首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isoelectric focusing was used to investigate the multiple forms of acid phosphatase, arylsulfatase, beta-glucuronidase, beta-galactosidase and beta-N-acetylhexosaminidase in the following, previously characterized subcellular fractions from rat kidney: a special rough microsomal fraction, enriched up to 9-fold over the homogenate in acid hydrolases; a smooth microsomal fraction; a Golgi membrane fraction enriched about 2.5-fold in acid hydrolases and 10- to 20-fold in several glycosyl transferases; and a lysosomal fraction enriched up to 25-fold in acid hydrolases. The electro-focusing behavior of the hydrolases in these fractions was markedly sensitive to the autolytic changes that occur under acidic conditions, even at 4 degrees C. Autolysis was minimized by extracting fractions in an alkaline medium (0.2% Triton X-100, 0.1 M sodium glycinate buffer, pH 10, 0.1 % p-nitrophenyloxamic acid) and adding p-nitrophenyloxamic acid (0.1 %), AN INHIBITOR OF LYSOSOMAL NEURAMINIDASE AND cathepsin D, to the pH gradient. The enzymes in the lysosomal fraction displayed a characteristic bimodal or trimodal distribution. Arylsulfatase, beta-glucuronidase and beta-N-acetylhexosaminidase occurred in an acidic form with an isoelectric point of 4.4, and a basic form with an isoelectric point of 6.2, 6.7 and 8.0, respectively. Acid phosphatase and beta-galactosidase occurred in an acidic, intermediate and basic form with isoelectric points of about 4. 1, 5.6 and 7.4, respectively. In the special rough microsomal fraction these enzymes were mostly in a basic form with isoelectric points between 7.5 and 9; these were 1-2 units higher than the corresponding basic forms in the lysosomal fraction. Treatment of extracts of the rough microsomal fraction with bacterial neuraminidase raised the isoelectric points of all five hydrolases by 1-2.5 units, indicating the presence of some N-acetylneuraminic acid residues in these basic glycoenzymes. The hydrolases in the Golgi fraction were largely in an acidic form with isoelectric points similar to or lower than those of the corresponding acidic components in the lysosomal fraction. The hydrolases in the smooth microsomal fraction showed isoelectric-focusing patterns intermediate between those in the rough microsomal and the Golgi fractions. These findings support the following scheme for the synthesis, transport and packaging of the lysosomal enzymes. Each hydrolase is synthesized in a restricted portion of the r  相似文献   

2.
Diacylglycerol lipase (glycerol ester hydrolase, EC 3.1.1.3) activities were investigated in subcellular fractions from neonatal and adult rat liver in order to determine whether one or more different lipases might provide the substrate for the developmentally expressed, activity monoacylglycerol acyltransferase. The assay for diacylglycerol lipase examined the hydrolysis of sn-1-stearoyl,2- [14C]oleoylglycerol to labeled monoacylglycerol and fatty acid. Highest specific activities were found in lysosomes (pH 4.8) and cytosol and microsomes (pH 8). The specific activity from plasma membrane from adult liver was 5.8-fold higher than the corresponding activity in the neonate. In other fractions, however, no developmental differences were observed in activity or distribution. In both lysosomes and cytosol, 75 to 90% of the labeled product was monoacylglycerol, suggesting that these fractions contained relatively little monoacylglycerol lipase activity. In contrast, 80% of the labeled product from microsomes was fatty acid, suggesting the presence of monoacylglycerol lipase in this fraction. Analysis of the reaction products strongly suggested that the lysosomal and cytosolic diacylglycerol lipase activities hydrolyzed the acyl-group at the sn-1 position. The effects of serum and NaCl on diacylglycerol lipase from each of the subcellular fractions differed from those effects routinely observed on lipoprotein lipase and hepatic lipase, suggesting that the hepatic diacylglycerol lipase activities were not second functions of these triacylglycerol lipases. Cytosolic diacylglycerol lipase activity from neonatal liver and adult liver was characterized. The apparent Km for 1-stearoyl,2-oleoylglycerol was 115 microM. There was no preference for a diacylglycerol with arachidonate in the sn-2 position. Bovine serum albumin stimulated the activity, whereas dithiothreitol, N-ethylmaleimide, and ATP inhibited the activity. Both sn-1(3)- and 2-monooleylglycerol ethers stimulated cytosolic diacylglycerol lipase activity 2-3-fold. The corresponding amide analogs stimulated 28 to 85%, monooleoylglycerol itself had little effect, and 1-alkyl- or 1-acyl-lysophosphatidylcholine inhibited the activity. These data provide the first characterization of hepatic subcellular lipase activities from neonatal and adult rat liver and suggest that independent diacylglycerol and monoacylglycerol lipase activities are present in microsomal membranes and that the microsomal and cytosolic diacylglycerol lipase activities may describe an ambipathic enzyme. The data also suggest possible cellular regulation by monoalkylglycerols.  相似文献   

3.
Phosphatidic acid synthesis via diacylglycerol kinase and free fatty acid release via diacylglycerol lipase were investigated in rat brain subcellular fractions using membrane-bound [I-14C]arachidonoyl-diacylglycerol as substrate. Labeled diacylglycerol was generated by incubating brain membranes containing [I-14C]arachidonoyl-phosphatidylinositols in the presence of deoxycholate and Ca2+. Incubation of the prelabeled synaptosomes enriched in [1-14C]arachidonoyl-diacylglycerols or incubation of brain subcellular fractions with heat-treated prelabeled membranes resulted in the release of free fatty acids from the diacylglycerols. When incubations were carried out in the presence of ATP, MgCl2 and NaF, both free fatty acid release and conversion of diacylglycerols to phosphatidic acids were observed. The conversion of diacylglycerols to phosphatidate or their hydrolysis to free fatty acids were linear with time for at least 15 min. In three brain subcellular fractions examined, diacylglycerol kinase activity indicated a pH maximum of 7.4. The free fatty acid release was enhanced slightly by Ca2+ (1 mM), but Ca2+ (0.5–4 mM) in the presence of Mg2+ (10 mM) was inhibitory to the diacylglycerol kinase reaction. Phosphatidate formation was also inhibited by an excessive amount of deoxycholate added to the incubation mixture. Among the brain subcellular fractions, diacylglycerol kinase was more active in synaptic vesicles and cytosol than in the microsomal fraction, whereas diacylglycerol lipase activity was higher in the cytosol fraction than in the membrane fractions. Upon washing the membranes by centrifugation, a substantial portion of the diacylglycerol kinase activity was removed after the first washing, whereas the diacylglycerol lipase activity remained essentially unchanged. The metabolic role of arachidonoyl-diacylglycerols in brain membranes in relation to the biosynthesis of phosphatidate and the release of arachidomic acid is discussed.  相似文献   

4.
Sphingolipid hydrolase activator proteins and their precursors   总被引:3,自引:0,他引:3  
Activator proteins for sphingolipid hydrolases (saposins) are small acidic, heat-stable glycoproteins that stimulate the hydrolysis of sphingolipids by lysosomal enzymes. The molecular mass of each stimulator is about 10 kDa, but glycosylated forms of higher mass exist too. The distribution and developmental changes in two saposins and their precursor proteins were studied with the aid of monospecific antibodies against saposin-B and saposin-C. They show a wide distribution in rat organs and forms intermediate between saposin and prosaposin (the precursor protein containing four different saposin units) could be seen. The amount of saposin and the degree of processing from prosaposin are quite different in different tissues. The saposins are the dominant forms in spleen, lung, liver, and kidney, while skeletal muscle, heart, and brain contain mainly precursor forms. In human blood, leukocytes contain mainly saposin, while plasma contains mainly precursor forms and platelets show many forms. Their subcellular distribution was studied using rat liver. The saposins of approximately 20 kDa are dominant in the light mitochondrial, mitochondrial, and microsomal fractions, following the distribution of the activity of a lysosomal marker enzyme. The nuclear fraction exhibits bands corresponding to non-glycosylated saposin. The soluble fraction contained much precursor forms. A developmental study of rat brain showed that the concentration of saposin precursors increased with age.  相似文献   

5.
Rat hearts were depleted in vivo from both the heparin-releasable lipoprotein lipase and heparin-resistant tissue neutral triacylglycerol lipase activity by treatment of the animals with cycloheximide (2 mg/kg body weight), intraperitoneally injected 2.5 and 5 h prior to perfusion. The tissue acid lipase, mono- and diacylglycerol lipase activities were not affected by cycloheximide-induced inhibition of protein synthesis. Myocardial basal and glucagon-stimulated lipolysis, determined by the rate of glycerol production and release from the isolated hearts, was not significantly different in control and cycloheximide-treated rats. Tissue triacylglycerols were recovered with the highest relative specific distribution in the lysosomal fraction isolated from heart homogenates. Upon prolongation of the perfusion-duration the relative specific distribution of triacylglycerols in the lysosomal fraction decreased. In addition, the specific lysosomal triacylglycerol content (micrograms/mg protein) dropped significantly, indicating an important role of lysosomes in myocardial triacylglycerol turnover. Our data strongly suggest that the heparin-resistant neutral triacylglycerol lipase activity may not be the only determinant of endogenous lipolysis in the isolated rat heart and indicate that lipolysis may additionally be mediated by the lysosomal, acid lipase in concert with the microsomal mono-and diacylglycerol lipase.  相似文献   

6.
1. The following fractions were prepared from rat kidney and characterized ultrastructurally, biochemically and enzymically: (a) an ordinary rough microsomal (RM(1)) fraction; (b) a special rough microsomal (RM(2)) fraction enriched seven- to nine-fold in acid hydrolases over the homogenate; (c) a smooth microsomal (SM) fraction; (d) a Golgi (GM) fraction enriched 2.5-fold in acid hydrolases and 10-, 15- and 20-fold in sialyltransferase, N-acetyl-lactosamine synthetase and galactosyltransferase respectively; (e) a lysosomal (L) fraction enriched 15- to 23-fold in acid hydrolases. The frequency of Golgi sacs and tubules seen in the electron microscope and the specific activity of the three glycosyltransferases in these fractions increased in the order: RM(2)相似文献   

7.
The hydrolysis of monoacylglycerol and diacylglycerol by rat brain microsomes was followed by measuring the release of glycerol and monooleylglycerol from dispersions of water insoluble glyceryl esters of oleic acid. The microsomes showed three lipolytic activities. One activity, optimal at pH 4.8, catalyzed the hydrolysis of diacylglycerol but not monoacylglycerol. Two other lipolytic activities, optimal at pH 8.0-8.6, catalyzed the hydrolysis of both diacylglycerol and monoacylglycerol. The pH 8.0-8.6 activities were sensitive to heat and SH-reagents. Detergents were inhibitory in all cases. Extraction of the microsomes with KCl, KSCN, urea or Triton X-100 did not change the ratio of diacylglycerol hydrolysis at pH 4.8 and 8.0. The results of subcellular fractionation studies showed that there was no significant enrichment of the acid lipase in any fraction.  相似文献   

8.
Diacylglycerol was generated in phosphatidylcholine vesicles by incubation with Clostridium welchii phospholipase C. Newly formed diacylglycerol was rapidly converted to monoacylglycerol and glycerol when rat liver cytosol fraction was present in the incubation mixture, suggesting the presence of di- and monoacylglycerol lipase activities in this subcellular fraction. On the other hand, 3H-labeled diacylglycerol co-emulsified with non-radioactive phosphatidylcholine was found to be a poor substrate for the diacylglycerol lipase. These results indicate that enzymatic generation of diacylglycerol provide a substrate having a suitable physical state for the expression of diacylglycerol lipase activity. It was also found that the rate of diacylglycerol hydrolysis was dependent upon the rate of diacylglycerol generation, but not upon the absolute concentration in the incubation mixture. When the rate of diacylglycerol hydrolysis was plotted against the rate of diacylglycerol generation, a saturation curve was obtained and the double-reciprocal plot gave a straight line. It is not known why a relationship similar to Michaelis-Menten type kinetics was obtained between the rate of diacylglycerol hydrolysis and diacylglycerol generation instead of diacylglycerol concentration, but it may be best explained by the following assumptions: (1) diacylglycerol molecules are generated at the surface of the lipid vesicles where they are readily accessible to diacylglycerol lipase; (2) soon after the generation, diacylglycerol molecules migrate into inside the vesicles where they are inaccessible to the enzyme; (3) the effective concentration of diacylglycerol, i.e., the concentration of diacylglycerol located in the surface layer of the vesicles is proportional to the rate of diacylglycerol generation.  相似文献   

9.
Abstract— β- N -Acetyl D-galactosaminidase was studied in isolated neuronal and neuropil fractions from cerebral cortex and subcellular fractions derived from them. Although the enzyme activity evinced some latency properties, its subcellular distribution pattern was broader than that observed with other acid hydrolases. By contrast with nine other acid hydrolases, it was more active in neuropil than neuronal fractions (neuronal/neuropil activity ratio 0.63). This ratio was preserved in lysosomal subfractions derived from the isolated cell fractions. The data is taken as further evidence for the microheterogeneity of lysosomal particles from the brain.  相似文献   

10.
The lysosomal subcellular fraction of rat liver contains acid hydrolases which can carry out the degradation of cardiolipin to yield water-soluble products and free fatty acids. The time course of appearance of the products indicates that the major catabolic route involves the sequential removal of three of the fatty acids, followed by hydrolysis to acylglycerophosphoryl glycerol (from which the fatty acid is subsequently removed) and d-glycerophosphate (which is hydrolysed to give free phosphate and glycerol). The phospholipase A activity responsible for removal of the first fatty acid is located in the lysosomal fraction.  相似文献   

11.
The purpose of the present investigation was twofold: The isolation of Kupffer cell lysosomes by changing their density in vivo through uptake of colloidal silver iodide (NeosilvolR), and the characterization of the isolated fraction. No significant changes in the activities or distribution of acid phosphatase, aryl sulphatase, and cathepsin D were found after the injection of NeosilvolR. A method is presented for the isolation of silver-loaded lysosomes from rat liver Kupffer cells by means of ultracentrifugation in sucrose gradients. Morphological and biochemical data indicate that the lysosomal fraction was contaminated with other subcellular organelles only to a minor degree. The lysosomal fraction showed non-parallel enrichment of various acid hydrolases, with the highest degree of purification found for aryl sulphatase and the lowest for acid phosphatase. The lysosomal enzyme activity pattern was similar to that found in Kupffer cell preparations.  相似文献   

12.
Triacylglycerol lipase with maximal activity at pH 5 was present in adult and fetal lung. The activity was inhibited by serum concentrations used to measure lipoprotein lipase and by 0.5 M NaCl. The activity in homogenates from fetal lung was about 40% of the activity in adult lung homogenates. The activity increased to 80% of the adult levels during the first 24–48 h following birth. Acidic triacylglycerol lipase was present in all subcellular fractions from adult lung. However, the major amount of activity appeared to be associated with lysosomes. Fetal lung contained significantly more activity in the cytosolic fraction compared to the adult. The reaction produced free fatty acids (65%), 1,2(2,3)-diacylglycerol (22%) and 2-monoacylglycerol (12%). Minimal amounts of 1,3-diacylglycerol and 1(3)-monoacylglycerol were formed. Diacylglycerol lipase and monoacylglycerol hydrolase activities at pH 5 were independently determined and both were higher than the triacylglycerol lipase activity. The subcellular distribution of diacylglycerol lipase and monoacylglycerol hydrolase differed from that of triacylglycerol lipase. Overall, the results indicated that the lung has considerable intracellular lipase activity and therefore could readily hydrolyze intracellular triacylglycerol to free fatty acids. The reaction also produced significant amounts of 1,2-diacylglycerol which suggests that triacylglycerol could be a direct source of diacylglycerol for phospholipid synthesis.  相似文献   

13.
Lysosomal membrane permeabilization and subsequent leakage of lysosomal hydrolases into the cytosol are considered as the major hallmarks of evolutionarily conserved lysosome-dependent cell death. Contradicting this postulate, new sensitive methods that can detect a minimal lysosomal membrane damage have demonstrated that lysosomal leakage does not necessarily equal cell death. Notably, cells are not only able to survive minor lysosomal membrane permeabilization, but some of their normal functions actually depend on leaked lysosomal hydrolases. Here we discuss emerging data suggesting that spatially and temporally controlled lysosomal leakage delivers lysosomal hydrolases to specific subcellular sites of action and controls at least three essential cellular processes, namely mitotic chromosome segregation, inflammatory signaling, and cellular motility.  相似文献   

14.
—The properties and subcellular localization of type I (nitrophenyl) and type II (nitrocatechol) arylsulphatases were investigated in brain tissue of the rat, and optimal assay conditions were established. Sulphate, phosphate and sulphite ions inhibited the nitrocatechol sulphatases; nitrophenyl sulphatase was inhibited only by sulphite. The presence of latent enzyme activity was demonstrated for the nitrocatechol sulphatases, beta-glucuronidase, and beta-glycerophosphatase in rat and mouse brain homogenates. These hydrolases were highly sensitive to mechanical and osmotic damage; and Triton X-100 was very effective in releasing their latent (bound) activities, a finding suggestive of a lysosomal localization. Activity of nitrophenyl sulphatase was unaffected by osmotic changes or Triton X-100, characteristics suggesting a membranous association for this enzyme. Total activity of nitrophenyl sulphatase was approximately twice as great in canine gray matter as in canine white matter; the converse obtained for beta-glucuronidase activity. Values for total enzymic activity of the nitrocatechol sulphatases in canine white and gray matter were similar. Fractionation of homogenates from rat brain by differential centrifugations and separation of crude mitochondrial fractions by sucrose density gradient centrifugations revealed the following: (1) most of the nitrocatechol sulphatase activity (93 per cent) and all of the nitrophenyl sulphatase activity were sedimentable; (2) crude mitochondrial fractions exhibited the highest relative specific activity (RSA = 1·38) for the nitrocatechol sulphatases, whereas microsomal fractions displayed the highest RSA for nitrophenyl sulphatase (1·89); (3) the lightest fraction (A + B) and the densest fraction (E) from the sucrose density gradient contained most of the activity for both the type I and type II arylsulphatases, whereas the RSA of cytochrome oxidase was greatest in the intermediate density regions (fractions C and D); (4) the highest RSA for beta-glucuronidase and beta-glycerophosphatase occurred in gradient fraction C; (5) appreciable activity of beta-glycerophosphatase was found in a nerve ending fraction (M3). It is suggested that the hydrolases in heterogeneous tissue like brain might be associated with lysosomal particles of differing enzyme compositions and varying populations, and that the data on distribution lend credence to the concept of bimodal and possible trimodal particle affinity for the hydrolases of brain tissues.  相似文献   

15.
Fractions enriched with Sertoli cell (S), germ cells (G), and interstitial cells (I) were separated from rat testis after enzymic treatment and double filtration through nylon meshes. The fractions were analysed for protein content and for enzymic activity of 4 acid hydrolases known to be of lysosomal nature in other tissues. Acid phosphatase activity was preferentially recovered in Fraction G, the highest activity of beta-glucuronidase was found in Fraction I while the activity of aryl sulphatase and beta-N-acetyl-D-glucosaminidase was prominent in Fraction S. With the exception of acid phosphatase, the enzymes were mostly recovered in a subcellular fraction of whole testis homogenate separated between 600 and 27 000 g. The results may reflect the peculiar enzyme composition of the lysosomal apparatus of each cell type.  相似文献   

16.
By differential centrifugation method a lysosomal fraction was obtained from five species of cestodes, which possesses the highest specific activity of acidic phosphatases as compared to other subcellular fractions. By isopyknic centrifugation in the density gradient of saccharose the lysosomal fraction is divided into primary and secondary lysosomes. Lysosomes of cestodes are similar to those of vertebrate animals in the character of fractional distribution of acidic phosphatase, sedimentation abilities and sensitivity of membranes to triton X-100.  相似文献   

17.
Activities of phosphatidate phosphohydrolase and palmitoyl-CoA hydrolase were determined in cardiac subcellular fractions prepared from rabbits which has received tri-iodothyronine and from hamsters with hereditary cardiomyopathy (strain BIO 14.6). 1. Both mitochondrial and microsomal fractions of hyperthyroid rabbit hearts produced 4-5 times as much diacylglycerol 3-phosphate from glycerol 3-phosphate and palmitate as did those of euthyroid hearts. 2. Phosphatidate phosphohydrolase, measured with phosphatidate emulsion, was activated by 1mm-Mg(2+) in all but the mitochondrial fraction of euthyroid rabbit hearts. The activation was more pronounced in subcellular fractions isolated from hyperthyroid hearts, so that the measured activities were significantly increased above those of the controls. The highest activity was found in the microsomal and lysosomal fractions. 3. In the absence of Mg(2+) during incubation, the difference in phosphohydrolase activities between eu- and hyper-thyroid states was not significant. 4. The phosphohydrolase of subcellular fractions of control hamsters did not respond to addition of 0.5-8.0mm-Mg(2+). The enzyme from cardiomyopathic hearts was slightly inhibited by this bivalent cation and therefore significant increases in activity were observed only in the absence of Mg(2+) from the assay system. 5. The rate of reaction by soluble phosphatidate phosphohydrolase was similar regardless of the nature of the substrate. Both when microsomal-bound phosphatidate was used as the substrate and when phosphatidate suspension was used, the activity of soluble enzyme was lower than that of the microsomal and lysosomal enzymes measured with phosphatidate suspension; this was especially so when the assay was carried out in the absence of Mg(2+). Neither tri-iodothyronine nor cardiomyopathy influenced the soluble phosphohydrolase activity in the two species. 6. Neither tri-iodothyronine nor cardiomyopathy significantly changed palmitoyl-CoA hydrolase activities in subcellular fractions. 7. Microsomal diacylglycerol acyltransferase and myocardial triacylglycerol content were also unchanged in the hyperthyroid state.  相似文献   

18.
Human fibroblasts with a genetic deficiency of a single lysosomal enzyme and fibroblasts from a patient with ‘I-cell’ disease with a multiple deficiency of lysosomal hydrolases were used as recipient cells in studies on recognition and uptake of β-N-acetylhexosaminidase (hexosaminidase), β-glucuronidase and β-galactosidase. Normal human fibroblasts, and fibroblasts, hepatocytes and hepatoma cells from the rat were used as donor cells. The release of hexosaminidase was found to be similar among these different cell types, but the extracellular activities of β-glucuronidase and β-galactosidase were much higher in the rat cell cultures than in cultures of normal human fibroblasts. The enzymes released by rat fibroblasts were ingested by deficient human fibroblasts; enzyme from normal human fibroblasts was shown to be taken up by rat fibroblasts by means of electrophoresis. This indicates that reciprocal transfer of lysosomal hydrolases occurs between human and rat fibroblasts. Rat hepatocytes released hydrolases that were poorly taken up by human recipient fibroblasts and uptake of human fibroblast enzyme was not detected in the hepatocytes. Rat hepatoma cells, on the other hand, released lysosomal enzymes that were taken up by human deficient cells with a higher efficiency than those from fibroblasts. The uptake was subject to competitive inhibition by mannose 6-phosphate, the kinetics of which were comparable with those reported for ‘high-uptake’ forms of lysosomal enzymes [1–2]. Electrophoretic studies showed that rat hepatoma cells were not only capable of ingesting hexosaminidase from normal human fibroblasts, but also defectively processed enzyme [4–5] released by ‘I-cells’. These findings make rat hepatoma cells a useful model for the study of recognition and uptake of lysosomal enzymes.  相似文献   

19.
Diacylglycerol lipase activity has been demonstrated in human fetal membranes and decidua vera tissues. The specific activity of the enzyme is highest in the microsomal fraction of decidua vera tissue. The acylester bond at the sn-1 position of 1,2-diacyl-sn-glycerol is hydrolyzed followed by release of the fatty acid at the sn-2 position. The diacylglycerol lipase activity present in the microsomal fraction of decidua vera tissue hydrolyzes preferentially a diacylglycerol containing an arachidonoyl group in the sn-2 position. Monoacylglycerol lipase activity was also demonstrated in these tissues. The specific activity of monoacylglycerol lipase was significantly greater than that of diacylglycerol lipase and catalyzed preferentially the hydrolysis of monoacylglycerols containing an arachidonyl group in the sn-2 position. Based on the subcellular distribution and the differential effects of various inhibitors, we suggest that the monoacylglycerol lipase and diacylglycerol lipase in decidua vera tissue are 2 distinct enzymes. Diacylglycerol kinase specific activity was examined also and was found to be 4-5 times greater in amnion than in either chorion laeve or decidua vera. The importance of diacylglycerol metabolism in the mechanism of arachidonic acid release and prostaglandin biosynthesis is discussed.  相似文献   

20.
We have employed colloidal silica (Percoll) density-gradient subcellular fractionation technique to examine the distribution of lysosomal hydrolases between intermediate vesicles (primary lysosomes) and secondary lysosomes in contact-inhibited non-proliferating vs proliferating chicken embryo fibroblasts. We find that the activities of lysosomal specific enzymes from both phases of growth are distributed within two peaks; however, the relative amounts differ markedly. In normal, non-proliferating cells approx. 60% of the total activities of cathepsin B, beta-mannosidase, alpha-fucosidase, beta-galactosidase and hexosaminidase is recovered in the heavier density fraction corresponding to secondary lysosomes, while less than 9% of the enzyme activities are recovered in the light-density peak. With transformed cells, between 16 and 22% of activity for these enzymes are recovered in the lighter density intermediate vesicle fraction, when less than 40% of the enzyme activities recovered in the heavy density fraction. beta-Glucuronidase distribution was different from that of the above enzymes. First, a more even distribution between the two lysosomal fractions was found with non-proliferating normal cells (33% in heavy-density fraction and 21% in light-density fraction), whereas more than 40% of the total enzyme activity was recovered in the lighter density fraction from transformed cells. Also, the amount of cathepsin B contained in the vesicle fractions is increased severalfold relative to that of contact-inhibited normal cells. However, the apparent differences in enzyme distribution between confluent normal and transformed cells are not found when vesicles are prepared from subconfluent, actively proliferating cultures. We have also compared the Percoll density gradient patterns of membrane vesicles from proliferating and non-proliferating human fibroblasts, since most earlier studies utilized this system. Again, we find that the majority of beta-hexosaminidase activity (41%) of contact-inhibited, confluent cells is recovered in the heavier density fraction with less than 15% in the lighter density fraction. Also, the distribution of beta-hexosaminidase between the heavy density and light density vesicle fractions is altered in homogenates from exponentially growing cells, being 22% and 26% respectively. We conclude that the distribution of lysosomal hydrolases between the two vesicle populations is growth-phase dependent and is markedly heterogeneous in proliferating cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号