首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hansel W  Cain G 《Theriogenology》1996,45(7):1265-1266
  相似文献   

2.
Binding of follicle stimulating hormone (FSH) to a crude membrane fraction of bovine corpus luteum (CL) has been detected. This binding meets the usual criteria for a receptor based on specificity, time course of reaction and association constant (Ka = 8.5 x 10(10)M(-1)). Physiological studies with CL removed from heifers at specific times after estrus indicate that day-6 CL had the highest FSH binding. However, a correlation with physiological function was not obvious since some functional mid-cycle CL were high in progesterone and luteinizing hormone (LH) receptor but had nondetectable FSH receptor. Conversely, some late-cycle CL had low progesterone and LH receptor but significant quantities of FSH receptor.  相似文献   

3.
Pate JL 《Theriogenology》1996,45(7):1381-1397
There is a growing body of evidence that intercellular communication is important in the regulation of luteal function. Although the nature of the interactions between small and large luteal cells are not yet clear, it seems likely that they do exist. Many of the substances to which luteal cells respond, such as prostaglandins, growth factors, oxytocin and progesterone, are produced locally. These substances may act as paracrine factors to modulate the response of luteal cells to hormonal signals. Endothelial cells also produce factors that can modify steroidogenesis, and luteal cell-stimulation of endothelial cell proliferation is necessary for the extensive angiogenesis that occurs during luteinization Finally, bidirectional intercellular communication likely occurs between luteal cells and resident immune cells. Immune cells produce cytokines that can modify progesterone and prostaglandin synthesis by luteal cells. Cytokines may also have direct cytotoxic effects on luteal cells, and dead cells are then phagocytized by resident macrophages. Also, factors secreted by luteal cells can serve as chemoattractants for immune cells, and can enhance or suppress immune cell functions. There is little doubt that intercellular communication within the corpus luteum is very complex. One must remember, however, that nearly all evidence collected thus far is based on in vitro studies. Eventually, technology will allow for study of these interactions in vivo, and may lead to new methods for control of luteal function.  相似文献   

4.
5.
Corpora lutea (CL) from cows on day 12 of the oestrous cycle were studied by electron microscopy to investigate whether, and how, different subpopulations of luteal cells can be identified in tissue sections. Tissues from 6 CL were examined, and nucleated profiles of luteal cells were classified as large, medium or small on the basis of their areas in electron micrographs. Cut-off points for area categories for large, medium and small-sized cells were based on diameters of greater than 25, 20-25 and less than 20 microns, respectively, if the measured areas were converted to a circular shape after correction for shrinkage. The only qualitative features which distinguished cells of large size from those of small size were the presence of clusters of secretory granules, and of exocytosis of these granules, in large cells only. However, these features were observed in only 59% of large cells, probably primarily due to sampling limitations in single sections. Other qualitative features which have been regarded as diagnostic of large or small luteal cells were observed in cells in all size categories. It was concluded that large and small luteal cells in the cyclic CL of the cow are distinguishable by their ultrastructural features. However, these data do not support the recent suggestion that the mid-cycle CL of the cow contain two subpopulations of large luteal cells in approximately equal numbers.  相似文献   

6.
Biosynthesis of retinal in bovine corpus luteum   总被引:1,自引:0,他引:1  
Bovine corpus luteum tissue was sliced and incubated with beta-[15,15'-(3)H]carotene. The conversion of radioactive beta-carotene into radioactive retinal was substantiated utilizing column chromatography, thin-layer chromatography, high-speed liquid chromatography, and a derivative formation. Lowering of the incubation temperature to 20 degrees C or boiling the tissue eliminated the conversion of beta-carotene to retinal. In addition, other carotenoids and possible oxidation products of beta-carotene in the corpus luteum were investigated. Our results indicate that the bovine corpus luteum possesses the ability to synthesize retinal in situ, which may play a role in reproductive functions.  相似文献   

7.
8.
The function of the corpus luteum (CL) is a key element in many reproductive processes including ovulation, length of the estrous cycle, recognition of pregnancy and embryo survival in all mammalian species. The main function of the CL is to produce progesterone which acts on its tissues to prepare them for successful pregnancy. The CL is controlled by numerous biological compounds which provide luteotropic support during the estrous cycle and pregnancy and for inducing luteolysis at the end of the cycle The purpose of this paper is to review the mechansims responsible for controlling the endocrine function of this tissue in the bovine ovary.  相似文献   

9.
10.
Summary Polyclonal rabbit antisera raised against oxytocin, bovine neurophysin I and vasopressin were used, together with an immunogold complex, to localise the peptides in ultrathin sections of ovine corpus luteum. The only organelle which consistently showed gold labelling was the secretory granule of the large luteal cell. In non-consecutive sections of the same large luteal cell all the granules showed a similar level of labelling after oxytocin or neurophysin I antisera: however no immunolabelling was detected for vasopressin. Oxytocin and neurophysin seem to be rapidly lost after secretion since exocytosed granule cores showed no labelling above background levels.  相似文献   

11.

Background  

Bovine luteal parenchymal cells express class II major histocompatibility complex (MHC) molecules and stimulate class II MHC-dependent activation of T cells in vitro. The ability of a class II MHC-expressing cell type to elicit a response from T cells in vivo is also dependent on expression of costimulatory molecules by the antigen presenting cell and delivery of a costimulatory signal to the T cell. Whether bovine luteal parenchymal cells express costimulatory molecules and can deliver the costimulatory signal is currently unknown.  相似文献   

12.
13.
In search of early pregnancy factors, we detected by radioimmunoassay the presence of enkephalin in bovine and human corpus luteum. In vitro met-enkephalin release by bovine corpus luteum is about 0.5 to 1 pmole/mg of fresh tissue/24 hrs. The content of the fresh tissue is between 0.7 and 1.9 pmoles per gram of human tissue, and 0.9 pmoles for bovine tissue. Furthermore, we determined the presence of leu-enkephalin and met-enkephalin Arg-Gly-Leu to. The ratios observed confirm a pro-enkephalin A expression in the ovary. Opiates or opioid-like peptides are present in the female genitalia at the time of early embryo development. The roles of these opioid peptides is discussed in term of ovum transport, granulosa cell physiology and early pregnancy factors.  相似文献   

14.

Background  

A major event in the post-meiotic development of male germ cells is the formation of the acrosome. This process can be perturbed in C57BL/6 mice by administration of the small molecule miglustat (N-butyldeoxynojirimycin, NB-DNJ). The miglustat-treated mice produce morphologically abnormal spermatozoa that lack acrosomes and are poorly motile. In C57BL/6 mice, miglustat can be used to maintain long-term reversible infertility. In contrast, when miglustat was evaluated in normal men, it did not affect spermatogenesis. To gain more insight into this species difference we have now evaluated the reproductive effects of miglustat in rabbits, in multiple mouse strains and in interstrain hybrid mice.  相似文献   

15.
Two experiments were conducted to evaluate effects of gonadotropin-releasing hormone (GnRH) on the function of the bovine corpus luteum during the estrous cycle. In Experiment 1, 10 beef heifers were assigned randomly into two groups; each heifer served as her own control. Heifers in Group I (n = 5) were injected i.v. with vehicle (saline) on Day 2 of the cycle (Day 0 = day of estrus) followed by an i.v. injection of 100 micrograms GnRH on Day 2 of the subsequent estrous cycle. Group II (n = 5) heifers were treated similarly except injections were given on Day 10 of the estrous cycle. All heifers were bled via the jugular vein at 15 min intervals beginning 30 min prior to injection and for 3 h after injection. Blood samples were also taken on alternate days after injection through Day 16 of the cycle. Gonadotropin-releasing hormone caused a significant release of luteinizing hormone (LH) on both treatment days with the peak occurring at 15 to 30 min postinjection. Treatment with GnRH on either Day 2 or 10 caused a reduction in serum progesterone levels on Days 12, 14 and 16 of the cycle (Group I, control 3.99, 3.97; 4.07 vs. treated 2.63, 3.45, 2.87; Group II, control 3.18, 3.82, 4.13 vs. treated 2.50, 2.82, 3.17 ng/ml, respectively; common SE = 0.24 p less than 0.03). Length of the estrous cycle did not differ between groups (Group I, control 20.7 vs. treated 20.9; Group II, control 20.7 vs. treated 21.1 days, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Early embryonic mortality accounts for a substantial portionof reproductive failure in agriculturally important livestock,including the dairy cow. The maintenance of early pregnancyrequires a fully functional corpus luteum (CL) that is not susceptibleto regression following fertilization, yet the cellular mechanismsof luteal regression are not clearly understood. Immune-cellaccumulation within the CL at the time of regression is a well-documentedphenomenon in a variety of species. In the dairy cow, immune-cellaccumulation precedes luteal regression by several days andcoincides with an increase in expression of the chemokine monocytechemoattractant protein 1 (CCL2), suggesting that immune-mediatedevents promote tissue destruction. Recent studies indicate thatendothelial cells comprising the CL are a primary source ofCCL2 secretion. Moreover, although uterine-derived prostaglandinF2 (PGF) initiates luteal regression in the cow, PGF does notdirectly provoke CCL2 secretion by luteal endothelial cells.Instead, PGF-induced luteal regression is thought to requirecooperative interaction among immune cells, endothelial cells,and steroidogenic cells of the CL to further promote CCL2 secretion,enhance immune-cell recruitment, and eliminate luteal tissue.This brief review focuses on putative interactions between immunecells and endothelial cells derived from the bovine CL thatresult in enhanced CCL2 expression and the elaboration of otherinflammatory mediators (for example, cytokines), which perpetuateluteal regression. Fundamental knowledge of immune-endocrineinteractions within the reproductive system of cows has relevanceto other CL-bearing mammals, including humans and endangeredanimals, particularly in the development of methods to controland/or improve fertility. Thus, it is a timely topic for thissymposium concerning ecological immunology and public health.  相似文献   

17.
18.
19.
The corpus luteum life cycle is accompanied by capillary growth, maturation and degeneration. Arterial blood vessels are thought to undergo hyperplasia and hypertrophy during the stage of regression, as is the case with non-capillary vessels. In this study, we used morphological studies to show that the development of non-capillary vessels occurs at other corpus luteum stages. Non-capillary vessels were present at the developmental stage of the corpus luteum, and increased markedly in number in the subsequent stages. After double-staining for ASM-1 actin and Ki-67 nuclear antigen, the proliferation of smooth muscle cells (SMCs) was only detected during stages of development and secretion. When the capillaries had disappeared at the regression stage, the arterial blood-vessel walls thickened noticeably. This was attributed to the development of fibroelastosis as shown by staining for collagenous and elastic fibres. In conclusion, the bovine corpus luteum represents a physiological model for studying arteriolization at all stages of development and secretion. At the regression stage, arterioregression sets in.  相似文献   

20.
  • 1.1. Ferredoxin reductase and ferredoxin were purified from the bovine corpus luteum and their properties compared to the corresponding adrenal proteins.
  • 2.2. The luteal and adrenal proteins had similar absorbance spectra and molecular weights.
  • 3.3. Evidence was obtained from spectrophotometric titrations for formation of 1:1 complexes between luteal ferredoxin reductase and ferredoxin and between ferredoxin and cytochrome P-450scc.
  • 4.4. Adrenal ferredoxin reductase and ferredoxin were equally as effective as luteal ferredoxin reductase and ferredoxin in supporting cholesterol side-chain cleavage by luteal cytochrome P-450scc.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号