首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The comparative genetic structure of hosts and their parasites has important implications for their coevolution, but has been investigated in relatively few systems. In this study, we analysed the genetic structure and diversity of the New Zealand intertidal snail Zeacumantus subcarinatus ( n  =   330) and two of its trematode parasites, Maritrema novaezealandensis ( n  =   269) and Philophthalmus sp. ( n  =   246), using cytochrome c oxidase subunit I gene ( COI ) sequences. Snails and trematodes were examined from 11 collection sites representing three regions on the South Island of New Zealand. Zeacumantus subcarinatus displayed low genetic diversity per geographic locality, strong genetic structure following an isolation by distance pattern, and low migration rates at the scale of the study. In contrast, M. novaezealandensis possessed high genetic diversity, genetic homogeneity among collection sites and high migration rates. Genetic diversity and migration rates were typically lower for Philophthalmus sp. compared to M. novaezealandensis and it displayed weak to moderate genetic structure. The observed patterns likely result from the limited dispersal ability of the direct developing snail and the utilization of bird definitive hosts by the trematodes. In addition, snails may occasionally experience long-distance dispersal. Discrepancies between trematode species may result from differences in their effective population sizes and/or life history traits.  相似文献   

2.
Host partitioning by parasites in an intertidal crustacean community   总被引:1,自引:0,他引:1  
Patterns of host use by parasites throughout a guild community of intermediate hosts can depend on several biological and ecological factors, including physiology, morphology, immunology, and behavior. We looked at parasite transmission in the intertidal crustacean community of Lower Portobello Bay, Dunedin, New Zealand, with the intent of: (1) mapping the flow of parasites throughout the major crustacean species, (2) identifying hosts that play the most important transmission role for each parasite, and (3) assessing the impact of parasitism on host populations. The most prevalent parasites found in 14 species of crustaceans (635 specimens) examined were the trematodes Maritrema novaezealandensis and Microphallus sp., the acanthocephalans Profilicollis spp., the nematode Ascarophis sp., and an acuariid nematode. Decapods were compatible hosts for M. novaezealandensis, while other crustaceans demonstrated lower host suitability as shown by high levels of melanized and immature parasite stages. Carapace thickness, gill morphology, and breathing style may contribute to the differential infection success of M. novaezealandensis and Microphallus sp. in the decapod species. Parasite-induced host mortality appears likely with M. novaezealandensis in the crabs Austrohelice crassa, Halicarcinus varius, Hemigrapsus sexdentatus, and Macrophthalmus hirtipes, and also with Microphallus sp. in A. crassa. Overall, the different parasite species make different use of available crustacean intermediate hosts and possibly contribute to intertidal community structure.  相似文献   

3.
We quantified the clonal diversity of the New Zealand marine trematode Maritrema novaezealandensis (n = 1250) within Zeacumantus subcarinatus snail (n = 25) and Macrophthalmus hirtipes crab (n = 25) intermediate hosts using four to six microsatellite loci, and investigated the potential biological and physical factors responsible for the observed genetic patterns. Individual snails harboured one to five trematode genotypes and 48% of snails were infected by multiple parasite genotypes. Overall, the number of parasite genotypes did not increase with snail size, but was highest in intermediate-sized snails. Significantly larger numbers of parasite genotypes were detected in crabs (relative to snails; P < 0.001), with 16-25 genotypes recovered from individual crabs. Although crabs are typically infected by small numbers of cercariae sourced from many snails, they are occasionally infected by large numbers of cercariae sourced from single snails. The latter cases explain the significant genetic differentiation of trematode populations detected among their crab hosts (F(ST) = 0.009, P < 0.001). Our results suggest that the timing of infection and/or intraspecific competition among parasite clones within snails determine(s) the diversity of parasite clones that snails harbour. The presence of a large number of infected snails and tidal mixing of cercariae prior to infection results in crabs potentially harbouring hundreds of parasite genotypes despite the crabs' territorial behaviour.  相似文献   

4.
An unappreciated facet of biodiversity is that rich communities and high abundance may foster parasitism. For parasites that sequentially use different host species throughout complex life cycles, parasite diversity and abundance in 'downstream' hosts should logically increase with the diversity and abundance of 'upstream' hosts (which carry the preceding stages of parasites). Surprisingly, this logical assumption has little empirical support, especially regarding metazoan parasites. Few studies have attempted direct tests of this idea and most have lacked the appropriate scale of investigation. In two different studies, we used time-lapse videography to quantify birds at fine spatial scales, and then related bird communities to larval trematode communities in snail populations sampled at the same small spatial scales. Species richness, species heterogeneity and abundance of final host birds were positively correlated with species richness, species heterogeneity and abundance of trematodes in host snails. Such community-level interactions have rarely been demonstrated and have implications for community theory, epidemiological theory and ecosystem management.  相似文献   

5.
Density-dependent effects on parasite fitness have been documented from adult helminths in their definitive hosts. There have, however, been no studies on the cost of sharing an intermediate host with other parasites in terms of reduced adult parasite fecundity. Even if larval parasites suffer a reduction in size, caused by crowding, virtually nothing is known about longer-lasting effects after transmission to the definitive host. This study is the first to use in vitro cultivation with feeding of adult trematodes to investigate how numbers of parasites in the intermediate host affect the size and fecundity of adult parasites. For this purpose, we examined two different infracommunities of parasites in crustacean hosts. Firstly, we used experimental infections of Maritrema novaezealandensis in the amphipod, Paracalliope novizealandiae, to investigate potential density-dependent effects in single-species infections. Secondly, we used the crab, Macrophthalmus hirtipes (Ocypodidae), naturally infected by the trematodes, M. novaezealandensis and Levinseniella sp., the acanthocephalan, Profilicollis spp., and an acuariid nematode. These four helminths all develop and grow in their crustacean host before transmission to their bird definitive host by predation. In experimental infections, we found an intensity-dependent establishment success, with a decrease in the success rate of cercariae developing into infective metacercariae with an increasing dose of cercariae applied to each amphipod. In natural infections, we found that M. novaezealandensis-metacercariae achieved a smaller volume, on average, when infrapopulations of this parasite were large. Small metacercariae produced small in vitro-adult worms, which in turn produced fewer eggs. Crowding effects in the intermediate host thus were expressed at the adult stage in spite of the worms being cultured in a nutrient-rich medium. Furthermore, excystment success and egg-production in M. novaezealandensis in naturally infected crabs were influenced by the number of co-occurring Profilicollis cystacanths, indicating interspecific interactions between the two species. Our results thus indicate that the infracommunity of larval helminths in their intermediate host is interactive and that any density-dependent effect in the intermediate host may have lasting effects on individual parasite fitness.  相似文献   

6.
对科威特湾微茎科滨鹬马蹄吸虫幼虫期的中间宿主双带盾桑椹螺(Clypeomorus bifasciata)及小相手蟹(Nanosesarma minutum)的季节动态进行了研究。调查期超过一年,在检查的1 600只螺和415只蟹中, 11.8 %的螺感染了8种马蹄属线虫中的一种,且以滨鹬马蹄吸虫的感染占优势(9.9 %螺感染) ; 80 %的蟹感染滨鹬马蹄吸虫囊蚴。虽然一年四季两种宿主都会感染,但吸虫的流行和尾蚴(指成熟期感染)在夏季呈现高蜂。从螺体排出的尾蚴具有明显季节性,在此海湾必须要超过最低温度20℃。总的感染率在较大(较老)的螺里有所下降,显示吸虫影响宿主生存并随之影响宿主群体结构。囊蚴的感染丰度与蟹的个体大小有明显相关性;较大的蟹感染较多的囊蚴,显示宿主能耐受更多的吸虫。调查显示,囊蚴的感染率与蟹的大小或性别无相关性。囊蚴体外脱囊以及产卵吸虫的释放证明,成熟虫体终年存在于所有大小和性别不同的蟹里,显示从蟹到鸟的持续感染是可能的。总的来说,滨鹬马蹄吸虫在海湾的传播动态是由这两种无脊椎动物宿主来协调,并似乎是被一系列依赖于温度的活动控制,这些活动影响易感宿主种群及感染性幼虫期尾蚴和囊蚴的存在。  相似文献   

7.
Belden LK  Wojdak JM 《Oecologia》2011,166(4):1077-1086
Predators can have important impacts on host–parasite dynamics. For many directly transmitted parasites, predators can reduce transmission by removing the most heavily infected individuals from the population. Less is known about how predators might influence parasite dynamics in systems where the parasite relies on vectors or multiple host species to complete their life cycles. Digenetic trematodes are parasitic flatworms with complex life cycles typically involving three host species. They are common parasites in freshwater systems containing aquatic snails, which serve as obligate first intermediate hosts, and multiple trematode species use amphibians as second intermediate hosts. We experimentally examined the impact of predatory salamanders (Ambystoma jeffersonianum) and trematode parasites (Echinostoma trivolvis and Ribeiroia ondatrae) on short-term survival of wood frog tadpoles (Rana sylvatica) in 150-L outdoor pools. Two trematode species were used in experiments because field surveys indicated the presence of both species at our primary study site. Parasites and predators both significantly reduced tadpole survival in outdoor pools; after 6 days, tadpole survival was reduced from 100% in control pools to a mean of 46% in pools containing just parasites and a mean of 49% in pools containing just predators. In pools containing both infected snails and predators, tadpole survival was further reduced to a mean of 5%, a clear risk-enhancement or synergism. These dramatic results suggest that predators may alter transmission dynamics of trematodes in natural systems, and that a complete understanding of host–parasite interactions requires studying these interactions within the ecological framework of community interactions.  相似文献   

8.
Many biotic interactions can affect the prevalence and intensity of parasite infections in aquatic snails. Historically, these studies have centered on interactions between trematode parasites or between trematodes and other organisms. The present investigation focuses on the nematode parasite Daubaylia potomaca and its interactions with a commensal, Chaetogaster limnaei limnaei , and a variety of trematode species. It was found that the presence of C. l. limnaei indirectly increased the mean intensity of D. potomaca infections, apparently by acting as a restraint for various trematode parasites, particularly the rediae of Echinostoma sp. In turn, Echinostoma sp. rediae adversely affected the mean intensity of D. potomaca by their consumption of both juvenile and adult nematodes present in tissues of the snail. These organisms not only belong to 3 different phyla but occupy distinct trophic levels as well. The complex interactions among these 3 organisms in the snail host provide an excellent example of biotic interactions influencing the infection dynamics of parasites in aquatic snails.  相似文献   

9.
  1. Thermal disturbance of aquatic ecosystems directly and/or indirectly affects interspecific interactions, including parasitism. Both hosts and parasites respond differently to environmental changes, thus, predicting how host–parasite systems behave under the influence of disturbance remains a challenge. The aim of the study was to check how the differences in thermal conditions of lakes affect life-history traits of hosts and the level of parasitism, using a Viviparus contectus–digenean trematodes model.
  2. Overall, we examined 480 individuals of V. contectus collected from a thermally polluted lake (TPL) and a natural lake (NL). Host features, including body size and fecundity, as well as the prevalence and species richness of digenean trematodes in snail populations were investigated.
  3. We found that V. contectus from the TPL were significantly larger, heavier, and females were more fertile than snails collected from the NL. A total of 20.4% of the collected snails were infected with digenean larvae. The species richness of parasites was twice as high in the NL compared to the TPL (six and three species, respectively). A significant difference in the percentage of snails infected with parasites was identified between both types of lakes, with a higher prevalence of V. contectus in the NL (31.3%) compared to the TPL (7.3%).
  4. These results indicate that host–parasite systems follow the environmental changes in lakes due to thermal pollution by increasing fertility and metabolism rate of viviparid hosts and by decreasing the prevalence and diversity of digenean trematodes.
  相似文献   

10.
洞庭湖外睾吸虫新种及其生活史   总被引:8,自引:1,他引:7  
张仁利  左家铮 《动物学报》1993,39(2):124-129
本文报告洞庭湖区鲶鱼肠道寄生的洞庭湖外睾吸虫Exorchis dongtinghuensis sp.nov(新种)及其全程生活史,其第一中间宿主为湖北钉螺Oncomelania hupensis;第二中间宿主为鲤鱼、鲫鱼和金鱼;终宿主为鲶鱼Parasilurus asotus。作者对各期宿主作了人工感染试验和现场自然感染调查。对其发育过程作了观察比较。  相似文献   

11.
The level of host exploitation is expected, under theory, to be selected to maximise (subject to constraints) the lifetime reproductive success of the parasite. Here we studied the effect of two castrating trematode species on their intermediate snail host, Potamopyrgus antipodarum. One of the trematode species, Microphallus sp., encysts in the snail host and the encysted larvae “hatch” following ingestion of infected snails by birds. The other species, Notocotylus gippyensis, by contrast, releases swimming larvae; ingestion of the snail host is not required for, and does not aid, transmission to the final host. We isolated field-collected snails for 3 months in the laboratory, and followed the survival of infected and uninfected snails under two conditions: not fed and fed ad libitum. Mortality of the infected hosts was higher than mortality of the uninfected ones, but the response to starvation treatment was parasite species specific. N. gippyensis induced significantly higher mortality in starved snails than did Microphallus. Based on these results, we suggest that host exploitation by different species of trematodes may depend on the type of transmission. Encysting in the snail host may select for a reduced rate of host exploitation so as to increase the probability of transmission to the final host. Received: 29 July 1998 / Accepted: 1 February 1999  相似文献   

12.
There are many recorded cases of parasites that are capable of altering the behaviour of their host to enhance their transmission efficiency. However, not all of these cases are necessarily the results of the parasites actively manipulating host behaviour; they may rather be the 'by-products' of pathology caused by the parasite's presence. This study investigates the effect of the microphallid trematode Maritrema novaezealandensis on the behaviour of one of its crustacean intermediate hosts, the amphipod Paracalliope novizealandiae. Uninfected amphipods were experimentally infected by exposure to M. novaezealandensis cercariae. The activity level and vertical position of experimentally infected amphipods were compared with uninfected amphipods at 2 weeks and 6 weeks post-infection, i.e. both before and after the parasite achieved infectivity to its definitive host. Infected amphipods were found to exhibit significantly lower levels of activity and to occur significantly lower in the water column than uninfected controls during both periods. Based on the timing of the change in behaviour exhibited by infected amphipods, the results suggest that the altered behaviour exhibited by P. novizealandiae infected with M. novaezealandensis is most likely due to pathology caused by the parasite rather than a case of active, and adaptive, behavioural manipulation.  相似文献   

13.
Freshwater and marine snails serve as intermediate hosts fornumerous species of larval trematodes. Any particular populationof snails may be infected by several species. It is commonlyobserved that mixed species infections are less frequent thanexpected by change in collections of host snails from naturalpopulations. While several mechanisms might generate such negativeassociations, laboratory studies of freshwater snail-trematodeassociations have demonstrated the presence of strong antagonisticinteractions between intramolluscan larval stages (rediae andsporocysts) of species that infect the same host individual.Both predatory and non-predatory antagonism has been observed,the former taking the form of predation by large, dominant redialforms on the sporocysts and rediae of subordinate species. Theseinteractions are largely hierarchical, although in some systemspriority effects have been observed, and in one case a sporocystspecies replaced a redial species by strong non-predatory antagonism.Several instances of positive association between larval trematodespecies have also been observed. In such cases, interferencewith host defense mechanisms by the first parasite appears toenhance superinfection by the second. My own study of the larvaltrematode guild that infects the salt marsh snail, Cerithideacalifornica, has revealed patterns of association and interactionthat are very similar to those demonstrated by laboratory studiesof freshwater systems. Ultimately, the frequency of interactionsamong larval trematodes depends on the availability, relativeto the numbers of susceptible snails, of infective eggs andmiracidial larvae transmitted from definitive hosts.  相似文献   

14.
Poulin R  Mouillot D 《Oecologia》2004,140(2):372-378
Positive relationships are commonly observed between the abundance of a species in a locality and the frequency of its occurrence among localities on a larger scale. This pattern may not hold for parasitic organisms when the average abundance of a parasite among its hosts is related to the number of host species in which it occurs, because of the additive investment in specific adaptations to counter host immune responses required for each host species in a parasites repertoire. For a rigorous test of the hypothesis that there is a trade-off between the number of host species that can be successfully exploited and the average abundance of parasites in those hosts, one needs to take into account the phylogenetic (or taxonomic) distances among the host species used by a parasite. Differences in immune responses are likely to increase with increasing phylogenetic distances. The trade-off hypothesis was tested in a comparative analysis of 393 species of trematodes, cestodes and nematodes parasitic in birds surveyed from the same geographical area, using an index of host specificity that measures the average taxonomic distances between a parasites known host species. After correcting for the influences of parasite phylogeny and other potential confounding variables, mean abundance was negatively correlated with the average taxonomic distance among host species for nematodes, and with the variance in taxonomic distances among hosts for cestodes. In the case of trematodes, these variables covaried positively. The trade-off between average infection success and how taxonomically distant a parasites host species are from each other was only found in two of the three groups of helminths investigated, possibly because of compensating features in trematodes, such as their ability to multiply asexually in intermediate hosts. These results provide empirical evidence consistent with the hypothesis that specialization allows greater local adaptation and therefore greater local population abundance, supporting key predictions regarding the evolution of ecological specialization.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

15.
This work describes associations of Thiara (Tarebia) granifera, its larval trematode community, and Chaetogaster limnaei limnaei at a freshwater reservoir in Jamaica. Larvae of 2 trematodes were present, i.e., a notocotylid (15.3%) and Philophthalmus sp. (1.3%), in 3,575 T. granifera examined. The prevalence of both infections increased with snail shell length (H = 56, P < 0.01, H = 23.1, P < 0.01, respectively). Only 3.0% (n = 595) of infected snails possessed reproductive stages, compared with 90.3% (n = 2,980) of uninfected snails (χ(2) = 2,059.8, df = 1, P < 0.001); both trematodes negatively impacted snail reproduction. Chaetogaster l. limnaei occurred within the mantle cavity of T. granifera with a prevalence of 2.3% (n = 3,575); intensity ranged from 1 to 6 annelids. Notocotylid larvae occurred in 32.5% (n = 83) of snails also harboring C. l. limnaei, compared with 14.9% (n = 3,492) of snails lacking the annelid (χ(2) = 18.127; P < 0.001). Chaetogaster l. limnaei appears not to influence the recruitment of egg-transmitted, notocotylid infections to snails. Ingestion of emergent cercariae by the annelid was observed; this may impact transmission of the parasite. The article presents the first report of a notocotylid and C. l. limnaei in T. granifera, and of Philophthalmus sp. in Jamaica.  相似文献   

16.
Trematode communities in populations of estuarine snails can reflect surrounding animal diversity, abundance, and trophic interactions. We know less about the potential for trematodes to serve as bioindicators in other habitats. Here, we reanalyze data from 2 published studies concerning trematodes, 1 in the Chilean rocky intertidal zone and the other from the East African rift lake, Lake Tanganyika. Our analyses indicate that trematodes are more common in protected areas and that in both habitats they are directly and positively related to surrounding host abundance. This further supports the notion that trematodes in first intermediate hosts can serve as bioindicators of the condition of free-living animal communities in diverse ecosystems.  相似文献   

17.
18.
The genetic diversity of trematodes within second intermediate hosts has important implications for the evolution of trematode populations as these hosts are utilized after the parasites reproduce asexually within first intermediate hosts and before sexual reproduction within definitive hosts. We characterised the genetic clonal diversity of the marine trematode Maritrema novaezealandensis within amphipod (Paracalliope novizealandiae) second intermediate hosts using four to six microsatellite loci to determine if multiple copies of identical trematode clones existed within naturally infected amphipods. To determine the relative timing of infections by identical clones within hosts, trematode metacercariae were assigned to six developmental stages and the stages of identical clones were compared. The genotypes of 306 trematodes were determined from 44 amphipods each containing more than one trematode. Six pairs of identical trematode clones were recovered in total (representing five amphipods: 11% of amphipods with greater than one trematode) and all pairs of clones belonged to the same developmental stage. This suggests that identical clone infections are effectively synchronous. A general decrease in the number of metacercariae recovered, prevalence, and mean intensity of infection for each subsequent developmental stage coupled with large numbers of metacercariae (>9) only being recovered from recent infections, supports the occurrence of post-infection amphipod mortality and/or within-host trematode mortality. Taken together, our results indicate that natural infections are characterised by high genetic diversity, but that amphipods also periodically encounter "batches" of genetically identical clones, potentially setting the stage for interactions within and between clonal groups inside the host.  相似文献   

19.
The infro- and component community dynamics of digenetic trematodes in a freshwater gastropod community were examined over a 33-month period. The gastropod and trematode communities were composed of 17 and 10 species respectively. A total of 9,831 snails was collected; among them, 192 belonging to 14 species were infected by larval trematodes. The size of infected snails was significantly greater than that of healthy ones, and the increase of prevalence with size/age was interpreted as related to the increased probability of ultimately becoming parasitized. The trematode community was rich in allogenic species, but the most frequent trematode (cercariaeum) was autogenic and generalist (a range of 12 snail host species). There was a significantly positive relationship between the frequency of trematode species in the community and the number of first intermediate host species. A great temporal heterogeneity occurred in the prevalence of the snails, mainly attributed to the great temporal fluctuations of snail host populations and the variability of freshwater ecological conditions. The data on the occurrence of larval trematodes in 14 host species over the 33-month study allowed indicate a significant negative correlation between the abundance of gastropods and the prevalence of trematodes.  相似文献   

20.
Maritrema novaezealandensis n. sp. is described from Otago Harbor, South Island, New Zealand, on the basis of adult specimens collected from the Red-billed gull, Larus novaehollandiae scopulinus, and excysted metacercariae obtained from crabs. It belongs to the "eroliae group" and differs from other related species mainly in the shape, size, and patterns of distributions of the spines on the cirrus, the shape of the metraterm, the presence of an unlobed ovary, and the complete ring of the vitelline follicles. Based on morphometric features of metacercariae and adult specimens, the trophic relationships among invertebrate and vertebrate hosts, experimental infections, and previous reports of species of Maritrema with similar transmission patterns, the life cycle of M. novaezealandensis n. sp. is described. A 3-host life cycle is proposed for this parasite. The first intermediate host is the mud snail, Zeacumantus subcarinatus, in which the cercarial stage is produced in sporocysts located within the gonad of the snail. At least 3 crab species (Hemigrapsus crenulatus, Macrophtalmus hirtipes, and Halicarcinus whitei) and several species of amphipods act as second intermediate hosts, with metacercariae encysted in the body cavity of the crustacean host. Finally, the definitive host, the gull, L. n. scopulinus, harbors the adult worms in its intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号