首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
细菌还原氧化态硒产生红色单质硒的研究进展   总被引:3,自引:0,他引:3  
硒是一种生命必需的微量元素,但高浓度时毒性较强且会造成环境污染。许多细菌可以将亚硒酸盐(SeO32-)或硒酸盐(SeO42-)等毒性较高的氧化态硒还原为毒性较小的红色单质硒(Se°),形成硒-蛋白复合物,它们对于获得最佳补硒方式和治理硒环境污染具有应用潜力。近年来,关于这一生物还原过程,人们进行了大量的研究,包括碳源、氧气、元素硫、谷胱甘肽以及一些氧化还原酶和膜转运蛋白等在内的多种物质都被发现可能影响或参与了细菌对硒的代谢。综述了细菌进行生物还原氧化态硒的影响因素及不同细菌产生红色单质硒机理的研究进展。  相似文献   

2.
沼泽红假单胞菌对亚硒酸盐还原脱毒的研究   总被引:2,自引:0,他引:2  
主要研究沼泽红假单胞菌对亚硒酸盐还原脱毒作用及其脱毒机理。通过单因子实验、正交试验, 对影响亚硒酸盐还原脱毒的因素进行研究, 得到沼泽红假单胞菌还原亚硒酸盐的最佳条件为: 亚硒酸钠添加量是25 mg/L, 培养的第5天接种接种量15% (质量比)。在该条件下, 对亚硒酸钠去除率可达98.2%。研究发现, 亚硒酸盐还原酶主要存在于细胞质, 分子量约为182 kD, 由4个亚基组成。通过透射电子显微镜观察, 菌体表面出现粒径在5 nm?200 nm之间的高电子密度颗粒, 初步表明亚硒酸盐在沼泽红假单胞菌体内被  相似文献   

3.
分离的酒色着色菌(Chromatiumvinosum)内膜系统在光照和O乙酰丝氨酸(OAS)存在的条件下,能以359纳摩尔/毫克细菌叶绿素·小时(nmol·mgBchl-1·h-1)的速度催化SeO2-3合成硒半胱氨酸。用超声波处理的内膜系统,催化速度仅为处理前的11%,加入谷胱甘肽(GSH)和还原型辅型Ⅱ(NADPH)后,其速度增加至处理前的883%,该反应对光具有依赖性,进一步实验表明,纯化的谷胱甘肽还原酶,在有半胱氨合酶、OAS和NADPH共存时,能催化SeO2-3转化为硒半胱氨酸,表明SeO2-3在内膜系统中能被光偶联的谷胱甘肽还原酶还原为Se2-,然后经半胱氨酸合酶的催化作用转化为硒半胱氨酸  相似文献   

4.
用1.0 mg·L-1的亚硒酸钠根施小麦幼苗,测定亚硒酸钠对谷胱甘肽过氧化物酶和谷胱甘肽转硫酶活性以及还原性谷胱甘肽含量的结果表明,外源亚硒酸钠对麦苗地上部的谷胱甘肽过氧化物酶和谷胱甘肽转硫酶活性均有诱导作用,使麦苗体内的谷胱甘肽含量水平增加.  相似文献   

5.
 观察了三种化合物(抗氧化剂与自由基清除剂)对大鼠亚硒酸钠性白内障的滴眼预防作用。实验分为正常对照组、亚硒酸钠组及滴眼预防组。亚硒酸钠组及滴眼预防组系给12─13日龄的大鼠皮下注射亚硒酸钠,首次剂量为6μmol/kg体重,间日一次,逐次递增1μmol/kg体重,连续六次。预防组则为大鼠开眼后同时滴眼抗氧化剂与自由基清除剂。结果表明,三种化合物通过滴眼均能有效的防止亚硒酸钠性白内障的发生,白内障的发生率从95.8%降低至15%~43.5%。同时测定了各组晶状体中谷胱甘肽过氧化物酶(GSH-Px)、谷胱甘肽还原酶(GSSG-R)及谷胱甘肽硫转移酶(GSH-S)的活性,结果表明,凡注射硒的大鼠晶状体中GSH-Px及GSSG-R的活性均比正常晶状体的高,接受抗氧化剂与自由基清除剂预防的大鼠晶状体中这两种酶的活性比未接受预防的大鼠晶状体中的低。单独注射硒的大鼠晶状体中GSH-S的活性比正常晶状体的高。接受预防的大鼠晶状体中此酶的活性和正常晶状体无差异,但比单独注射硒的大鼠晶状体中的低。  相似文献   

6.
测定了用亚硒酸钠诱发的大鼠白内障晶状体中谷胱甘肽过氧化物酶(GSH-Px)、谷胱甘肽还原酶(GSSG-R)和谷胱甘肽硫转移酶(GSH-S)的活性,并与正常晶休中这三种酶的活性作了比较。结果表明,核浊浑期晶状体中GSH-Px的活性比正常晶状体的高一倍,但在整个晶状体浑浊时降低,GSSG-R的活性变化与GSH-PX相似,这两种酶在代谢上是相关的。GSH-S的活性在核浑浊期不改变,但在完全浑浊后降低。  相似文献   

7.
假单胞菌(Psendomonas sp.)生长在一定的培养条件中能产生胞外脂酶。 最适碳源为1.0%淀粉,氮源为1.0%蛋白胨。一些植物油,如橄榄油、糠油、菜油等能诱导脂酶的大量产生,诱导脂酶产生的橄榄油最适浓度为0.5%。无机离子在菌培养过程中对脂酶产率影响很大,K+、Na+、Mg2+、Ca2+等对脂酶产生有促进作用,而Mn2+、Ba2+、Zn2+、Fe3+、Co2+、Cu2+件等则抑制脂酶产生。非离子表面活性剂(tween、span及糖脂)能刺激胞外脂酶的产生。  相似文献   

8.
聚羟基脂肪酸酯(PHA)是一类具有广泛应用前景的可降解生物塑料。因其可以以葡萄糖等廉价底物直接发酵生产PHA而日益受到重视。目前的研究表明在积累中长链PHA的假单胞菌中,由phaG基因编码的(R)-3-羟基酯酰载酯蛋白-辅酶A转酰基酶(PhaG)起关键作用,但目前为止对该蛋白还知之甚少。通过聚合酶链式反应(PCR)建立了一种快速、特异鉴定phaG基因的方法,应用该方法成功地从两株积累不同PHA的假单胞菌Pseudomonas stutzeri 1317和Pseudamanas nitroreducens 0802中分别克隆得到phaG基因,并在phaG基因突变株Pseudomonas putida PHAGx-21中表达成功。同时,还首次报道了从非假单胞菌菌株Burkholderia caryophylli AS 1.2741中鉴定得到phaG基因,提示PhaG介导的中长链PHA合成途径作为一种通用的代谢模式在细菌中广泛存在,为进一步实现从廉价的非相关底物合成中长链PHA提供了必要的分子生物学基础。  相似文献   

9.
10.
Sonicated chloroplasts in the presence of catalytic concentrations of NADP(H) and GSSG supported light-dependent reduction of SeO32? with the  相似文献   

11.
The measurement of elemental selenium (Se0) is needed to assess the rate and magnitude of bacteria reduction of selenite or selenate. We have developed a spectrophotometric method for the measurement Se0 that is rapid and can be employed to measure the quantity of Se0 produced by bacterial cultures. This method employs the use of 1 M Na2S to convert the insoluble elemental selenium to a red-brown solution and with this method there is a direct correlation between concentration of elemental selenium and the absorption at 500 nm. To demonstrate the utility of this assay, we have followed the reduction of selenite to Se0 by Moraxella bovis, and by bacterial consortia in soil and water samples.  相似文献   

12.
Selenite is a selenium source for selenoprotein biosynthesis in mammalian cells. Although previous studies have suggested the involvement of glutathione (GSH) and/or thioredoxin reductase in selenite metabolism, intracellular selenite metabolism remains largely unknown. Here, we report that GSH depletion did not affect the amount of selenoprotein in Hepa 1–6 cells, suggesting that GSH does not play a central role in the reduction of selenite in selenoprotein biosynthesis. On the other hand, we found that GSH is involved in the efflux of low-molecular-weight selenium compounds from cells, presumably via the formation of selenodiglutathione. Moreover, selenite inhibited the efflux of a fluorescent bimane-GS conjugate that is mediated by ATP-dependent multidrug-resistant proteins, implying the existence of an active transporter for selenodiglutathione. This is the first report demonstrating that GSH plays a role in selenium excretion from cells by forming a GSH-conjugate, which may contribute to the distribution, detoxification, and homeostasis of selenium in the body.  相似文献   

13.
The influence of several thiols (conc. 1 mmol/L) on mucosal uptake of75Se from75Se-labeled selenite (conc. 10 μmol/L) across the brush border of rat jejunum and cecum was investigated in vitro using a short-term uptake technique.l-Cysteine (l-Cys) stimulated75Se uptake in the mid- and distal jejunum and cecum, but not in the proximal jejunum. The effect was maximal in the distal jejunum.d-Cys was less effective in the jejunum and similarly effective in the cecum.l-Leucine (l-Leu) andl-glutamic acid significantly reduced the stimulatory effect ofl-Cys on Se uptake in the distal jejunum, whereas the respective effect ofd-Cys was not diminished byl-Leu. Cysteamine stimulated mucosal75Se uptake at all intestinal sites tested, whereas the effect of mercaptopyruvate was restricted to the distal jejunum. Thioglycolate also enhanced75Se uptake in the distal jejunum. The stimulatory effects ofl-Cys, mercaptopyruvate, and thiologlycolate were Na+-dependent, whereas the effect of cysteamine also occurred in the absence of Na+. Mercaptosuccinate,d-penicillamine, ergothioneine, and thiosulfate did not enhance mucosa75Se uptake. It is concluded from these findings that the reaction of some thiols with selenite results in Se compounds that are rapidly absorbed by the intestinal epithelium through various Na+-dependent and Na+-independent, mechanisms. The high bioavailability of Se from selenite found by others might thus be the result of the presence of thiols in the gastrointestinal tract.  相似文献   

14.
The effect of vitamin B6 on the levels of tissue selenium (Se) and glutathione peroxidase (GSH-Px) was studied. Male Wistar 4-week-old rats were fed a vitamin B6-Se-deficient basal diet for 2 weeks, then divided into 10 groups of five or six rats and fed their respective diets for 4 weeks. The experimental design was a 2×2×2 factorial with two levels of vitamin B6, two forms of Se, and two levels of Se, plus two extra groups (vitamin B6-supplemented and deficient without Se). Vitamin B6 was 0 and 250 μg pyridoxine-HCl/100 g of diet; Se forms were Na2SeO3 and DL-selenomethionine; Se levels were 0.5 and 5.0 mg Se/kg of diet. Regardless of form or level of Se, vitamin B6-deficient rats had lower body weights and organ weights than vitamin B6-supplemented rats. At 5.0 mg Se/kg of diet, Na2SeO3 caused a further depression. Vitamin B6 deficiency resulted in a higher Se level and GSH-Px activity in plasma of rats fed selenomethionine. However, Se content an GSH-Px activity in erythrocytes were significantly elevated in vitamin B6-supplemented rats compared with vitamin B6-deficient rats. Se levels in muscle and heart were significantly lower in vitamin B6-deficient groups fed Na2SeO3 than in vitamin B6-supplemented groups. Vitamin B6-deficient rats fed selenomethionine had higher Se levels in muscle, heart, spleen, liver, and kidneys than vitamin B6-supplemented rats. Activity of GSH-Px in muscle, heart, and spleen was significantly lower in vitamin B6-deficient groups than in vitamin B6-supplemented groups, regardless of form of Se. A significant decrease of GSH-Px in liver was observed in vitamin B6-deficient rats fed selenomethionine compared with vitamin B6-supplemented rats, whereas no significant decrease was observed in those fed Na2SeO3. These results suggest that vitamin B6 is involved in the distribution and transportation of Se in body and the metabolism of selenomethionine in liver.  相似文献   

15.
The influence of glutathione (1 mmol/L) (GSH) on in vitro mucosal uptake and in vivo absorption of75Se-labeled selenite (10 μmol/L) was investigated in rat jejunum. For comparison, the effect ofl-cysteine (1 mmol/L) on in vivo absorption of75Se-labeled selenite was also studied. In the in vitro, uptake experiments, only the mucosal surface was exposed to the incubation medium for 3 min. For the in vivo experiments, a luminal perfusion technique was employed. GSH inhibited in vitro mucosal Se uptake, whereas absorption in vivo was stimulated by GSH.l-Cysteine also stimulated in vivo Se absorption, confirming former in vitro mucosal uptake experiments. Thus, unlikel-cysteine, GSH affected in vitro and in vivo absorption of Se from selenite differently. Enzymatic cleavage of products of the reaction of selenite with GSH occuring more efficiently under in vivo than in vitro conditions may be a prerequisite for the stimulatory effect of GSH on Se absorption. This apparently does not apply to the stimulatory effect of cysteine. Since, GSH occurs in the intestinal lumen under physiological conditions, it may contribute to the high bioavailability of Se from selenite.  相似文献   

16.
Thauera selenatis grows anaerobically with selenate, nitrate or nitrite as the terminal electron acceptor; use of selenite as an electron acceptor does not support growth. When grown with selenate, the product was selenite; very little of the selenite was further reduced to elemental selenium. When grown in the presence of both selenate and nitrate both electron acceptors were reduced concomitantly; selenite formed during selenate respiration was further reduced to elemental selenium. Mutants lacking the periplasmic nitrite reductase activity were unable to reduce either nitrite or selenite. Mutants possessing higher activity of nitrite reductase than the wild-type, reduced nitrite and selenite more rapidly than the wild-type. Apparently, the nitrite reductase (or a component of the nitrite respiratory system) is involved in catalyzing the reduction of selenite to elemental selenium while also reducing nitrite. While periplasmic cytochrome C 551 may be a component of the nitrite respiratory system, the level of this cytochrome was essentially the same in mutant and wild-type cells grown under two different growth conditions (i.e. with either selenate or selenate plus nitrate as the terminal electron acceptors). The ability of certain other denitrifying and nitrate respiring bacteria to reduce selenite will also be described.  相似文献   

17.
Zhang T  Zhang L  Su W  Gao P  Li D  He X  Zhang Y 《Bioresource technology》2011,102(14):7099-7102
In this paper, we reported a kind of exoelectrogens, Pseudomonas alcaliphila (P. alcaliphila) strain MBR, which could excrete phenazine-1-carboxylic acid (PCA) to transfer electron under alkaline condition in microbial fuel cells (MFCs). The electrochemical activity of strain MBR and the extracellular electron transfer mechanism in MFCs were evaluated by cyclic voltammetry (CV) and electricity generation curve measurement. The results indicated a soluble mediator was the key factor for extracellular electron transfer of strain MBR under alkaline condition. The soluble mediator was PCA detected by gas chromatography-mass (GC-MS) analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号