首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potassium (2R,3R)-2,3,4-trihydroxy-2-methylbutanoate (1) was identified as a leaf-closing substance in the nyctinastic plant, Leucaena leucocephala. Compound 1 showed strong leaf-closing activity toward L. leucocephala and was not effective against other nyctinastic plants. The potassium ion was indispensable for the bioactivity of 1. Compound 1 gradually lost its bioactivity because of the exchange of the counter cation during isolation. A leaf-opening substance was also observed in the same plant.  相似文献   

2.
Diurnal and nocturnal leaflet movement of black locust (Robinia pseudoacacia L.) was investigated under three light schemes: 100% natural irradiance, 50% shading, and 90% shading. Changes in leaf mid-vein angle were described by measurements of two planes: (i) β, the angle formed by the bottom of the petiolule and its relation to the horizontal plane; and (ii) θ, the angle between the petiolule and the main leaflet vein. The two highest light regimens had a significant effect on β. Variation in β tends to make the leaflet more erect, thereby minimizing any negative impact of high irradiance on leaf lamina. Light-dark rhythms induced variation in θ (termed nyctinastic movement). Nyctinastic movement is important during the low light levels experienced by leaflets in early morning and late afternoon. At low light levels, the leaflet stopped nyctinastic movement and θ was fixed at an angle that may have enabled the leaf lamina to maximize light interception. After the light-dark cycle was reestablished, nyctinastic movement was restored. Taken together, our results suggest that irradiance induces variation in β leading to diurnal leaflet movement (diaheliotropism), whereas the light-dark cycle influences θ, which results in nocturnal leaflet movement. Both angles are important for describing patterns of leaf movement in R. pseudocacia.  相似文献   

3.
Many plant species open their leaves during the daytime and close them at night as if sleeping. This leaf movement is known as nyctinasty, a unique and intriguing phenomenon that been of great interest to scientists for centuries. Nyctinastic leaf movement occurs widely in leguminous plants, and is generated by a specialized motor organ, the pulvinus. Although a key determinant of pulvinus development, PETIOLULE-LIKE PULVINUS (PLP), has been identified, the molecular genetic basis for pulvinus function is largely unknown. Here, through an analysis of knockout mutants in barrelclover (Medicago truncatula), we showed that neither altering brassinosteroid (BR) content nor blocking BR signal perception affected pulvinus determination. However, BR homeostasis did influence nyctinastic leaf movement. BR activity in the pulvinus is regulated by a BR-inactivating gene PHYB ACTIVATION TAGGED SUPPRESSOR1 (BAS1), which is directly activated by PLP. A comparative analysis between M. truncatula and the non-pulvinus forming species Arabidopsis and tomato (Solanum lycopersicum) revealed that PLP may act as a factor that associates with unknown regulators in pulvinus determination in M. truncatula. Apart from exposing the involvement of BR in the functionality of the pulvinus, these results have provided insights into whether gene functions among species are general or specialized.

Nyctinasty is triggered by the pulvinus, a motor organ located at the base of the leaf and brassinosteroids is involved in functionality of pulvinus for leaf movement.  相似文献   

4.
Leaf-movement in nyctinastic plants has long been believed to be controlled by plant hormones that are common among all nyctinastic plants. We have identified several bioactive substances for nyctinasty, whose bioactivities were highly specific to the original plant, based on the bioassay using the original plant leaf, and have shown that nyctinastic leaf-movement is not regulated by plant hormones. Our present results are in accordance with Umrath et al. physiologically significant opinion.  相似文献   

5.
Jasmonates are ubiquitously occurring plant growth regulators with high structural diversity that mediate numerous developmental processes and stress responses. We have recently identified 12-O-β-D-glucopyranosyljasmonic acid as the bioactive metabolite, leaf-closing factor (LCF), which induced nyctinastic leaf closure of Samanea saman. We demonstrate that leaf closure of isolated Samanea pinnae is induced upon stereospecific recognition of (-)-LCF, but not by its enantiomer, (+)-ent-LCF, and that the nonglucosylated derivative, (-)-12-hydroxyjasmonic acid also displays weak activity. Similarly, rapid and cell type-specific shrinkage of extensor motor cell protoplasts was selectively initiated upon treatment with (-)-LCF, whereas flexor motor cell protoplasts did not respond. In these bioassays related to leaf movement, all other jasmonates tested were inactive, including jasmonic acid (JA) and the potent derivates JA-isoleucine and coronatine. By contrast, (-)-LCF and (-)-12-hydroxyjasmonic acid were completely inactive with respect to activation of typical JA responses, such as induction of JA-responsive genes LOX2 and OPCL1 in Arabidopsis (Arabidopsis thaliana) or accumulation of plant volatile organic compounds in S. saman and lima bean (Phaseolus lunatus), generally considered to be mediated by JA-isoleucine in a COI1-dependent fashion. Furthermore, application of selective inhibitors indicated that leaf movement in S. saman is mediated by rapid potassium fluxes initiated by opening of potassium-permeable channels. Collectively, our data point to the existence of at least two separate JA signaling pathways in S. saman and that 12-O-β-D-glucopyranosyljasmonic acid exerts its leaf-closing activity through a mechanism independent of the COI1-JAZ module.  相似文献   

6.
Nyctinastic movements of leaves of Cassia fasciculata inversed in the field of gravity. Plants of Cassia fasciculata Michx, were grown under controlled conditions with a diurnal rhythm of 14 h light and 10 h dark. The nyctinastic movements performed by the leaves were observed by time lapse photography, on plants inverted in the field of gravity and compared to those recorded on plants remaining in natural position. The movements were observed on leaves from which the petiolar gland has been removed as well as on leaves in which it has been preserved. In plants inverted in the field of gravity, the leaflet movements were not disturbed but the petiolar ones were opposite to those observed on plants in natural position and smaller in amplitude (52 and 15 degrees difference between maximum and minimum positions respectively). This was not influenced by the removal of the petiolar gland. Inverting plants greatly shortened duration of closing and time spent maximally closed while increasing both duration of opening and time spent maximally opened. Removal of the petiolar gland did not influence the opening-closing schedule of the plants in normal position but in inverted plants it caused marked changes in this schedule. These results are discussed in connection with what is known about IAA. K+ and amyloplasts and their role in causing changes in pulvinus turgor.  相似文献   

7.
8.
9.
M. J. Jaffe  A. W. Galston 《Planta》1967,77(2):135-141
Summary The rapid nyctinastic movements of Albizzia julibrissin pinnules are under the control of phytochrome. When given prior to a dark period, red light facilitates and far-red light inhibits pinnule closure in the dark. These light effects are mutually photoreversible. The opening reaction of the pinnules following a dark period is mediated mainly by blue light. The nyctinastic closure response is accompanied by an increased rate of electrolyte efflux from the cut pinna base. This observation, coupled with the fact that the rapid nyctinastic movement is not affected by actinomycin D, supports the view that phytochrome control of the sleep movement is not mediated through effects on RNA metabolism, but rather through changes in membrane permeability.  相似文献   

10.
The synthesis of an affinity gel aimed at leaf-opening factor beta-glucosidase (LOFG) and affinity purification of LOFG is presented. A gluconamidine-based beta-glucosidase inhibitor was used as the ligand of the affinity gel. beta-Glucosidase exhibiting an activity shift throughout the day was selectively purified from Lespedeza cuneata Don by the affinity gel. The resulting LOFG exhibited high substrate specificity toward the leaf-opening factor.  相似文献   

11.
Nyctinastic closure of Albizzia julibrissin pinnules is inhibited by 5 × 10?2M ethylenediaminetetraacetic acid. At least two hours of incubation are required for maximum inhibition and destruction of the phytochrome effect. Concentrations of 10?3 to 10?5M naphthaleneacetic acid reduced the nyctinastic closure of pinnules but not the phytochrome response. Similar results were obtained with indoleacetic acid and gibberellic acid. No appreciable differences in pinnule movements could be attributed to pH. Chelation or the inhibition of ion transport resulting in, or caused by, changes in membrane permeability are suggested as possible mechanisms involved in these effects.  相似文献   

12.
Legume pulvini have a clearly delimited endodermis, whose variable content has been associated with the velocity and type of leaf movement: pulvini in leaves with fast nastic movement contain starch grains; pulvini in leaves with slow nastic movements have calcium oxalate crystals as well as starch grains in the endodermis. However, the studies carried out to date have involved few legume species. This study therefore purported to examine the consistency of this hypothesis in other legumes. Thus, the structure and content of the pulvinus endodermal cells of nine legumes of the Brazilian cerrado, with different types and velocities of leaf movement, were investigated: slow nyctinastic and heliotropic movements ( BAUHINIA RUFA, COPAIFERA LANGSDORFFII, SENNA RUGOSA - Caesalpinioideae; ANDIRA HUMILIS and DALBERGIA MISCOLOBIUM - Faboideae; STRYPHNODENDRON POLYPHYLLUM - Mimosoideae), slow heliotropic movement ( ZORNIA DIPHYLLA - Faboideae), and fast seismonastic and slow nyctinastic and heliotropic movements ( MIMOSA RIXOSA and MIMOSA FLEXUOSA - Mimosoideae). Samples were prepared following standard plant anatomy and ultrastructure techniques. The endodermis of all the species contains starch grains. In the species displaying only slow movements, calcium oxalate prismatic crystals were observed in addition to starch grains, except in ZORNIA DIPHYLLA. In conclusion, oxalate crystals occur only in endodermal cells of pulvini that display slow movements, while starch grains are always present in pulvinus endodermal cells of plants with any kind of movement.  相似文献   

13.
A genetic approach was attempted to identify the gene responsible for nyctinastic movement in legume. Seeds of the model legume Lotus japonicus were treated with ethylmethane sulfonate and screening of 40,000 M2 seeds led to the isolation of one mutant named sleepless. sleepless is incapable of closing its leaflets towards the adaxial side at night. The pulvini at the leaflet base were found to be replaced with petiole-like structure in sleepless. Wild-type pulvini comprise many compressed cells, whereas the corresponding region in sleepless is made up of roundish cells in the cortical parenchyma and highly elongated cells in the epidermis, particularly in the leaf-length direction. Based on the results of histological examination, I propose a possible model of a developmental pathway leading to nyctinastic movement. Electronic Publication  相似文献   

14.
Plasmodesma (PD) is a channel structure that spans the cell wall and provides symplastic connection between adjacent cells. Various macromolecules are known to be transported through PD in a highly regulated manner, and plant viruses utilize their movement proteins (MPs) to gate the PD to spread cell-to-cell. The mechanism by which MP modifies PD to enable intercelluar traffic remains obscure, due to the lack of knowledge about the host factors that mediate the process. Here, we describe the functional interaction between Tobacco mosaic virus (TMV) MP and a plant factor, an ankyrin repeat containing protein (ANK), during the viral cell-to-cell movement. We utilized a reverse genetics approach to gain insight into the possible involvement of ANK in viral movement. To this end, ANK overexpressor and suppressor lines were generated, and the movement of MP was tested. MP movement was facilitated in the ANK-overexpressing plants, and reduced in the ANK-suppressing plants, demonstrating that ANK is a host factor that facilitates MP cell-to-cell movement. Also, the TMV local infection was largely delayed in the ANK-suppressing lines, while enhanced in the ANK-overexpressing lines, showing that ANK is crucially involved in the infection process. Importantly, MP interacted with ANK at PD. Finally, simultaneous expression of MP and ANK markedly decreased the PD levels of callose, β-1,3-glucan, which is known to act as a molecular sphincter for PD. Thus, the MP-ANK interaction results in the downregulation of callose and increased cell-to-cell movement of the viral protein. These findings suggest that ANK represents a host cellular receptor exploited by MP to aid viral movement by gating PD through relaxation of their callose sphincters.  相似文献   

15.
As sessile organisms, plants perceive, respond, and adapt to the environmental changes for optimal growth and survival. The plant growth and fitness are enhanced by circadian clocks through coordination of numerous biological events. In legume species, nitrogen‐fixing root nodules were developed as the plant organs specialized for symbiotic transfer of nitrogen between microsymbiont and host. Here, we report that the endogenous circadian rhythm in nodules is regulated by MtLHY in legume species Medicago truncatula. Loss of function of MtLHY leads to a reduction in the number of nodules formed, resulting in a diminished ability to assimilate nitrogen. The operation of the 24‐h rhythm in shoot is further influenced by the availability of nitrogen produced by the nodules, leading to the irregulated nyctinastic leaf movement and reduced biomass in mtlhy mutants. These data shed new light on the roles of MtLHY in the orchestration of circadian oscillator in nodules and shoots, which provides a mechanistic link between nodulation, nitrogen assimilation, and clock function.  相似文献   

16.
17.
18.
The endoplasmic reticulum (ER) in higher plants performs many important functions, yet our understanding of how its intricate network shape and dynamics relate to function is very limited. Recent work has begun to unpick key molecular players in the generation of the pleomorphic, highly dynamic ER network structure that pervades the entire cytoplasm. ER movement is acto-myosin dependent. ER shape is dependent on RHD3 (Root Hair Defective 3) and a family of proteins called reticulons. The major challenge that lies ahead is understanding how factors that control ER shape and movement are regulated and how this relates to the numerous functions of the ER.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号