首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Chlorophyll a fluorescence has been used to monitor the redox state of the primary electron acceptor of photosystem II (PS II) in the blue-green alga Phormidium laminosum during equilibrium titrations. The shape of induction curves measured in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) have been analyzed. The induction curves were very similar in unfractionated thylakoid membranes and PS II particles. In both, the fast (alpha) phase was sigmoidal, and was followed by a slow (beta) exponential tail. Thus, the structural organization and complexity of the particles (J. M. Bowes and P. Horton, Biochim, Biophys. Acta 680, 127-133 (1982), as indicated by the occurrence of energy transfer between alpha centers and presence of beta centers, must preexist in the membranes. Redox titration of the initial level of fluorescence indicated the presence of a single quencher QH in the unfractionated thylakoids, midpoint potential: Em7.0 approximately -35 mV (n = 1). Thus, the occurrence of a single acceptor is characteristic for P. laminosum and the absence of a low potential acceptor in PS II particles (J.M. Bowes, P. Horton, and D.S. Bendall, FEBS Lett. 135, 261-264 (1981] was not the result of its removal during their preparation. The midpoint potential of Q varied by -60 mV/pH unit in PS II particles and membrane fragments, with a pK at pH greater than 8.5 (particles) and at pH 7.5 (fragments). In PS II particles, DCMU raised the pK by approximately 0.5 pH units. It is argued that the pH dependence of Q is conferred by protonation of a protein which accompanies its reduction rather than protonation of the semiquinone Q X itself.  相似文献   

3.
Fluorescence induction has been studied for a long time, but there are still questions concerning what the O-J-I-P kinetic steps represent. Most studies agree that the O-J rise is related to photosystem II primary acceptor (Q(A)) reduction, but several contradictory theories exist for the J-I and I-P rises. One problem with fluorescence induction analysis is that most work done to date has used only qualitative or semiquantitative data analysis by visually comparing traces to observe the effects of different chemicals or treatments. Although this method is useful to observe major changes, a quantitative method must be used to detect more subtle, yet important, differences in the fluorescence induction trace. To achieve this, we used a relatively simple mathematical approach to extract the amplitudes and half-times of the three major fluorescence induction phases obtained from traces measured in thylakoid membranes kept at various temperatures. Apparent activation energies (E(A)) were also obtained for each kinetic step. Our results show that each phase has a different E(A), with E(A O-J) 相似文献   

4.
We have made use of the enhancement of the intrinsic fluorescence of the alpha subunit of transducin (alpha T), which accompanies guanine nucleotide exchange, to follow the reconstituted interactions between pure rhodopsin and pure transducin in phospholipid vesicles. When the pure alpha T.GDP complex is added to lipid vesicles containing rhodopsin and the beta gamma T complex, a light- and guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-dependent enhancement of the fluorescence emission of alpha T is observed. When GTP is substituted for GTP gamma S, a similar enhancement of the intrinsic fluorescence of alpha T occurs; however, this enhancement is transient and precedes a fluorescence decay which is complete in 2-5 min. The fact that the fluorescence decay is specifically induced by GTP and is not observed either with nonhydrolyzable GTP analogs or with NaF (plus AlCl3) indicates that the decay represents GTP hydrolysis in alpha T. The dose-response profiles for the effects of the beta gamma T complex on the rate and extent of the GTP gamma S-stimulated fluorescence enhancement of alpha T have also been examined. The addition of relatively low levels of beta gamma T to these reconstituted systems can promote the GTP gamma S-stimulated enhancement of the fluorescence of multiple alpha T subunits with half-maximal enhancement occurring at alpha T:beta gamma T ratios of 150:1. These findings are consistent with earlier suggestions (Fung, B. K.-K. (1983) J. Biol. Chem. 258, 10495-10502) that the beta gamma T subunit dissociates from alpha T as a result of the GDP-GTP exchange reaction and thus can act catalytically to promote the activation of a number of inactive alpha T species. However, the dependence of the rate of the GTP gamma S-stimulated fluorescence enhancement on beta gamma T is complex and cannot be explained adequately by simple models where alpha T-beta gamma T interactions (or rhodopsin-transducin interactions) are rate-limiting for the rhodopsin-stimulated activation of the alpha T subunits. Overall, the results reported here demonstrate that fluorescence spectroscopy can be used to monitor directly a receptor-catalyzed activation-deactivation cycle of a GTP-binding protein within a lipid milieu.  相似文献   

5.
The light minus dark difference spectrum and the kinetics of the indicator pigment C-550 have been measured at room temperature in isolate, envelope-free chloroplasts in the presence of 3-(3' ,4'-dichlorophenyl)-1,1-dimethylurea (DCMU). The C-550 spectrum indicates a band shift with peaks at 540 and 550 nm and has an isobestic point at 545 nm. On the assumption of 400 chlorophyll molecules per electron transfer chain the differentaial extinction coefficient delta epsilon (540-550) is calculated to be approximately 5 mM-1 . CM-1. The kinetics of the C-550 absorbance change, occurring upin the onset of continuous illumination, are shown to be biphasic and strictly correlated with the kinetics of the complementary area measured from the fluorescence induction curve under identical cinditions and with those of the absorbance increase at 320 nm due to photoreduction of Q. The lighted-induced change in these three parameters can be described as a function of the variable fluorescence yield change occurring under the same conditions. Such functions are non-linear and reveal a heterogeneous dependence of the variable fluorescence yield on the fraction of closed System II reaction centers. It is concluded that for every molecule of the primary electron acceptor Q of Photosystem II that is photochemically reduced there corresponds an equivalent change in the absorbance of the indicator pigment C-550 and in the size of the complementary area. Ths, C-550 and area are two valid parameters for monitoring the primary photochemical activity of System II at the room temperature.  相似文献   

6.
Mammalian NAD-dependent isocitrate dehydrogenase is an allosteric enzyme, activated by ADP and composed of 3 distinct subunits in the ratio 2alpha:1beta:1gamma. Based on the crystal structure of NADP-dependent isocitrate dehydrogenases from Escherichia coli, Bacillus subtilis, and pig heart, and a comparison of their amino acid sequences, alpha-Arg88, beta-Arg99, and gamma-Arg97 of human NAD-dependent isocitrate dehydrogenase were chosen as candidates for mutagenesis to test their roles in catalytic activity and ADP activation. A plasmid harboring cDNA that encodes alpha, beta, and gamma subunits of the human isocitrate dehydrogenase (Kim, Y. O., Koh, H. J., Kim, S. H., Jo, S. H., Huh, J. W., Jeong, K. S., Lee, I. J., Song, B. J., and Huh, T. L. (1999) J. Biol. Chem. 274, 36866-36875) was used to express the enzyme in isocitrate dehydrogenase-deficient E. coli. Wild type (WT) and mutant enzymes (each containing 2 normal subunits plus a mutant subunit with alpha-R88Q, beta-R99Q, or gamma-R97Q) were purified to homogeneity yielding enzymes with 2alpha:1beta:1gamma subunit composition and a native molecular mass of 315 kDa. Specific activities of 22, 14, and 2 micromol of NADH/min/mg were measured, respectively, for WT, beta-R99Q, and gamma-R97Q enzymes. In contrast, mutant enzymes with normal beta and gamma subunits and alpha-R88Q mutant subunit has no detectable activity, demonstrating that, although beta-Arg99 and gamma-Arg97 contribute to activity, alpha-Arg88 is essential for catalysis. For WT enzyme, the Km for isocitrate is 2.2 mm, decreasing to 0.3 mm with added ADP. In contrast, for beta-R99Q and gamma-R97Q enzymes, the Km for isocitrate is the same in the absence or presence of ADP, although all the enzymes bind ADP. These results suggest that beta-Arg99 and gamma-Arg97 are needed for normal ADP activation. In addition, the gamma-R97Q enzyme has a Km for NAD 10 times that of WT enzyme. This study indicates that a normal alpha subunit is required for catalytic activity and alpha-Arg88 likely participates in the isocitrate site, whereas the beta and gamma subunits have roles in the nucleotide functions of this allosteric enzyme.  相似文献   

7.
We have developed a method to determine the stoichiometry of subunits within an oligomeric cell surface receptor using fluorescently tagged antibodies to the individual subunits and measuring energy transfer between them. Anti-c-Myc monoclonal antibody (mAb 9-E10) derivatized with a fluorophore (europium cryptate, EuK) was used to individually label c-Myc-tagged alpha1-, beta2-, or gamma2-subunits of the hetero-oligomeric gamma-aminobutyric acid (GABAA) receptor in intact cells. The maximal fluorescent signal derived from the alpha1(c-Myc)beta2gamma2 and the alpha1beta2(c-Myc)gamma2 receptors was twice that obtained with alpha1beta2gamma2(c-Myc), suggesting that there are 2x alpha-, 2x beta-, and 1x gamma-subunits in a receptor monomer. This observation was extended using fluorescence energy transfer. Receptors were half-maximally saturated with EuK-anti-c-Myc mAb, and the remaining alpha1(c-Myc) subunits were labeled with excess anti-c-Myc mAb derivatized with the fluorescence energy acceptor, XL665. On exposure to laser light, energy transfer from EuK to XL665 occurred with alpha1(c-Myc)beta2gamma2 and alpha1beta2(c-Myc)gamma2, but no significant energy transfer was observed with alpha1beta2gamma2(c-Myc) receptors, indicating the absence of a second gamma-subunit in a receptor monomer. We confirm that the GABAA receptor subtype, alpha1beta2gamma2, is composed of two copies each of the alpha- and beta-subunits and one copy of the gamma-subunit (i.e. (alpha1)2(beta2)2(gamma2)1) and conclude that this method would have general applicability to other multisubunit cell surface proteins.  相似文献   

8.
A mutation in the gamma2 subunit of the gamma-aminobutyric acid (GABA) type A receptor (GABAR), which changes an arginine to a glutamine at position 43 (R43Q), is linked to familial idiopathic epilepsies. We used radioligand binding, immunoblotting, and immunofluorescence techniques to examine the properties of wild-type alpha1beta2gamma2 and mutant alpha1beta2gamma2R43Q GABARs expressed in HEK 293 cells. The gamma2R43Q mutation had no affect on the binding affinity of the benzodiazepine flunitrazepam. However, in cells expressing alpha1beta2gamma2R43Q GABARs, the number of binding sites for [3H]flunitrazepam relative to wild-type receptors was decreased 75%. Using surface protein biotinylation, affinity purification, and immunoblotting, we demonstrated that expression of cell surface alpha1beta2gamma2R43Q GABARs was decreased. Surface immunostaining of HEK 293 cells expressing alpha1beta2gamma2R43Q GABARs confirmed that surface expression of the gamma2R43Q subunit was reduced. These data demonstrate that the gamma2R43Q mutation impairs expression of cell surface GABARs. A deficit in surface GABAR expression would reduce synaptic inhibition and result in neuronal hyperexcitability, which could explain why families possessing the gamma2R43Q subunit have epilepsy.  相似文献   

9.
Seedlings of barley ( Hordeum vulgare L. cv. Conquest) were dark-grown for 7 days and then transferred to light. The time courses of chlorophyll a fluorescence induction underwent changes during greening periods of from 3 to 48 h. Yields of variable fluorescence during greening correlated with electron transport capacity via photosystem II (PS II) except at the early stage from 3 to 6 h. The discrepancy may result from there being only a small amount of light harvesting complex associated with PSII for 3 to 6 h greening. Oxygen quenching effects were interpreted as indicating the development of the electron transport system and the organization of light harvesting complex associated with PSII. The most intensive O2 quenching of relative fluorescence is found during the early stage of greening when the ratio of the primary quinone electron acceptor (Q) to chlorophyll is high.  相似文献   

10.
Measurements of chlorophyll fluorescence have been used to monitor electron transfer from Q (the primary electron acceptor of photosystem II) to B (the bound quinone which serves as the secondary acceptor) in chloroplasts isolated from atrazine-susceptible and atrazine-resistant pigweed chloroplasts. The Q? → B electron transfer was at least 10-fold slower in the plastids from resistant plants. Binary oscillations in the rate of Q? decay after a series of flashes were of opposite phase in the two types. The data are interpreted to indicate that the apoprotein of B is altered in the photosytem II complex of the two types of plants—this is correlated to altered binding affinity of herbicides to this component and may be related to altered redox properties of the bound quinone cofactor.  相似文献   

11.
A. Melis  U. Schreiber 《BBA》1979,547(1):47-57
The light minus dark difference spectrum and the kinetics of the indicator pigment C-550 have been measured at room temperature in isolated, envelopefree chloroplasts in the presence of 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU). The C-550 spectrum indicates a band shift with peaks at 540 and 550 nm and has an isosbestic point at 545 nm. On the assumption of 400 chlorophyll molecules per electron transfer chain the differential extinction coefficient Δ?(540–550) is calculated to be approximately 5 mM?1 · cm?1. The kinetics of the C-550 absorbance change, occurring upon the onset of continuous illumination, are shown to be biphasic and strictly correlated with the kinetics of the complementary area measured from the fluorescence induction curve under identical conditions and with those of the absorbance increase at 320 nm due to photoreduction of Q. The light-induced change in these three parameters can be described as a function of the variable fluorescence yield change occurring under the same conditions. Such functions are non-linear and reveal a heterogeneous dependence of the variable fluorescence yield on the fraction of closed System II reaction centers.It is concluded that for every molecule of the primary electron acceptor Q of Photosystem II that is photochemically reduced there corresponds an equivalent change in the absorbance of the indicator pigment C-550 and in the size of the complementary area. Thus, C-550 and area are two valid parameters for monitoring the primary photochemical activity of System II at room temperature.  相似文献   

12.
The comparative effects of decapitation and defoliation on the senescence-induced inactivation of photosynthetic activity in primary leaves of bean plants were investigated. Decapitation was performed during different phases of bean plant ontogenesis, immediately after the appearance of the 1st, 2nd, 3rd and 4th composite leaf. In addition, we examined a variant with primary leaves and stem with an apical bud, but without composite leaves, i.e. defoliated plants. Analyses of chlorophyll fluorescence, millisecond delayed fluorescence and absorption at 830nm in primary leaves were undertaken to investigate the alterations in photosystems II and I electron transport during the decapitation-induced delayed senescence in the non-detached leaves. Analysis of the OKJIP transients using the JIP-test (see [Strasser R, Srivastava A, Tsimilli-Michael M. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee, editors. Chlorophyll a fluorescence: a signature of photosynthesis. The Netherlands: Kluwer Academic Publishers, 2004; pp. 321-362]) showed an increase in several biophysical parameters of photosystem II in decapitated plants, specifically, the density of active reaction centers on a chlorophyll basis, the yields of trapping and electron transport, and the performance index. We also observed a decrease in the absorbed light energy per reaction center. Such a decrease in light absorption could be a result of the photosystem II down regulation that appeared as an increase in Q(B)-non-reducing photosystem II centers. The effect was identical when all leaves except the primary leaves were removed. The variant with a preserved apical bud, the defoliated plant, showed values similar to those of decapitated plants with primary leaves only. The changes in the induction curves of the delayed fluorescence also indicated an acceleration of electron transport beyond photosystem II in the decapitated and in defoliated plants. In these plants, the photosystem I-driven electron transport was accelerated, and the size of the plastoquinone pool was enhanced. It was established that decapitation can retard the senescence of primary leaves, can expand leaf life span and can cause activation of both photosystems I and II electron transport. The decapitation procedure shows similarities to the process of defoliation. The overcompensation effect that is developed after defoliation could initially be manifested as an acceleration of the linear photosynthetic electron flow in the rest of the leaves.  相似文献   

13.
Interfering RNA was used to suppress the expression of the genes At1g06680 and At2g30790 in Arabidopsis thaliana, which encode the PsbP-1 and PsbP-2 proteins, respectively, of photosystem II (PS II). A phenotypic series of transgenic plants was recovered that expressed intermediate and low amounts of PsbP. Chlorophyll fluorescence induction and Q(A)(-) decay kinetics analyses were performed. Decreasing amounts of expressed PsbP protein led to the progressive loss of variable fluorescence and a marked decrease in the fluorescence quantum yield (F(V)/F(M)). This was primarily due to the loss of the J to I transition. Analysis of the fast fluorescence rise kinetics indicated no significant change in the number of PS II(beta) centers present in the mutants. Analysis of Q(A)(-) decay kinetics in the absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea indicated a defect in electron transfer from Q(A)(-) to Q(B), whereas experiments performed in the presence of this herbicide indicated that charge recombination between Q(A)(-) and the oxygen-evolving complex was seriously retarded in the plants that expressed low amounts of the PsbP protein. These results demonstrate that the amount of functional PS II reaction centers is compromised in the plants that exhibited intermediate and low amounts of the PsbP protein. Plants that lacked detectable PsbP were unable to survive in the absence of sucrose, indicating that the PsbP protein is required for photoautotrophy. Immunological analysis of the PS II protein complement indicated that significant losses of the CP47 and D2 proteins, and intermediate losses of the CP43 and D1 proteins, occurred in the absence of the PsbP protein. This demonstrates that the extrinsic protein PsbP is required for PS II core assembly/stability.  相似文献   

14.
Phosphoinositide 3-kinase (PI 3-kinase) is a key signaling enzyme implicated in a variety of receptor-stimulated cell responses. Stimulation of receptors possessing (or coupling to) protein-tyrosine kinase activates heterodimeric PI 3-kinases, which consist of an 85-kDa regulatory subunit (p85) containing Src-homology 2 (SH2) domains and a 110-kDa catalytic subunit (p110 alpha or p110 beta). Thus, this form of PI 3-kinases could be activated in vitro by a phosphotyrosyl peptide containing a YMXM motif that binds to the SH2 domains of p85. Receptors coupling to alpha beta gamma-trimeric G proteins also stimulate the lipid kinase activity of a novel p110 gamma isoform, which is not associated with p85, and thereby is not activated by tyrosine kinase receptors. The activation of p110 gamma PI 3-kinase appears to be mediated through the beta gamma subunits of the G protein (G beta gamma). In addition, rat liver heterodimeric PI 3-kinases containing the p110 beta catalytic subunit are synergistically activated by the phosphotyrosyl peptide plus G beta gamma. Such enzymatic properties were also observed with a recombinant p110 beta/p85 alpha expressed in COS-7 cells. In contrast, another heterodimeric PI 3-kinase consisting of p110 alpha and p85 in the same rat liver, together with a recombinant p110 alpha/p85 alpha, was not activated by G beta gamma, though their activities were stimulated by the phosphotyrosyl peptide. Synergistic activation of PI 3-kinase by the stimulation of the two major receptor types was indeed observed in intact cells, such as chemotactic peptide (N-formyl-Met-Leu-Phe) plus insulin (or Fc gamma II) receptors in differentiated THP-1 and CHO cells and adenosine (A1) plus insulin receptors in rat adipocytes. Thus, PI 3-kinase isoforms consisting of p110 beta catalytic and SH2-containing (p85 or its related) regulatory subunits appeared to function as a 'cross-talk' enzyme between the two signal transduction pathways mediated through tyrosine kinase and G protein-coupled receptors.  相似文献   

15.
The energy of intermediates in fusion of phospholipid bilayers is sensitive to kappa(m), the saddle splay (Gaussian curvature) elastic modulus of the lipid monolayers. The value kappa(m) is also important in understanding the stability of inverted cubic (Q(II)) and rhombohedral (R) phases relative to the lamellar (L(alpha)) and inverted hexagonal (H(II)) phases in phospholipids. However, kappa(m) cannot be measured directly. It was previously measured by observing changes in Q(II) phase lattice dimensions as a function of water content. Here we use observations of the phase behavior of N-mono-methylated dioleoylphosphatidylethanolamine (DOPE-Me) to determine kappa(m). At the temperature of the L(alpha)/Q(II) phase transition, T(Q), the partial energies of the two phases are equal, and we can express kappa(m) in terms of known lipid monolayer parameters: the spontaneous curvature of DOPE-Me, the monolayer bending modulus kappa(m), and the distance of the monolayer neutral surface from the bilayer midplane, delta. The calculated ratio kappa(m)/kappa(m) is -0.83 +/- 0.08 at T(Q) approximately 55 degrees C. The uncertainty is due primarily to uncertainty in the value of delta for the L(alpha) phase. This value of kappa(m)/kappa(m) is in accord with theoretical expectations, including recent estimates of the value required to rationalize observations of rhombohedral (R) phase stability in phospholipids. The value kappa(m) substantially affects the free energy of formation of fusion intermediates: more energy (tens of k(B)T) is required to form stalks and fusion pores (ILAs) than estimated solely on the basis of the bending elastic energy. In particular, ILAs are much higher in energy than previously estimated. This rationalizes the action of fusion-catalyzing proteins in stabilizing nascent fusion pores in biomembranes; a function inferred from recent experiments in viral systems. These results change predictions of earlier work on ILA and Q(II) phase stability and L(alpha)/Q(II) phase transition mechanisms. To our knowledge, this is the first determination of the saddle splay (Gaussian) modulus in a lipid system consisting only of phospholipids.  相似文献   

16.
Shigeru Itoh  Mitsuo Nishimura 《BBA》1977,460(3):381-392
Changes in the rates of dark oxidation and reduction of the primary electron acceptor of System II by added oxidant and reductant were investigated by measuring the induction of chlorophyll fluorescence under moderate actinic light in 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea-inhibited chloroplasts at pH values between 3.6 and 9.5. It was found that:

1. (1) The rate of dark oxidation of photoreduced primary acceptor was very slow at all the pH values tested without added electron acceptor.

2. (2) The rate was accelerated by the addition of ferricyanide in the whole pH range. It was dependent approximately on the 0.8th power of the ferricyanide concentration.

3. (3) The rate constant for the oxidation of the primary acceptor by ferricyanide was pH-dependent and became high at low pH. The value at pH 3.6 was more than 100 times that at pH 7.8.

4. (4) The pH-dependent change in the rate constant was almost reversible when the chloroplasts were suspended at the original pH after a large pH change (acid treatment).

5. (5) An addition of carbonylcyanide m-chlorophenylhydrazone or heavy metal chelators had little effect on the rate of dark oxidation of the primary acceptor by ferricyanide.

6. (6) The dark reduction of the primary acceptor by sodium dithionite also became faster at low pH.

From these results it is concluded that at low pH the primary acceptor of System II becomes accessible to the added hydrophilic reagents even in the presence of 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea.  相似文献   


17.
Fluorescence time curves (Kautsky effect) were studied in anaerobic Scenedesmus obliquus, with an apparatus capable of simultaneous recording of O2 exchange, and far-red actinic illumination. Results, as interpreted in terms of electron transport reactions, suggest: In the course of becoming anaerobic, fluorescence induction undergoes a series of changes, indicating at least three different effects of the absence of O2 on electron transport. (1) Immediately on removal of O2, once the pool of intermediates between the two photo-systems is reduced by light reaction II, electron flow stops, resulting in high fluorescence yield and a cessation of O2 evolution. O2 appears to regulate linear electron flow and cyclic feedback of electrons to the intermediate pool. (2) An endogenous reductant formed anaerobically reduces the System II acceptors in the dark. The time course of this reduction is at least biphasic, indicative of inhomogeneity of the primary acceptor pool. Prolonged dark anaerobic treatment induces maximal initial fluorescence which decays rapidly in light and with a System I action spectrum. (3) Anaerobic treatment eventually results in deactivation of the oxidizing side of System II, limiting System II even when the acceptors are oxidized by System I pre-illumination.  相似文献   

18.
Alpha-, beta- and gamma-cyclodextrins are cyclic hexamers, heptamers, and octamers of glucose, respectively, and thus are hydrophilic; nevertheless, they have the ability to solubilize lipids through the formation of molecular inclusion complexes. The volume of lipophilic space involved in the solubilization process increases with the number of glucose units in the cyclodextrin molecule and, consequently, cyclodextrins were found to have different effects on human erythrocytes: (a) in the induction of shape change from discocyte to spherocyte the potency was observed to be alpha greater than gamma, but with beta-cyclodextrin hemolysis occurred before the change was complete; (b) in the increase of fluorescence intensity of 1-anilinonaphthalene-8-sulfonate in cyclodextrin-pretreated membranes, the observed potency was beta much greater than gamma greater than alpha; (c) in the release of potassium and hemoglobin, the potency was beta greater than alpha greater than gamma. The potencies of cyclodextrin for solubilizing various components of erythrocytes were alpha greater than beta much greater than gamma for phospholipids, beta much greater than gamma greater than alpha for cholesterol and beta much greater than gamma greater than alpha for proteins. The solubilization potencies were derived from concentration/final-effect curves. The above processes occurred without entry of solubilizer into the membrane, since (a) beta-[14C]cyclodextrin did not bind to erythrocytes and (b) cyclodextrins did not enter the cholesterol monolayer. A study of the [3H]cholesterol in erythrocytes indicated that beta-cyclodextrin extracted this lipid from membrane into a new compartment located in the aqueous phase which could equilibrate rapidly with additional erythrocytes. Therefore, the effects of cyclodextrins differ from those of detergents which first incorporate themselves into membranes then extract membrane components into supramolecular micelles.  相似文献   

19.
The three most widely expressed subunits of the GABAA receptor are alpha(1), beta(2), and gamma(2) subunits, and the major isoform in the human brain is a pentameric receptor composed of 2alpha(1)2beta(2)1gamma(2). Previously, we overexpressed the extracellular domain Q28-R248 of GABAA receptor alpha(1) subunit. In the present study, the homologous extracellular domains Q25-G243 of GABAA receptor beta(2) subunit and Q40-G273 of gamma(2) subunit were also obtained through overexpression in Escherichia coli. Successful production of recombinant beta(2) and gamma(2) subunit receptor protein domains facilitates the comparison of structural and functional properties of the three subunits. To this end, the secondary structures of the three fragments were measured using CD spectroscopy and the beta-strand contents calculated to be >30%, indicating a beta-rich structure for all three fragments. In addition, the benzodiazepine (BZ)-binding affinity of the recombinant fragments were measured using fluorescence polarization to be 2.16 microM, 3.63 microM, and 1.34 microM for the alpha(1), beta(2), and gamma(2) subunit fragments, respectively, indicating that all three homomeric assemblies, including that of the beta(2) subunit, generally not associated with BZ binding, can bind BZ in the micromolar range. The finding that the BZ binding affinity of these recombinant domains was highest for the gamma(2) subunit and lowest for the beta(2) subunit is consistent with results from previous binding studies using hetero-oligomeric receptors. The present results exemplify the effective approach to characterize and compare the three major subunits of the GABAA receptor, for two of which the overexpression in E. coli is reported for the first time.  相似文献   

20.
Members of the phospholipase C-beta (PLC-beta) family of proteins are activated either by G alpha or G beta gamma subunits of heterotrimeric G proteins. To define specific regions of PLC-beta 3 that are involved in binding and activation by G beta gamma, a series of fragments of PLC-beta 3 as glutathione-S-transferase (GST) fusion proteins were produced. A fragment encompassing the N-terminal pleckstrin homology (PH) domain and downstream sequence (GST-N) bound to G protein beta 1 gamma 2 in an in vitro binding assay, and binding was inhibited by G protein alpha subunit, G alpha i1. This PLC-beta 3 fragment also inhibited G beta gamma-stimulated PLC-beta activity in a reconstitution system, while having no significant effect on G alpha q-stimulated PLC-beta 3 activity. The N-terminal G beta gamma binding region was delineated further to the first 180 amino acids, and the sequence Asn150-Ser180, just distal to the PH domain, was found to be required for the interaction. Mutation of basic residues 154Arg, 155Lys, 159Lys, and 161Lys to Glu within this region reduced G beta gamma binding affinity and specifically reduced the EC50 for G beta gamma-dependent activation of the mutant enzyme 3-fold. Basal activity and G alpha q-dependent activation of the enzyme were unaffected by the mutations. While these basic residues may not directly mediate the interaction with G beta gamma, the data provide evidence for an N-terminal G beta gamma binding region of PLC-beta 3 that is involved in activation of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号