首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatocyte receptors for antithrombin III-proteinase complexes   总被引:3,自引:0,他引:3  
The in vivo clearance of antithrombin III-proteinase complexes occurs via a specific and saturable pathway located on hepatocytes. We now report studies of the catabolism of antithrombin III-proteinase complexes in vitro using rat hepatocytes in primary culture. Antithrombin III-thrombin and trypsin complexes were prepared and purified to homogeneity. Ligand uptake by hepatocytes was concentration, temperature, and time dependent. Initial rate studies were performed to characterize the maximum rate of uptake, V, and apparent Michaelis constant Kapp. These studies yielded a V of 12.8 fmol/mg cell protein/min and a Kapp of 144 nM for antithrombin-trypsin complexes. Competition experiments with antithrombin III, antithrombin III-proteinase complexes, alpha 2-macroglobulin-methylamine, asialoorosomucoid and the neoglycoproteins, fucosyl-bovine serum albumin (BSA), N-acetylglucosaminyl-BSA, and mannosyl-BSA indicated that only antithrombin III-proteinase complexes were recognized by the hepatocyte receptor. Uptake studies were performed at 37 degrees C with 125I-antithrombin III-trypsin and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in conjunction with autoradiography. These studies demonstrate time-dependent uptake and degradation of the ligand to low molecular weight peptides. In addition, there was a time-dependent accumulation of a high molecular weight complex of ligand and a cellular protein. This complex disappeared when gels were performed under reducing conditions.  相似文献   

2.
During the past several years, numerous laboratories have reported isolation and purification of proteinase inhibitors from human urine. Many of these molecules were incompletely characterized and some of them may have been artifacts in part because of harsh procedures used for their isolation. Consequently, there is disagreement and confusion regarding the biochemical characteristics of these inhibitors. We previously reported the isolation of a proteinase inhibitor, EDC1, from the urine of a leukemic patient. This molecule, M(r) 30 kDa, was antigenically related to plasma inter-alpha-trypsin inhibitor (IATI) and inhibited the growth of a virally transformed B cell line. Immunoreactive EDC1 was also the major component of low molecular weight proteinuria observed in cancer patients. We now report a new method for the isolation of EDC1 from urine of patients with adenocarcinomas of colon and lung and melanoma and compare its partial amino acid sequence with that of HI 30, a proteinase inhibitor previously isolated from pooled normal urine by Hochstrasser et al. [Hoppe-Seyler's Z Physiol Chem 357:153-162, 1976]. Our method involves i) a batchwise cation exchange, ii) gel filtration chromatography, iii) anion exchange chromatography on FPLC, and iv) reverse phase C18 chromatography on HPLC. This method is mild and results in an overall yield of 0.4 to 1.2 mg of EDC1/liter urine. On the basis of the partial N-terminal amino acid sequence of its N terminal (38 residues) and middle regions (29 residues), EDC1 appears to be identical with HI30. Surprisingly, during this isolation procedure, another proteinase inhibitor, M(r) 22 kDa, which cross-reacted with antisera to EDC1 and IATI, was also isolated. The 22 kDa molecule was a major component of the IATI related urinary molecules and was identical with the 30 kDa EDC1 in which first the 15 N terminal residues were clipped. The lower M(r) inhibitor was not an artifact formed during storage or isolation procedure because the Western blot analysis of fresh cancer and normal urine revealed the 30 and 22 kDa molecules. Thus, both the 30 kDa EDC1 (or HI30) and its clipped variant, the 22 kDa molecule, are physiologic components of IATI related urinary proteinase inhibitors and excretion of both forms may be increased in patients with advanced cancer.  相似文献   

3.
4.
alpha-1-Proteinase inhibitor (A1Pi) is a monomeric secreted protein glycosylated at asparagines 46, 83, and 247. For this study cDNAs for M (normal) and S (Glu264-->Val) variants of A1Pi were altered by site-directed mutagenesis to produce the combinations of single, double, and triple mutants that can be generated by changing the codons normally specifying these Asn residues to encode Gln. The fates of the mutant proteins were followed in transiently transfected COS-1 cells. All variants with altered glycosylation sites are secreted at reduced rates, are partially degraded, accumulate intracellularly, and some form Nonidet P-40-insoluble aggregates. The carbohydrate attached at Asn83 seems to be of particular importance to the export of both A1PiM and A1PiS from the endoplasmic reticulum. All mutations affecting glycosylation of A1PiS notably reduce secretion, cause formation of insoluble aggregates, and influence degradation of the altered proteins. The variant of A1PiS missing all three glycosylation sites is poorly secreted, is incompletely degraded, and accumulates in unusual perinuclear vesicles. These studies show that N-linked oligosaccharides in A1Pi are vital to its efficient export from the endoplasmic reticulum and that the consequences of changing the normal pattern of glycosylation vary depending upon the sites altered and the variant of A1Pi bearing these alterations.  相似文献   

5.
Human microvascular islet endothelial cells (IEC) exhibit specific morphological and functional characteristics that differ from endothelia derived from other organs. One of these characteristics is the expression of alpha-1 proteinase inhibitor (Api). In this study, we observed its expression in nonobese diabetic (NOD) mouse IEC, in relation to the occurrence of type 1 diabetes and in response to cytokines, namely IL-1 beta and IL-10. In addition, IL-10-deficient NOD mice as well as IL-10 transgenic NODs were studied. Results have demonstrated that Api expression is: (i) highly specific for IEC in NOD mouse islets, as for humans; (ii) linked to the occurrence of early type 1 diabetes, and iii) strongly modulated by Th1 and Th2 cytokines. In fact, Api mRNA found in pre-diabetic NOD animals is significantly reduced when they become hyperglycemic and disappears by 25 weeks of age, when mice are diabetic. Moreover, Api mRNAs are never seen in nondiabetic controls. Furthermore, in cultured NOD IEC, Api expression is downregulated by the addition of IL-1 beta and is upregulated by IL-10; it is always absent in IL-10-deficient NOD mice and overexpressed in IL-10 transgenic NODs, thus further supporting that this cytokine upregulates Api expression.  相似文献   

6.
Triggered polymorphonuclear leucocytes (PMNL) can decrease the elastase inhibitory capacity of serum by inactivating the main inhibitor of elastase alpha-1-proteinase inhibitor (alpha-1-PI). Maximal inactivation occurs with stimuli that release myeloperoxidase from PMNL along with hydrogen peroxide. Specific protection of alpha-1-PI function is obtained with antioxidants that interfere with this system. PMNL that are activated with phorbol myristate acetate release hydrogen peroxide but not myeloperoxidase, and only inactivate alpha-1-PI in the presence of exogenously-added PMNL-derived supernatants which contain this enzyme. Cell-free inactivation requires both active enzyme and hydrogen peroxide, and is greatest at pH 6.2, the pH optimum for myeloperoxidase-catalysed inactivation of alpha-1-PI. This data supports the notion that leucocyte myeloperoxidase may act to suppress the antiprotease screen afforded by alpha-1-PI by generating hypochlorous acid in the presence of chloride and respiratory burst-derived hydrogen peroxide, and in the microenvironment of lowered pH associated with degranulation. Pulmonary emphysema seems to be associated with an imbalance between elastase and its inhibitors at the lung surface. PMNL are likely to play an important role in the pathogenesis of emphysema since they contain both elastase, which can solubilize connective tissue elastin, and the constituents of an oxidative system which can inactivate the most important antielastase, alpha-1-PI.  相似文献   

7.
Inter-alpha-trypsin inhibitor was purified by a modification of published procedures which involved fewer steps and resulted in higher yields. The preparation was used to study the clearance of the inhibitor and its complex with trypsin from the plasma of mice and to examine degradation of the inhibitor in vivo. Unlike other plasma proteinase inhibitor-proteinase complexes, inter-alpha-trypsin inhibitor reacted with trypsin did not clear faster than the unreacted inhibitor. Studies using 125I-trypsin provided evidence for the dissociation of complexes of proteinase and inter-alpha-trypsin inhibitor in vivo, followed by rapid removal of proteinase by other plasma proteinase inhibitors, particularly alpha 2-macroglobulin and alpha 1-proteinase inhibitor. Studies in vitro also demonstrated the transfer of trypsin from inter-alpha-trypsin inhibitor to alpha 2-macroglobulin and alpha 1-proteinase inhibitor but at a much slower rate. The clearance of unreacted 125I-inter-alpha-trypsin inhibitor was characterized by a half-life ranging from 30 min to more than 1 h. Murine and human inhibitors exhibited identical behavior. Multiphasic clearance of the inhibitor was not due to degradation, aggregation, or carbohydrate heterogeneity, as shown by competition studies with asialoorosomucoid and macroalbumin, but was probably a result of extravascular distribution or endothelial binding. 125I-inter-alpha-trypsin inhibitor cleared primarily in the liver. Analysis of liver and kidney tissue by gel filtration chromatography and sodium dodecyl sulfate gel electrophoresis showed internalization and limited degradation of 125I-inter-alpha-trypsin inhibitor in these tissues. No evidence for the production of smaller proteinase inhibitors from 125I-inter-alpha-trypsin inhibitor injected intravenously or intraperitoneally was detected, even in casein-induced peritoneal inflammation. No species of molecular weight similar to that of urinary proteinase inhibitors, 19,000-70,000, appeared in plasma, liver, kidney, or urine following injection of inter-alpha-trypsin inhibitor.  相似文献   

8.
Human alpha-1-proteinase inhibitor(1) (alpha(1)-PI) is the most abundant serine protease inhibitor in plasma. Its major function is inhibition of neutrophil elastase in lungs. alpha(1)-PI deficiency may result in severe, ultimately fatal emphysema. Three plasma-derived (pd-) alpha(1)-PI products are licensed in the US for replacement therapy of deficient patients. The recombinant versions (r-alpha(1)-PI), proposed as alternatives to pd-alpha(1)-PI products, have been under intensive investigation. For accurate determination of alpha(1)-PI from different sources and in various forms, there is an obvious need for reliable standardized assays for alpha(1)-PI quantification and potency measurements. As a part of our multi-step research focused on alpha(1)-PI structure-function investigation, we have established a simple and reproducible double-sandwich ELISA based on commercially available polyclonal antibodies. The developed ELISA allows the quantification of both pd-alpha(1)-PI and r-alpha(1)-PI in various complex matrices. A validation of the ELISA was performed with the working range of the assay (3.1-50 ng/ml) established on the bases of the following parameters: linearity (3-100 ng/ml, r(2)=0.995); accuracy (87.3-114.6% recovery); intra-assay precision (%CV, 2.8%); inter-assay plate-to-plate precision (3.9% per day and 4.1% day-to-day); detection limit (1.10 ng/ml); and quantification limit (3.34 ng/ml). The analytical performance of the alpha(1)-PI ELISA indicates that this assay can be used for monitoring concentration levels of alpha(1)-PI in multi-component biological matrices, based on the following: (a) quantification of r-alpha(1)-PI in various fermentation mixtures (E. coli and A. niger); (b) investigation of alpha(1)-PI enzymatically digested in the conditions of harsh fungal proteolysis; (c) evaluation of thermally polymerized alpha(1)-PI; (d) quantification of alpha(1)-PI in human serum; and (e) comparative quantification of alpha(1)-PI in commercially available products.  相似文献   

9.
Human alpha one proteinase inhibitor (alpha1-PI) was cloned and expressed in Aspergillus niger, filamentious fungus that can grow in defined media and can perform glycosylation. Submerged culture conditions were established using starch as carbon source, 30% dissolved oxygen concentration, pH 7.0 and 28 degrees C. Eight milligrams per liter of active alpha1-PI were secreted to the growth media in about 40 h. Controlling the protein proteolysis was found to be an important factor in the production. The effects of various carbon sources, pH and temperature on the production and stability of the protein were tested and the product was purified and characterized. Two molecular weights variants of the recombinant alpha1-PI were produced by the fungus; the difference is attributed to the glycosylated part of the molecule. The two glycoproteins were treated with PNGAse F and the released glycans were analyzed by HPAEC, MALDI/TOF-MS, NSI-MS(n), and GC-MS. The MALDI and NSI- full MS spectra of permethylated N-glycans revealed that the N-glycans of both variants contain a series of high-mannose type glycans with 5-20 hexose units. Monosaccharide analysis showed that these were composed of N-acetylglucos-amine, mannose, and galactose. Linkage analysis revealed that the galactosyl component was in the furanoic conformation, which was attaching in a terminal non-reducing position. The Galactofuranose-containing high-mannnose type N-glycans are typical structures, which recently have been found as part of several glycoproteins produced by Aspergillus niger.  相似文献   

10.
11.
Swainsonine, an indolizidine alkaloid, found in plants of the genus Swainsona, has been shown to be a strong inhibitor in vitro of the alpha-D-mannosidase activity in normal human fibroblasts. Therefore, inhibition of alpha-D-mannosidase activity in extracts of harvested cells grown with swainsonine in the medium has been used to follow the association of the alkaloid with normal human fibroblasts in culture. Swainsonine that could not be removed by extensive washing became associated with the cells within 1 min, and it is concluded that the alkaloid is internalized rapidly by the cells. The amount of swainsonine taken up into the cells depended on the length of time in contact and the concentration of swainsonine in the medium, but at 37 degrees C a plateau of internalized swainsonine occurred after 2 hr with extracellular concentrations of swainsonine of 100 microM or greater. At lower concentrations of swainsonine the rate of uptake was found to be temperature-dependent, increasing greatly at 20 degrees C. The rapidity and temperature sensitivity of the uptake, together with the observation that mannose or mannose-6-phosphate did not prevent the association, suggest that swainsonine enters the cells by permeation rather than by endocytosis. When swainsonine is withdrawn from the culture medium, there is a decrease with time of cell-associated swainsonine. The kinetics of uptake and release of swainsonine and its slightly basic nature make it likely that swainsonine is concentrated initially in the lysosomes. This rapid, but reversible, concentration of swainsonine in lysosomes would be consistent with the observed effects of the toxin in vivo.  相似文献   

12.
Members of the serpin family of serine proteinase inhibitors play important roles in the inflammatory, coagulation, fibrinolytic, and complement cascades. An inherent part of their function is the ability to undergo a structural rearrangement, the stressed (S) to relaxed (R) transition, in which an extra strand is inserted into the central A beta-sheet. In order for this transition to take place, the A sheet has to be unusually flexible. Malfunctions in this flexibility can lead to aberrant protein linkage, serpin inactivation, and diseases as diverse as cirrhosis, thrombosis, angioedema, emphysema, and dementia. The development of agents that control this conformational rearrangement requires a high resolution structure of an active serpin. We present here the topology of the archetypal serpin alpha1-antitrypsin to 2 A resolution. This structure allows us to define five cavities that are potential targets for rational drug design to develop agents that will prevent conformational transitions and ameliorate the associated disease.  相似文献   

13.
The crystal structure of bovine α-chymotrypsin (α-CHT) in complex with the bovine basic pancreatic trypsin inhibitor (BPTI) has been solved and refined at 2.8 Å resolution (R-factor=0.18). The proteinase:inhibitor complex forms a compact dimer (two α-CHT and two BPTI molecules), which may be stabilized by surface-bound sulphate ions, in the crystalline state. Each BPTI molecule, at opposite ends, is contacting both proteinase molecules in the dimer, through the reactive site loop and through residues next to the inhibitor's C-terminal region. Specific recognition between α-CHT and BPTI occurs at the (re)active site interface according to structural rules inferred from the analysis of homologous serine proteinase:inhibitor complexes. Lys15, the P1 residue of BPTI, however, does not occupy the α-CHT S1 specificity pocket, being hydrogen bonded to backbone atoms of the enzyme surface residues Gly216 and Ser217. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
Values of the association equilibrium constant (Ka) for the binding of the native and of the cyanogen bromide-cleaved bovine basic pancreatic trypsin inhibitor (native BPTI and [Hse lactone-52]-52,53-seco-BPTI, respectively) to neuraminidase-treated porcine pancreatic β-Kallikrein-B (kallikrein) and bovine α-chymotrypsin (chymotrypsin) have been determined between pH4.0 and 9.0, and 20.0°C. Over the whole pH range explored, native BPTI and [Hse lactone-52]-52,53-seco-BPTI show the same affinity for kallikrein. On the other hand, the affinity of [se lactone-52]-52,53-seco-BPTI for chymotrypsin is high4er, around neutrality, than that found for native BPTI by about one order of magnitude, coverging in the acidic pH limb. The simplest mechanism accounting for the observed data implies that, on lowering the pH from 9.0 to 4.0 (i) the decrease in affinity for the binding of native BPTI to kalikrein and chymotrypsin, as well as for the association of [Hse lactone-52]-52,53-seco-BPTI to kalikrein, reflects the acidic pK shift, upon inhibitor association, of a single inozing group; and (ii) the decrease of Ka values for [Hse lactone-52]-52,53-seco-BPTI binding to chymotrypsin appears to be modulated by the acidic pK shift, upon inhibitor association, of two non-equivalent proton-binding residues. On the basis of the stereochemistry of the serine proteinase/inhibitor contact region(s), these data indicate that long-rang structural changes in [Hse lactone-52]-52,53-seco-BPTI are energetically linked to the chymotrypsin: inhibitor complex formation. This observation represents an important aspect for the mechanism of molecular recognition and regulation in BPTI.  相似文献   

15.
The first step of polyamine uptake is the binding of polyamines to the cell membrane. In order to characterize the specificity of the putrescine binding sites at the surface of the glioblastoma cells (U251), we have carried out competition experiments between putrescine bound to latex microspheres and vizualized by scanning electron microscopy and a series of N,N'-tetramethyl-alpha,omega-diaminoalkanes. N,N'-tetramethyl-1,4-butanediamine (N,N'-tetramethylputrescine) and higher homologs inhibit the latex putrescine binding to the cell surface and concomitantly cell proliferation. [14C] putrescine uptake was mainly inhibited by the lower homologs, which were devoid of antiproliferative effects. Our results suggest that putrescine uptake by the human glioblastoma cell line U251, and putrescine binding to the surface of these cells are independent processes. The potential relationship between antitumor effect of N,N'-tetramethyl-alpha,omega-diaminoalkanes and its binding to a specific putrescine acceptor site is discussed.  相似文献   

16.
The change in glycosylation of the two acute-phase proteins, alpha-1-proteinase inhibitor (API) and haptoglobin (Hp), in progressive ovarian cancer is different. This has been shown by monosaccharide analysis and lectin-binding studies of proteins purified from serum. In the glycan chains of API, there is decreased branching (more biantennary chains), less branches ending in alpha 2-3 sialic acid, more branches ending in alpha 2-6 sialic acid and more fucose, probably linked alpha 1-6 to the core region. On the other hand, Hp shows increased branching (more triantennary chains), more branches ending in alpha 2-3 sialic acid, less branches ending in alpha 2-6 sialic acid, and more fucose, probably in the alpha 1-3 linkage at the end of the chains. This is surprising because API and Hp are thought to be glycosylated by a common pathway in the liver. We have also shown that the fucose-specific lectin,lotus tetragonolobus, extracts abnormal forms of both Hp and API in ovarian cancer, but the expression of this Hp is related to tumour burden and the expression of this API is related to lack of response to therapy. It is suggested that this difference in the behaviour of API and Hp in ovarian cancer may be associated with the different changes in their glycosylation. Of the many mechanisms that could explain these findings, a likely one is that a pathological process is removing API with triantennary chains from the circulation. In addition to their normal roles (API-enzyme inhibitor and Hp-transport protein) these proteins are reported to have many other effects in biological systems, such as immunosuppression. As correct glycosylation of API and Hp is required for their normal stability/activity, changes in glycosylation could affect their functions in ovarian cancer and these modifications could alter the course of the disease.  相似文献   

17.
Plant α-amylase inhibitors show great potential as tools to engineer resistance of crop plants against pests. Their possible use is, however, complicated by the observed variations in specificity of enzyme inhibition, even within closely related families of inhibitors. Better understanding of this specificity depends on modelling studies based on ample structural and biochemical information. A new member of the α-amylase inhibitor family of cereal endosperm has been purified from rye using two ionic exchange chromatography steps. It has been characterised by mass spectrometry, inhibition assays and N-terminal protein sequencing. The results show that the inhibitor has a monomer molecular mass of 13 756 Da, is capable of dimerisation and is probably glycosylated. The inhibitor has high homology with the bifunctional α-amylase/trypsin inhibitors from barley and wheat, but much poorer homology with other known inhibitors from rye. Despite the homology with bifunctional inhibitors, this inhibitor does not show activity against mammalian or insect trypsin, although activity against porcine pancreatic, human salivary, Acanthoscelides obtectus and Zabrotes subfasciatus α-amylases was observed. The inhibitor is more effective against insect α-amylases than against mammalian enzymes. It is concluded that rye contains a homologue of the bifunctional α-amylase/trypsin inhibitor family without activity against trypsins. The necessity of exercising caution in assigning function based on sequence comparison is emphasised.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号