首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants of Taraxacum sellandii Dahlst., a microspecies adapted to fertile, and Taraxacum nordstedtii Dahlst., adapted to infertile soils, were cultured hydroponically, either on a complete nutrient solution or on one deprived of nitrogen, phosphorus, or potassium ions. For all four treatments, the growth and internal mineral concentration of the plants was monitored. For plants cultured on a complete nutrient solution, the uptake rates of nitrate, phosphate, and potassium ions were determined. Luxury consumption of the three macronutrients was computed as the excess of ion absorption over the ion uptake rates minimally required to sustain maximum growth. In these calculations the critical N, P, or K+ concentrations, earlier derived, were used as parameters describing the mineral status minimally required to allow maximum growth. Efficiency in use of the three macroelements at various levels of mineral accumulation was also computed. Finally, the response to phosphate starvation as related to phosphate uptake capacity and the accumulation of P was investigated.
The physiological properies investigated provide a causal background for the superior adaptation of T. nordstedtii as compared to T. sellandii to infertile sites. Taraxacum nordstedtii had a higher relative luxury consumption of NO3, H2PO-4, and K+, a higher efficiency in N and P use at N– and (severe) P-deficiency, respectively; and, after phosphate starvation, a relatively high preservation of phosphate uptake capacity and an enlargement of P storage. In combination with the low potential growth, luxury consumption will be particularly effective in T. nordstedtii in preventing or minimizing mineral deficiency. The distribution of minerals between cytoplasm and vacuoles as a factor in mineral use efficiency is discussed.  相似文献   

2.
The two microspecies were Taraxacum sellandii Dahlst., which usually occurs in heavily fertilized grasslands, and Taraxacum nordstedtii Dahlst., which on the whole is restricted to undisturbed and mineral-poor habitats. Growth response curves were established, depicting the relative yield of (whole) plant tissue water and the internal K+ concentration (on a whole plant basis). The critical K+ concentration, i.e. the lowest [K+]i associated with maximal growth, was derived from the response curve. T. nordstedtii , the microspecies with the low maximal growth, showed a distinctly lower critical K+ concentration than T. sellandii. A relationship between growth potential and critical K+ concentration is proposed. Responses to a declining [K+]i differed between the two microspecies. The roots of T. nordstedtii stopped functioning as a sink for inulin, and mobilized additional carbohydrates for maintaining osmotic potential and growth. The productive strategy of the fast-growing T. sellantlii is lacking such a mechanism to buffer effects of a declining [K+]i.
Various changes were noted as regards the internal concentrations of other inorganic ions, measured as a function of [K+]i, With declining [K+]i, internal NO-3 decreased considerably in shoot and roots, especially in T. nordstedtii , while Mg2+ accumulated, especially in the roots of T. sellandii. The interactions between growth potential and the accumulation of inorganic ions are discussed.  相似文献   

3.
Of the two Taraxacum microspecies used. Taraxacum sellandii Dahlst. usually occurs in grasslands with a high nutrient level; Taraxacum nordstedtii Dahlst. is generally restricted to undisturbed and mineral-poor habitats. Growth response curves for internal N and P were established, based on relative yield of (whole) plant tissue water and (whole plant) internal mineral concentration on a tissue water basis. Critical nutrient concentrations of N and P were determined from the response curves derived. For both macroelements, T. nordstedtii showed lower critical nutrient concentrations. The difference in critical N concentrations coincided with differences in internal NO3-3 concentrations between the microspecies. Finally, we discuss the use of tissue water as a (whole) plant growth parameter and internal mineral concentration on tissue water basis as a parameter describing the mineral status.  相似文献   

4.
Photosynthetic CO2-fixation, chlorophyll content, growth rate and nitrate reductase activity were used to examine the influence of NH+4-N and NO3-N on Sphagnum magellanicum cultivated under defined conditions in phytotrons. NO3-concentrations up to 322 μ M were found to be favourable. Increased NH+4 concentrations, however, resulted in growth inhibition and decreased chlorophyll content at concentrations ≧ 255 μ M ; e.g. 600 μ M NH+4 caused a 20% reduction of nitrate reductase activity and net photosynthesis. For raised bog Sphagna an improved standard nutrient solution is proposed with the following ion concentrations (μ M ): 55 Na+; 17 K+; 95 NH+4; 22 Ca2+; 22 Mg2+; 2 Fe3+; 20 Cl; 100 NO3; 57 SO2-4; 7.4 H2PO4; trace elements: A-Z solution (Hoagland) 50 μl 1000 ml−1; pH 5.8.  相似文献   

5.
The immediate and posteffects of various concentrations of NaNO2 on ion uptake of wheat ( Triticum aestivum L. cv. GK Öthalom) seedlings were studied at different pH values. Without pretreatment, the higher the concentration of NaNO2 the greater was the decrease in uptake of K+ into the roots, both at pH 4 and pH 6. At pH 6 but not at pH 4 the reverse was true when the seedlings were pretreated with NaNO2. Due to the high Na+ content of the roots, an effect of Na+ in this process cannot be excluded. Nitrite was taken up by the roots more rapidly than nitrate. Nitrite at 0.1 m M in the medium induced the development of an uptake system for both NO2 and NO3 in wheat roots. At higher concentrations pretreatment with NO2 decreased NO3 uptake by the roots, but NO3 did not inhibit the uptake of NO2. The toxic effect of NO2 was strongly pH dependent. Lower pH of the external solution led to an increased inhibition by NO2 of both ion uptake and growth of seedlings. The inhibitory effect of NO2 differed considerably for roots and shoots. The roots and especially the root hairs were particularly sensitive to NO2 treatment.  相似文献   

6.
Abstract The interactions occuring between populations of a nitrate-respiring Vibrio sp. and autotrophic nitrifying bacteria belonging to the genera Nitrosomonas and Nitrobacter have been investigated in a compound bi-directional flow diffusion chemostat at a dilution rate of 0.025 h−1 and a temperature of 25°C. When grown under NO3 limitation, the Vibrio sp. produced NH+4 as the principal end-product of nitrate respiration, and there was a corresponding significant increase in cell numbers of the Nitrosomonas sp. population, which derived energy by the oxidation of NH+4 to NO2. Nitrite in turn was used by the Nitrobacter sp. population as an energy source with the concomitant regeneration of NO3. Under NO3 excess growth conditions the Vibrio sp. produced NO2 rather than NH+4 as the major product of NO3 dissimilation, and growth of the Nitrobacter population was stimulated as increased quantities of NO2 became available. In contrast, the Nitrosomonas sp. population declined sharply as the energy source NH+4 became limiting. These data demonstrate that defined mixed populations of obligately aerobic nitrifying bacteria and facultatively anaerobic nitrate respiring bacteria can co-exist for extended time periods and operate an internal nitrogen cycle which is energetically beneficial to both populations.  相似文献   

7.
Addition of NO3 rapidly induced senescence of root nodules in alfalfa ( Medicago sativa L. cv. Aragon). Loss of nodule dry matter began at the lowest NO3 concentration (10 m M ) but degradation of bacteroid proteins was only detected when nodules were supplied with NO3 concentrations above 20 m M .
Bacteroids from Rhizobium meliloti contained high specific activities of nitrate reductase (NR) and nitrite reductase (NiR). Both enzymes were presumably substrate-induced although substantial enzyme activities were present in the absence of NO3 Typical specific activities for soluble NR and NiR of bacteroids under NO3 free conditions were 1.2 and 1.4 μmol (mg protein)−1h−1, respectively. In the presence of NO3, the specific activity of NR was considerably greater than that of NiR, thus causing NO2 accumulation in bacteroids. Nitrite levels in the bacteroids were linearly correlated with specific activities of NR and NiR, indicating that NO2 is formed by bacteroid NR and that this NO2 in turn, induces bacteroid NiR. Accumulation of NO2 within bacteroids also indicates that NO2 inhibits nodule activity after feeding plants with NO3  相似文献   

8.
The effect of the nitrogen source on carbohydrate and protein contents and on several enzymatic activities involved in the carbon and nitrogen metabolism was studied in Anabaena variabilis ATCC 29413 cells grown under a constant supply of either N, NO3 or NH+4 at different concentrations. An enhancement of protein content accompanied by a parallel decrease of carbohydrates was observed with increasing NO3 or NH+4 concentrations in the medium. In cultures containing 0.1 m M NO3 or 0.1 m M NH+4 nitrogenase (EC 1.18.6.1) activity was 74 and 66%, respectively, of that found in N2-grown cells. This activity was still present with 1 m M NO3 or 1 m M NH+4 in the medium and even with 10 m M NO3, but it was completely inhibited by 5 m M NH+4. Ferredoxin-nitrate reductase (EC 1.7.7.2) activity was detected only in NO3 grown cells and simultaneously with nitrogenase activity. Increasing concentrations of combined nitrogen in the medium, especially NH+4, promoted a concomitant decline of glutamine synthetase (EC 6.3.1.2), NADP+-isocitrate dehydrogenase (EC 1.1.1.42), and NAD+-malate dehydrogenase (EC 1.1.1.37) activities, suggesting that these enzymes play an important role in the regulation of carbon-nitrogen metabolism in cyanobacteria.  相似文献   

9.
The uptake of K+ ion was studied in the roots of wheat ( Triuicum aestivum L. cv. GK Szeged) and cucumber ( Cucumis sativus L. cv. Budai csemege) seedlings grown in nutrient solution under nitrogen and sulfate stress conditions. Seedlings pretreated with 1 or 10 m M NaNO3, absorbed more K+ than those treated with 0.1 m M NaNO3. However, the posteffect of NaNO3 was considerably influenced by the Na2SO4, treatment. The results suggest that, at least partly, a feed-back regulation of K+ uptake may occur. However, due to the high Na+ contents of the roots, a Na+ effect in this process cannot be excluded. The growth and dry matter yields of the roots and shoots were strongly influenced by the SO2−/4 and NO/3 supply of the plants. Appreciable differences were experienced between wheat and cucumber seedlings. The optimum SO2−/4 concentration of the growth solution for maximal growth varied considerably between the species, and was also different for the roots and the shoots in a given species.  相似文献   

10.
Abstract The utilization of NO3, NO2 and NH+4 was studied in whole filaments and isolated heterocysts of Anabaena 7120 (ATCC27893). NO3- and NO2-uptake were detectable in whole filaments but not in heterocysts, whereas NH+4-uptake was detectable in both. Activity of NO3-reductase was present in cell-free extracts of whole filaments but not of heterocysts, whereas activities of NO2-reductase and glutamine synthetase were present in both. NO3-uptake and reductase activities could not be induced in heterocysts even after prolonged incubation in NO3 medium. It is suggested that NO3-metabolism in heterocysts is impaired due to a selective and irreversible loss of NO3-uptake and reductase systems resulting in the abolition of competition for molybdenum cofactor (Mo-Co) and reductant between nitrogenase and NO3-reductase, and an increase in glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase levels.  相似文献   

11.
Abstract. Net NO3 uptake by NO3 deficient Chara cells was used to calculate [NO3]c assuming that the cytoplasm occupies 10% total volume and that nitrate reduction and storage are negligible (i.e. maximum [NO3]c was calculated). A linear relationship was found between NO3 efflux and [NO3]c. There was an initial burst of NO3 efflux when NH+4 was added, followed by a slower efflux rate which matched influx rate such that net NO3 uptake was zero. Over 50% of NO3 that had been taken up in 2 h was lost within the first 5 min of NH+4 addition. The Nernst equation was used to predict the direction of the electrochemical driving force for NO3 entry. Under the experimental conditions used NO3 efflux is actively transported. The differential involvement of both NO3 influx and NO3 efflux in the regulation of NO3 uptake is discussed and a model is proposed to account for these results which envisages discrete NO3 influx and NO3 efflux carriers.  相似文献   

12.
Two-month-old jack pine ( Pinus banksiana Lamb.) seedlings were placed in a greenhouse where both nitrogen source and light level were varied. After 4 months, whole seedling biomass, leaf biomass and relative growth rate were greatest in seedlings grown with NH+4/NO/NO3-N and full light (FL) and least in seedlings grown with NO 3-N and low light (LL). NO 3-seedlings grown under full light and NH+4/NO3-seedlings grown under low light were approximately equal. This indicates that the extra carbon costs of assimilating only NO3-N were similar to the reduction of carbon fixation resulting from a 50% decrease in photon flux density. Percentage and total nitrogen content of needles were greater in seedlings grown under low light independent of nitrogen fertilization. Percentage and total nitrogen content of roots were higher under low light and lower when fertilized with NO3.
Nitrate reductase (NR) activity was higher in roots than in needles, while glutamine synthetase (GS) activity was higher in needles than in roots. Low light resulted in decreased NR activity (mg N)−1 in needles, but not in roots. However, no nitrate was detected in the needles in any treatment. GS activity, on the other hand, was greater under low light in both needles and roots. GS activity in needles is most likely involved with the reassimilation rather than the initial assimilation of ammonium. Some implications of these shifts in enzymatic activity for ecological phenomena in forests are discussed.  相似文献   

13.
Inhibition of electron transport through photosystem II (PS II) by formate (HCO2) or nitrite (NO2) in the presence or absence of chloride ions was studied. The inhibition induced by HCO2 or NO2 is overcome by HCO3 more in the presence, than in the absence of Cl. The data on electron transport are supported by chlorophyll a fluorescence measurements. In experiments. In experiments in which water oxidation was blocked. Cl was found to facilitate electron transport between bound quinone A (QA) and the plastoquinone (PQ) pool. It can thus be concluded that in addition to the well known site of action of Cl on water oxidation, another site of Cl action is between QA and the PQ pool.  相似文献   

14.
Plasmalemma was isolated from the roots of 2-week-old cucumber plants ( Cucumis sativus L. cv. Rhensk druv) by utilizing an aqueous polymer two-phase system with 6.5%:6.5% (w/w) Dextran T500 and polyethylene glycol (PEG) 3350 at pH 7.8. The plasmalemma fraction comprised ca 6% of the membrane proteins contained in the microsomal fraction. The specific activity of the plasma membrane marker enzyme (K+, Mg2+-ATPase) was 14- to 17-times higher in the upper (PEG-rich) than in the lower (Dextran-rich) phase, and the reverse was true for marker enzymes (cytochrome c oxidase, EC 1.9.3.1, and antimycin A-resistant NADPH cytochrome c reductase) of intracellular membranes. The ATPase was highly stimulated by the addition of detergent (Triton X-100), so that the isolated plasmalemma vesicles appear tightly sealed and in a right-side-out orientation. Further characterization of the ATPase activities showed a pH optimum at 6.0 in the presence of Mg2+. This optimum was shifted to pH 5.8 after addition of K+. K+ stimulated the ATPase activity below pH 6 and inhibited above pH 6. The ATPase activity was specific for ATP and sensitive to N,N-dicyclohexylcarbodiimide and sodium vanadate, with K+ enhancing the vanadate inhibition. The enzyme was insensitive to sodium molybdate, NO3, azide and oligomycin. No Ca2+-ATPase was detected, and even as little as 0.05 m M Ca2+ inhibited the Mg2+-ATPase activity.  相似文献   

15.
Suspension-cultured rose ( Rosa damascena Mill. cv. Gloire de Guilan) cells irradiated with UV-C (254 nm. 558 J m−2) showed a transient production of H2O2 as measured by chemiluminescence of luminol in the presence of peroxidase (EC 1.1 1.1.7). The peak concentration of H2O2, which occurred at about 60–90 min after irradiation, was 8–9 μ M . The time course for the appearance of H2O2 matched that for UV–induced K+ efflux. Treatments that inhibited the UV-induced efflux of K+, including heat and overnight incubation with cycloheximide and diethylmaleate, also inhibited the appearance of H2O2. The converse was not always true, since catalase (EC 1.11.1.6. and salicylhydroxamic acid, which inhibited luminescence, did not stop K+ efflux. We conclude that H2O2 synthesis depends on K+ efflux. Because H2.O2 in the extracellular space is required for lignin synthesis in many plant tissues, we suggest that the UV–stimulated production of H2O2 is an integral part of a defensive lignin synthesis.  相似文献   

16.
The role of a recently identified K+ATP channel in preventing H2O2 formation was examined in isolated pea stem mitochondria. The succinate-dependent H2O2 formation was progressively inhibited, when mitochondria were resuspended in media containing increasing concentration of KCl (from 0.05 to 0.15  M ). This inhibition was linked to a partial dissipation of the transmembrane electrical potential (ΔΨ) induced by KCl. Conversely, the malate plus glutamate-dependent H2O2 formation was not influenced. The succinate-sustained H2O2 generation was also unaffected by nigericin (a H+/K+ exchanger), but completely prevented by valinomycin (a K+ ionophore). In addition, cyclosporin A (a K+ATP channel opener) inhibited this H2O2 formation, while ATP (an inhibitor of the channel opening) slightly increased it. The inhibitory effect of ATP was strongly stimulated in the presence of atractylate (an inhibitor of the adenine nucleotide translocase), thus suggesting that the receptor for ATP on the K+ channel faces the intermembrane space. Finally, the succinate-dependent H2O2 formation was partially prevented by phenylarsine oxide (a thiol oxidant).  相似文献   

17.
The NO3-triggered induction of nitrate reductase (NR; EC 1.6.6.2) in the bryophyte Sphagnum magellanicum Brid. has been studied, using in vivo and in vitro assays as well as immunological methods. The time-course of induction was triphasic with maximal NR activity after 6–8 h. Results obtained from Western blots show that NR is synthesized de novo after NO3 application. The inhibitory effect of cycloheximide on NR induction corroborated this conclusion. Light enhanced the NO3-triggered NR induction. The enzyme activity, measured in vivo, increased more than the in vitro activity. No evidence for phytochrome control of NR was found. Nitrate uptake, in contrast to NR activity, showed no lag period after NO3 application and, under the experimental conditions used, was not rate limiting for NR induction. Neither light nor a NO3 pretreatment significantly affected NO3 uptake.  相似文献   

18.
Nitrogen fixation and nitrate reduction in the root nodules of legumes   总被引:1,自引:0,他引:1  
Published data on, and hypotheses regarding the effect of NO3 on functioning of legume root nodules are reviewed. It is concluded that a short-term reversible effect of NO3 may act via an increased resistance to O2 diffusion in nodules; this is coupled to decreased bacteroid respiration. For longer exposures to NO3 nodule activity is irreversibly lost, but how this relates to carbohydrate deprivation or NO-2 accumulation is unclear. Complicating factors include denitrification reactions and the interaction of NO2 with leghaemoglobin.  相似文献   

19.
Assimilation of N by heterotrophic soil microbial biomass is associated with decomposition of organic matter in the soil. The form of N assimilated can be either low molecular weight organic N released from the breakdown of organic matter (direct assimilation), or NH+4 and NO3 from the soil inorganic N pool, into which mineralized organic N is released (mineralization immobilization turnover). The kinetics of C and N turnover in soil is quantifiable by means of computer simulation models. NCSOIL was constructed to represent the two assimilation schemes. The rate of N assimilation depends on the rate of C assimilation and microbial C/N ratio, thereby rendering it independent of the assimilation scheme. However, if any of the N forms is labeled, a different amount of labeled N assimilation will be simulated by the different schemes. Experimental data on inorganic N and 15N and on organic 15N dynamics in soils incubated with 15N added as NH+4 or organic N were compared with data simulated by different model schemes. Direct assimilation could not account for the amount of 15N assimilated in any of the experimental treatments. The best fit of the model to experimental data was obtained for the mineralization immobilization turnover scheme when both NH+4 and NO3 were assimilated, in proportion to their concentration in the soil.  相似文献   

20.
The influence of salinity on the activity of nitrate reductase (NR, EC 1.6.6.1) and the level of the molybdenum cofactor (MoCo) as affected by the source and concentration of nitrogen was studied in annual ryegrass ( Lolium multiflorum cv. Westerwoldicum). Plants grown in sand were irrigated with nutrient solution with an electrical conductivity of 2 or 11.2 dS m−1, containing nitrogen (0.5 or 4.5 m M ) in the form of NH4NO3 or NaNO3 Salinity-treated (11.2 dS m−1) plants produced less biomass and more organic nitrogen while accumulating more NO3 than control plants. Increased nitrogen concentration in the irrigation solutions enhanced biomass and organic nitrogen production as well as NO3 accumulation irrespective of the electrical conductivity. Salinity inhibited shoot growth and increased shoot NR activity of plants receiving 4.5 m M NH4NO3 or NaNO3. Similar effects were observed in roots of plants grown in 4.5 m M NaNO3. Nitrate added to a complementation medium containing ryegrass MoCo and the NR apoprotein of Neurospora crassa mutant nit-1 stimulated the activity of the reconstituted NR (NADPH-nitrate reductase, EC 1.6.6.3). Increased salinity and nitrogen in the nutrient solutions caused an increase of MoCo content in roots and shoots. Similar results were observed for NR activity in the shoots. The increase of MoCo in response to salinity was more pronounced than that of NR, especially in the roots. We conclude that the pool size of MoCo in ryegrass is not constant, but varies in response to nutritional and environmental factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号