice show a normal response to long-term depression stimuli requiring AMPA receptor activity, thus further supporting our previous findings of a selective action on NMDA receptors among ionotropic glutamate receptors.  相似文献   

5.
Abstract: The subunit compositions of the NR1 C2 exon-containing N -methyl- d -aspartate (NMDA) receptors of adult mammalian forebrain were determined by using a combination of immunoaffinity chromatography and immunoprecipitation studies with NMDA receptor subunit-specific antibodies. NMDA receptors were solubilised by sodium deoxycholate, pH 9, and purified by anti-NR1 C2 antibody affinity chromatography. The purified receptor subpopulation showed immunoreactivity with anti-NR1 C2, anti-NR1 N1, anti-NR1 C2', anti-NR2A, and anti-NR2B NMDA receptor antibodies. The NR1 C2-receptor subpopulation was subjected to immunoprecipitation using anti-NR2B antibodies and the resultant immune pellets analysed by immunoblotting where anti-NR1 C2, anti-NR1 C2', anti-NR2A, and anti-NR2B immunoreactivities were all found. Quantification of the immunoblots showed that 46% of the NR1 C2 immunoreactivity was associated with the NR2B subunit. Of this, 87% (i.e., 40% of total) were NR1 C2/NR2B receptors and 13% (6% of total) were NR1 C2/NR2A/NR2B, thus identifying the triple combination as a minor receptor subset. These results demonstrate directly, for the first time, the coexistence of the NR2A and NR2B subunits in native NMDA receptors. They show the coexistence of two splice forms of the NR1 subunit, i.e., NR1 C2 and NR1 C2', in native receptors and, in addition, they imply an NMDA receptor subpopulation containing four types of NMDA receptor subunit, NR1 C2, NR1 C2', NR2A, and NR2B, which, in accord with molecular size determinations, predicts that the NMDA receptor is at least tetrameric. These results are the first quantitative study of NMDA receptor subtypes and demonstrate molecular heterogeneity for both the NR1 and the NR2 subunits in native forebrain NMDA receptors.  相似文献   

6.
N-Methyl-D-aspartate (NMDA) receptors are heteromeric structures resulting from the association of at least two distantly related subunit types, NR1 and one of the four NR2 subunits (NR2A-NR2D). When associated with NR1, the NR2 subunits impose specific properties to the reconstituted NMDA receptors. Although the NR1 mRNAs are expressed in the majority of central neurons, the NR2 subunits display distinct patterns of expression in the developing and adult rat brain. The NR2C subunit is barely expressed in the rat forebrain, whereas its expression increases substantially in the granule cells in the course of cerebellar development. We have identified novel NR2C splice variants in cultured cerebellar granule cells as well as in the developing cerebellum. When compared with the prototypic NR2C mRNA, these variants carry one (NR2Cb) or two (NR2Cd) insertions or a deletion (NR2Cc) and encode putative NR2C polypeptides that terminate between the third and fourth membrane segments or between the first and second membrane segments. RT-PCR analysis and in situ hybridization show that expression of the splice variants is developmentally regulated, both in the cerebellum and in the hippocampus. Electrophysiological recordings and microfluorimetry emissions in transfected human embryonic kidney 293 cells indicate that the NR2Cb variant, when expressed in combination with NR1, does not contribute to the formation of functional receptor channels. The significance of theses findings is discussed.  相似文献   

7.
Ouabain exerts neurotoxic action and activates the population of NMDA receptors. Herein the effect of ouabain on the expression of NMDA subunits was evaluated. Adult Wistar rats were administered intracerebroventricularly with 0.1, 10 and 100 nmol ouabain or saline solution (control). Two days later, membranes of cerebral cortex and hippocampus were isolated. Western blots with antibodies for the NMDA receptor subunits: NR1; NR2A; NR2B; NR2C and NR2D were carried out. In cerebral cortex, NR2D subunit increased 30% with 10 nmol ouabain dose. With 100 nmol ouabain, NR1 and NR2D subunits enhanced 40 and 20%, respectively. In hippocampus, with the dose of 0.1 nmol ouabain, NR1 subunit enhanced roughly 50% whereas NR2B subunit decreased 30%. After administration of 10 nmol ouabain dose, NR2A, NR2B and NR2C subunits decreased 40, 50 and 30%, respectively. With the dose of 100 nmol of ouabain, NR1, NR2A and NR2B subunits diminished 10–20%. It is concluded that ouabain administration led to a differential regulation in the expression of NMDA subunits. These results may be correlated with the modulatory action of ouabain on NMDA receptor.  相似文献   

8.
Thin basal dendrites can strongly influence neuronal output via generation of dendritic spikes. It was recently postulated that glial processes actively support dendritic spikes by either ceasing glutamate uptake or by actively releasing glutamate and adenosine triphosphate (ATP). We used calcium imaging to study the role of NR2C/D-containing N-methyl-d-aspartate (NMDA) receptors and adenosine A1 receptors in the generation of dendritic NMDA spikes and plateau potentials in basal dendrites of layer 5 pyramidal neurons in the mouse prefrontal cortex. We found that NR2C/D glutamate receptor subunits contribute to the amplitude of synaptically evoked NMDA spikes. Dendritic calcium signals associated with glutamate-evoked dendritic plateau potentials were significantly shortened upon application of the NR2C/D receptor antagonist PPDA, suggesting that NR2C/D receptors prolong the duration of calcium influx during dendritic spiking. In contrast to NR2C/D receptors, adenosine A1 receptors act to abbreviate dendritic and somatic signals via the activation of dendritic K+ current. This current is characterized as a slow-activating outward-rectifying voltage- and adenosine-gated current, insensitive to 4-aminopyridine but sensitive to TEA. Our data support the hypothesis that the release of glutamate and ATP from neurons or glia contribute to initiation, maintenance and termination of local dendritic glutamate-mediated regenerative potentials.  相似文献   

9.
Abstract: Ion flux through native N-methyl-d -aspartate (NMDA) receptors is inhibited by behaviorally relevant concentrations of ethanol (10–100 mM) in a variety of neuronal preparations. However, in animal tissues, it is often difficult to determine accurately which NMDA receptor subunits are responsible for the observed effect. In this study, human embryonic kidney 293 (HEK 293) cells normally devoid of NMDA receptors were transiently transfected with cDNA expression plasmids coding for specific rat NMDA receptor subunits. Brief application of an NMDA/glycine solution to cells markedly increased intracellular calcium in cells transfected with NR1/NR2A, NR1/NR2B, or NR1/NR2A/NR2B as measured by fura-2 calcium imaging. This increase was both NMDA- and glycine-dependent and was inhibited by competitive and noncompetitive NMDA antagonists, including 2-amino-5-phosphopentanoic acid and MK-801. The NR2B-selective antagonist ifenprodil inhibited responses in cells transfected with NR1/NR2B or NR1/NR2A/NR2B, but not NR1/NR2A subunits. Increasing the transfection ratio of NR2B versus NR2A subunit in NR1/NR2A/NR2B-transfected cells greatly increased their ifenprodil sensitivity. Acute exposure to ethanol (25–100 mM) inhibited the NMDA-mediated increase in intracellular calcium in a dose-dependent manner without affecting basal calcium concentrations. There were no statistically significant differences in ethanol's potency or maximal inhibition between any of the subunit combinations tested. HEK 293 cells transfected with NR1/NR2A/NR2B subunits showed an enhanced sensitivity to ifenprodil following a 24-h exposure to concentrations of ethanol of 50 mM and greater. The enhanced ifenprodil sensitivity following ethanol exposure was not associated with changes in NR1, NR2A, or NR2B immunoreactivity. In contrast to results obtained in transfected HEK 293 cells, no effect of chronic ethanol was observed in oocytes expressing NR1/NR2A/NR2B subunits. These results demonstrate that recombinant NMDA receptors expressed in HEK 293 cells form functional receptors that, like native receptors, are sensitive to modulation by both acute and chronic ethanol treatment.  相似文献   

10.
N-methyl-D-aspartate (NMDA) neurotransmitter receptors and the postsynaptic density-95 (PSD-95) membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins are integral components of post-synaptic macromolecular signaling complexes that serve to propagate glutamate responses intracellularly. Classically, NMDA receptor NR2 subunits associate with PSD-95 MAGUKs via a conserved ES(E/D)V amino acid sequence located at their C termini. We previously challenged this dogma to demonstrate a second non-ES(E/D)V PSD-95-binding site in both NMDA receptor NR2A and NR2B subunits. Here, using a combination of co-immunoprecipitations from transfected mammalian cells, yeast two-hybrid interaction assays, and glutathione S-transferase (GST) pulldown assays, we show that NR2A subunits interact directly with PSD-95 via the C-terminal ESDV motif and additionally via an Src homology 3 domain-binding motif that associates with the Src homology 3 domain of PSD-95. Peptide inhibition of co-immunoprecipitations of NR2A and PSD-95 demonstrates that both the ESDV and non-ESDV sites are required for association in native brain tissue. Furthermore, we refine the non-ESDV site within NR2B to residues 1149-1157. These findings provide a molecular basis for the differential association of NMDA receptor subtypes with PSD-95 MAGUK scaffold proteins. These selective interactions may contribute to the organization, lateral mobility, and ultimately the function of NMDA receptor subtypes at synapses. Furthermore, they provide a more general molecular mechanism by which the scaffold, PSD-95, may discriminate between potential interacting partner proteins.  相似文献   

11.
Fyn-mediated tyrosine phosphorylation of N-methyl-D-aspartate (NMDA) receptor subunits has been implicated in various brain functions, including ethanol tolerance, learning, and seizure susceptibility. In this study, we explored the role of Fyn in haloperidol-induced catalepsy, an animal model of the extrapyramidal side effects of antipsychotics. Haloperidol induced catalepsy and muscle rigidity in the control mice, but these responses were significantly reduced in Fyn-deficient mice. Expression of the striatal dopamine D(2) receptor, the main site of haloperidol action, did not differ between the two genotypes. Fyn activation and enhanced tyrosine phosphorylation of the NMDA receptor NR2B subunit, as measured by Western blotting, were induced after haloperidol injection of the control mice, but both responses were significantly reduced in Fyn-deficient mice. Dopamine D(2) receptor blockade was shown to increase both NR2B phosphorylation and the NMDA-induced calcium responses in control cultured striatal neurons but not in Fyn-deficient neurons. Based on these findings, we proposed a new molecular mechanism underlying haloperidol-induced catalepsy, in which the dopamine D(2) receptor antagonist induces striatal Fyn activation and the subsequent tyrosine phosphorylation of NR2B alters striatal neuronal activity, thereby inducing the behavioral changes that are manifested as a cataleptic response.  相似文献   

12.
Dendritic spines of medium spiny neurons represent an essential site of information processing between NMDA and dopamine receptors in striatum. Even if activation of NMDA receptors in the striatum has important implications for synaptic plasticity and disease states, the contribution of specific NMDA receptor subunits still remains to be elucidated. Here, we show that treatment of corticostriatal slices with NR2A antagonist NVP-AAM077 or with NR2A blocking peptide induces a significant increase of spine head width. Sustained treatment with D1 receptor agonist (SKF38393) leads to a significant decrease of NR2A-containing NMDA receptors and to a concomitant increase of spine head width. Interestingly, co-treatment of corticostriatal slices with NR2A antagonist (NVP-AAM077) and D1 receptor agonist augmented the increase of dendritic spine head width as obtained with SKF38393. Conversely, NR2B antagonist (ifenprodil) blocked any morphological effect induced by D1 activation. These results indicate that alteration of NMDA receptor composition at the corticostriatal synapse contributes not only to the clinical features of disease states such as experimental parkinsonism but leads also to a functional and morphological outcome in dendritic spines of medium spiny neurons.  相似文献   

13.
14.
N-methyl-D-aspartate receptors (NMDA) are glutamate-activated ligand-gated ion channels that participate in diverse forms of synaptic plasticity as well as glutamate-dependent excitotoxicity. Inhibition of the NMDA receptor function may underlie some of the behavioral actions associated with acute exposure to ethanol. The sensitivity of NMDA receptors to ethanol is influenced by the subunit composition of the receptor and, by association, with certain cytoskeletal proteins. Previous studies have also suggested that phosphorylation may regulate the sensitivity of NMDA receptors to ethanol. In this study, the ethanol inhibition of recombinant NMDA receptor currents was determined under conditions designed to enhance or inhibit the activity of protein kinase A (PKA). Human embryonic kidney 293 (HEK293) cells were transfected with cDNAs encoding NMDA subunits and channel activity was monitored with whole-cell patch-clamp electrophysiology. Under control recording conditions, ethanol (100 mM) inhibited NR1/2A and NR1/2B receptor currents by approximately 25-30%. The degree of ethanol inhibition was not affected or was slightly enhanced under conditions designed to enhance PKA activity. This included treatment of cells with cAMP analogs, inclusion of phosphatase inhibitors or purified PKA in the pipette filling solution, co-expression of catalytically active PKA, expression of the NR1 PKA-site phosphorylation site mimic (S897D) or by co-expression of the PKA scaffolding protein yotiao or the dopamine D(1) receptor. Ethanol inhibition of NR1/2A and NR1/2B receptors was not altered when PKA effects were suppressed, either by co-expression of a PKI inhibitory peptide or the phosphorylation-deficient NR1 mutants (S897A, S896A, S896A/S897A). In addition, ethanol inhibition of NMDA-induced currents in cultured cortical or hippocampal neurons was not affected by modulators of PKA. These results suggest that PKA does not appear to play a major role in determining the acute ethanol sensitivity of NMDA receptors.  相似文献   

15.
N-Methyl-D-aspartate (NMDA) receptors are tetrameric protein complexes composed of the glycine-binding NR1 subunit with a glutamate-binding NR2 and/or glycine-binding NR3 subunit. Tri-heteromeric receptors containing NR1, NR2, and NR3 subunits reconstitute channels, which differ strikingly in many properties from the respective glycine- and glutamate-gated NR1/NR2 complexes and the NR1/NR3 receptors gated by glycine alone. Therefore, an accurate oligomerization process of the different subunits has to assure proper NMDA receptor assembly, which has been assumed to occur via the oligomerization of homodimers. Indeed, using fluorescence resonance energy transfer analysis of differentially fluorescence-tagged subunits and blue native polyacrylamide gel electrophoresis after metabolic labeling and affinity purification revealed that the NR1 subunit is capable of forming homo-oligomeric aggregates. In contrast, both the NR2 and the NR3 subunits formed homo- and hetero-oligomers only in the presence of the NR1 subunit indicating differential roles of the subunits in NMDA receptor assembly. However, co-expression of the NR3A subunit with an N-terminal domain-deleted NR1 subunit (NR1(DeltaNTD)) abrogating NR1 homo-oligomerization did not affect NR1/NR3A receptor stoichiometry or function. Hence, homo-oligomerization of the NR1 subunit is not essential for proper NR1/NR3 receptor assembly. Because identical results were obtained for NR1(DeltaNTD)/NR2 NMDA receptors (Madry, C., Mesic, I., Betz, H., and Laube, B. (2007) Mol. Pharmacol., 72, 1535-1544) and NR1-containing hetero-oligomers are readily formed, we assume that heterodimerization of the NR1 with an NR3 or NR2 subunit, which is followed by the subsequent association of two heterodimers, is the key step in determining proper NMDA receptor subunit assembly and stoichiometry.  相似文献   

16.
NMDA receptors play essential roles in the physiology and pathophysiology of the striatum, a brain nucleus involved in motor control and reward-motivated behaviors. NMDA receptors are composed of NR1 and NR2A–D subunits. Functional properties of NMDA receptors are determined by the type of NR2 subunit they contain. In this study, we have examined the involvement of NR2B and NR2A in the modulatory effect of NMDA on glutamatergic and dopaminergic synaptic transmission in the striatum. We found that bath application of NMDA decreased the amplitude of the field excitatory post-synaptic potential/population spike (fEPSP/PS) measured in corticostriatal mouse brain slices. This depression was not affected by the NR2B-selective antagonists Ifenprodil and Ro 25-6981, but was abolished by the NR2A antagonist NVP-AAM077. Activation of corticostriatal neurons by NMDA did not contribute to synaptic depression because similar results were obtained in decorticated striatal slices. Synaptic depression was not dependent on GABA release because the GABAA receptor antagonist bicuculline did not affect NMDA-induced decrease of the fEPSP/PS. NMDA also depressed evoked-dopamine release through NR2A- but not NR2B-containing NMDA receptors. Our results identify an important role for NR2A-containing NMDA receptors intrinsic to the striatum in regulating glutamatergic synaptic transmission and evoked-dopamine release.  相似文献   

17.
Modulation of D2R-NR2B interactions in response to cocaine   总被引:4,自引:0,他引:4  
Dopamine-glutamate interactions in the neostriatum determine psychostimulant action, but the underlying molecular mechanisms remain elusive. Here we found that dopamine stimulation by cocaine enhances a heteroreceptor complex formation between dopamine D2 receptors (D2R) and NMDA receptor NR2B subunits in the neostriatum in vivo. The D2R-NR2B interaction is direct and occurs in the confined postsynaptic density microdomain of excitatory synapses. The enhanced D2R-NR2B interaction disrupts the association of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) with NR2B, reduces NR2B phosphorylation at a CaMKII-sensitive site (Ser1303), and inhibits NMDA receptor-mediated currents in medium-sized striatal neurons. Furthermore, the regulated D2R-NR2B interaction is critical for constructing behavioral responsiveness to cocaine. Our findings here uncover a direct and dynamic D2R-NR2B interaction in striatal neurons in vivo. This type of dopamine-glutamate integration at the receptor level may be responsible for synergistically inhibiting the D2R-mediated circuits in the basal ganglia and fulfilling the stimulative effect of psychostimulants.  相似文献   

18.
Chronic treatment of neurons with either ethanol or competitive and noncompetitive antagonists of NMDA receptors leads to enhanced expression of NMDA receptor density and function in neurons. The signal transduction pathways for such receptor up-regulation are not known. The focus of the present study was on the role of Ca2+ entry into neurons, either through receptor or voltage-gated channels, in the expression of the NMDA receptor subunit NR1 and the 71-kDa glutamate-binding protein (GBP) of a glutamate/NMDA receptor-like complex. Chronic inhibition of NMDA receptors in cortical neurons in primary cultures by either 100 mM ethanol or 100 microM 2-amino-5-phosphonopentanoic acid (2-AP5) increased the expression of NR1 and GBP. The effect of 2-AP5 on the expression of the two proteins was not additive with that of ethanol when neuronal cultures were treated with both agents at the same time. However, the effects of ethanol on NR1 and GBP expression were blocked by the simultaneous treatment with NMDA (50 microM). Activation or inhibition of other glutamate ionotropic receptors had no effect on the expression of NR1 and GBP. The inhibition of L- or N-type voltage-sensitive Ca2+ channels and voltage-gated Na+ channels also had little effect on the expression of either protein; neither did exposure of neurons to elevated extracellular Ca2+ concentrations (3 or 5 mM). On the other hand, treatment of neurons for 48 h with the intracellular Ca2+ chelator BAPTA-AM as well as partial chelation of extracellular Ca2+ with EGTA caused an up-regulation in NR1 and GBP expression. The enhanced expression of NR1 in neurons treated for 48 h with either ethanol or EGTA was correlated with increases in the activity of NMDA receptors demonstrated as a doubling of the NMDA-stimulated rise in intracellular free Ca2+ concentration. The effects of chronic administration of EGTA on both NR1 expression as well as NMDA receptor function were probably related to an acute inhibition by EGTA of NMDA-induced Ca2+ influx into neurons. It appears that the expression of both the NR1 subunit of NMDA receptors and the GBP of a receptor-like complex is regulated by intracellular Ca2+, especially that entering through NMDA receptor ion channels.  相似文献   

19.
20.
Activation of dopamine D1 receptors is critical for the generation of glutamate-induced long-term potentiation at corticostriatal synapses. In this study, we report that, in striatal neurons, D1 receptors are co-localized with N-methyl-d-aspartate (NMDA) receptors in the postsynaptic density and that they co-immunoprecipitate with NMDA receptor subunits from postsynaptic density preparations. Using modified bioluminescence resonance energy transfer, we demonstrate that D1 and NMDA receptor clustering reflects the existence of direct interactions. The tagged D1 receptor and NR1 subunit cotransfected in COS-7 cells generated a significant bioluminescence resonance energy transfer signal that was insensitive to agonist stimulation and that did not change in the presence of the NR2B subunit, suggesting that the D1 receptor constitutively and selectively interacts with the NR1 subunit of the NMDA channel. Oligomerization with the NR1 subunit substantially modified D1 receptor trafficking. In individually transfected HEK293 cells, NR1 was localized in the endoplasmic reticulum, whereas the D1 receptor was targeted to the plasma membrane. In cotransfected cells, both the D1 receptor and NR1 subunit were retained in cytoplasmic compartments. In the presence of the NR2B subunit, the NR1-D1 receptor complex was translocated to the plasma membrane. These data suggest that D1 and NMDA receptors are assembled within intracellular compartments as constitutive heteromeric complexes that are delivered to functional sites. Coexpression with NR1 and NR2B subunits also abolished agonist-induced D1 receptor cytoplasmic sequestration, indicating that oligomerization with the NMDA receptor could represent a novel regulatory mechanism modulating D1 receptor desensitization and cellular trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号