首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We studied the effects of an electromagnetic field (EMF) as emitted by a 902 MHz mobile phone on human short term memory. This study was a replication with methodological improvements to our previous study. The improvements included multi-centre testing and a double blind design. A total of 64 subjects (32 men) in two independent laboratories performed a short term memory task (n-back) which poses a varying memory load (0-3 items) on the subjects' memory. They performed the task twice, once each under EMF and sham exposure. Reaction times (RTs) and accuracy of the responses were recorded. The order of exposure and memory load conditions were counterbalanced across subjects and gender. There were no statistically significant differences in performance between the two laboratories. We could not replicate our previous results: the EMF had no effect on RTs or on the accuracy of the subjects' answers. The inability to replicate previous findings could have been caused by lack of actual EMF effects or the magnitude of effects being at the sensitivity threshold of the test used.  相似文献   

2.
The effects of electromagnetic fields (EMF) emitted by cellular phones on the event related desynchronization/synchronization (ERD/ERS) of the 4-6, 6-8, 8-10, and 10-12 Hz electroencephalogram (EEG) frequency bands were studied in 24 normal subjects performing an auditory memory task. This study was a systematic replication of our previous work. In the present double blind study, all subjects performed the memory task both with and without exposure to a digital 902 MHz field in a counterbalanced order. We were not able to replicate the findings from our earlier study. All eight of the significant changes in our earlier study were not significant in the present double blind replication. Also, the effect of EMF on the number of incorrect answers in the memory task was inconsistent. We previously reported no significant effect of EMF exposure on the number of incorrect answers in the memory task, but a significant increase in errors was observed in the present study. We conclude that EMF effects on the EEG and on the performance on memory tasks may be variable and not easily replicable for unknown reasons.  相似文献   

3.
The possible effects of continuous wave (CW) and pulse modulated (PM) electromagnetic field (EMF) on human cognition was studied in 36 healthy male subjects. They performed cognitive tasks while exposed to CW, PM, and sham EMF. The subjects performed the same tasks twice during each session; once with left-sided and once with right-sided exposure. The EMF conditions were spread across three testing sessions, each session separated by 1 week. The exposed hemisphere, EMF condition, and test order were counterbalanced over all subjects. We employed a double-blind design: both the subject and the experimenter were unaware of the EMF condition. The EMF was created with a signal generator connected via amplifier to a dummy phone antenna, creating a power output distribution similar to the original commercial mobile phone. The EMF had either a continuous power output of 0.25 W (CW) or pulsed power output with a mean of 0.25 W. An additional control group of 16 healthy male volunteers performed the same tasks without any exposure equipment to see if mere presence of the equipment could have affected the subjects' performance. No effects were found between the different EMF conditions, separate hemisphere exposures, or between the control and experimental group. In conclusion, the current results indicate that normal mobile phones have no discernible effect on human cognitive function as measured by behavioral tests.  相似文献   

4.
The present study examined the effects of exposure to Electromagnetic Radiation emitted by a standard GSM phone at 890 MHz on human cognitive functions. This study attempted to establish a connection between the exposure of a specific area of the brain and the cognitive functions associated with that area. A total of 36 healthy right-handed male subjects performed four distinct cognitive tasks: spatial item recognition, verbal item recognition, and two spatial compatibility tasks. Tasks were chosen according to the brain side they are assumed to activate. All subjects performed the tasks under three exposure conditions: right side, left side, and sham exposure. The phones were controlled by a base station simulator and operated at their full power. We have recorded the reaction times (RTs) and accuracy of the responses. The experiments consisted of two sections, of 1 h each, with a 5 min break in between. The tasks and the exposure regimes were counterbalanced. The results indicated that the exposure of the left side of the brain slows down the left-hand response time, in the second-later-part of the experiment. This effect was apparent in three of the four tasks, and was highly significant in only one of the tests. The exposure intensity and its duration exceeded the common exposure of cellular phone users.  相似文献   

5.
The influence of electromagnetic fields (EMF) emitted by cellular phones on preparatory slow brain potentials (SP) was studied in two different experimental tasks: In the first, healthy male human subjects had to perform simple self-paced finger movements to elicit a Bereitschaftspotential; in the second, they performed a complex and cognitive demanding visual monitoring task (VMT). Both tasks were performed with and without EMF exposure in counterbalanced order. Whereas subjects' performance did not differ between the EMF exposure conditions, SP parameters were influenced by EMF in the VMT: EMF exposure effected a significant decrease of SPs at central and temporo-parieto-occipital brain regions, but not at the frontal one. In the simple finger movement task, EMF did not affect the Bereitschaftspotential. Bioelectromagnetics 19:384–387, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
The aim of the current double-blind studies was to partially replicate the studies by Krause et al. [2000ab, 2004] and to further investigate the possible effects of electromagnetic fields (EMF) emitted by mobile phones (MP) on the event-related desynchronisation/synchronisation (ERD/ERS) EEG (electroencephalogram) responses during cognitive processing. Two groups, both consisting of 36 male participants, were recruited. One group performed an auditory memory task and the other performed a visual working memory task in six exposure conditions: SHAM (no EMF), CW (continuous wave EMF) and PM (pulse modulated EMF) during both left- and right-side exposure, while the EEG was recorded. In line with our previous studies, we observed that the exposure to EMF had modest effects on brain oscillatory responses in the alpha frequency range ( approximately 8-12 Hz) and had no effects on the behavioural measures. The effects on the EEG were, however, varying, unsystematic and inconsistent with previous reports. We conclude that the effects of EMF on brain oscillatory responses may be subtle, variable and difficult to replicate for unknown reasons.  相似文献   

7.
Few studies have investigated physiologic and cognitive effects of "long-term" electromagnetic field (EMF) exposure in humans or animals. Our recent studies have provided initial insight into the long-term impact of adulthood EMF exposure (GSM, pulsed/modulated, 918 MHz, 0.25-1.05 W/kg) by showing 6+ months of daily EMF treatment protects against or reverses cognitive impairment in Alzheimer's transgenic (Tg) mice, while even having cognitive benefit to normal mice. Mechanistically, EMF-induced cognitive benefits involve suppression of brain β-amyloid (Aβ) aggregation/deposition in Tg mice and brain mitochondrial enhancement in both Tg and normal mice. The present study extends this work by showing that daily EMF treatment given to very old (21-27 month) Tg mice over a 2-month period reverses their very advanced brain Aβ aggregation/deposition. These very old Tg mice and their normal littermates together showed an increase in general memory function in the Y-maze task, although not in more complex tasks. Measurement of both body and brain temperature at intervals during the 2-month EMF treatment, as well as in a separate group of Tg mice during a 12-day treatment period, revealed no appreciable increases in brain temperature (and no/slight increases in body temperature) during EMF "ON" periods. Thus, the neuropathologic/cognitive benefits of EMF treatment occur without brain hyperthermia. Finally, regional cerebral blood flow in cerebral cortex was determined to be reduced in both Tg and normal mice after 2 months of EMF treatment, most probably through cerebrovascular constriction induced by freed/disaggregated Aβ (Tg mice) and slight body hyperthermia during "ON" periods. These results demonstrate that long-term EMF treatment can provide general cognitive benefit to very old Alzheimer's Tg mice and normal mice, as well as reversal of advanced Aβ neuropathology in Tg mice without brain heating. Results further underscore the potential for EMF treatment against AD.  相似文献   

8.
To investigate possible health effects of mobile phone use, we conducted a double-blind, cross-over provocation study to confirm whether subjects with mobile phone related symptoms (MPRS) are more susceptible than control subjects to the effect of electromagnetic fields (EMF) emitted from base stations. We sent questionnaires to 5,000 women and obtained 2,472 valid responses from possible candidates; from these, we recruited 11 subjects with MPRS and 43 controls. There were four EMF exposure conditions, each of which lasted 30 min: continuous, intermittent, and sham exposure with and without noise. Subjects were exposed to EMF of 2.14 GHz, 10 V/m (W-CDMA), in a shielded room to simulate whole-body exposure to EMF from base stations, although the exposure strength we used was higher than that commonly received from base stations. We measured several psychological and cognitive parameters pre- and post-exposure, and monitored autonomic functions. Subjects were asked to report on their perception of EMF and level of discomfort during the experiment. The MPRS group did not differ from the controls in their ability to detect exposure to EMF; nevertheless they consistently experienced more discomfort, regardless of whether or not they were actually exposed to EMF, and despite the lack of significant changes in their autonomic functions. Thus, the two groups did not differ in their responses to real or sham EMF exposure according to any psychological, cognitive or autonomic assessment. In conclusion, we found no evidence of any causal link between hypersensitivity symptoms and exposure to EMF from base stations.  相似文献   

9.
Two experiments were conducted to investigate the automatic processing of emotional facial expressions while performing low or high demand cognitive tasks under unattended conditions. In Experiment 1, 35 subjects performed low (judging the structure of Chinese words) and high (judging the tone of Chinese words) cognitive load tasks while exposed to unattended pictures of fearful, neutral, or happy faces. The results revealed that the reaction time was slower and the performance accuracy was higher while performing the low cognitive load task than while performing the high cognitive load task. Exposure to fearful faces resulted in significantly longer reaction times and lower accuracy than exposure to neutral faces on the low cognitive load task. In Experiment 2, 26 subjects performed the same word judgment tasks and their brain event-related potentials (ERPs) were measured for a period of 800 ms after the onset of the task stimulus. The amplitudes of the early component of ERP around 176 ms (P2) elicited by unattended fearful faces over frontal-central-parietal recording sites was significantly larger than those elicited by unattended neutral faces while performing the word structure judgment task. Together, the findings of the two experiments indicated that unattended fearful faces captured significantly more attention resources than unattended neutral faces on a low cognitive load task, but not on a high cognitive load task. It was concluded that fearful faces could automatically capture attention if residues of attention resources were available under the unattended condition.  相似文献   

10.
The ability of humans to discriminate systolic blood pressure (BP) was investigated in two experiments. In Experiment 1, 14 normal subjects were asked to make estimates of their systolic BP while performing both BP-elevating and BP-lowering tasks. They were given intermittent feedback throughout all 10 45-min sessions. Results indicated significant correlations and small absolute differences between estimated and measured BP for all subjects in almost all sessions. Experiment 2, undertaken 6 months after Experiment 1, assessed whether estimation accuracy by subjects who had available both external and interoceptive cues surpassed that of subjects which access to external cues only. Three subjects from the original group who showed consistently high motivation, and who improved in accuracy across the 10 sessions in the previous experiment, made estimates of BP while performing novel tasks with no feedback. Correlations between estimated and measured BP remained high for 2 of the 3. These results were compared with the accuracy of control subjects (3 for each experimental subject) who were asked to estimate experimental subjects' BP using only the cognitive information available to the experimental subjects. Control subjects also had high correlations between their estimates and the experimental subjects' measured BP but at lower levels than two experimental subjects. These findings are discussed in relation to subjects' possible use of interoceptive information.  相似文献   

11.
Visual and auditory reaction times (RTs) have been reported to decrease during moderate aerobic exercise, and this has been interpreted as reflecting an exercise-induced activation (EIA) of cognitive information processing. In the present study we examined changes in several independent measures of information processing (RT, accuracy, P300 latency and amplitude) during exercise, and their relationship to visual or auditory modalities and to gender. P300 latencies offer independent measures of cognitive speed that are unrelated to motor output, and P300 amplitudes have been used as measures of attentional allocation. Twenty-four healthy college students [mean (SD) age 20 (2) years] performed auditory and visual "oddball" tasks during resting baseline, aerobic exercise, and recovery periods. Consistent with previous studies, both visual and auditory RTs during exercise were significantly shortened compared to control and recovery periods (which did not differ from each other). We now report that, paralleling the RT changes, auditory and visual P300 latencies decreased during exercise, indicating the occurrence of faster cognitive information processing in both sensory modalities. However, both auditory and visual P300 amplitudes decreased during exercise, suggesting diminished attentional resource allocation. In addition, error rates increased during exercise. Taken together, these results suggest that the enhancement of cognitive information processing speed during moderate aerobic exercise, although operating across genders and sensory modalities, is not a global facilitation of cognition, but is accompanied by decreased attention and increased errors.  相似文献   

12.
No effect on cognitive function from daily mobile phone use   总被引:2,自引:0,他引:2  
The increasing use of mobiles phones (MP) has raised the problem of the effects of daily electromagnetic fields (EMF) exposure on human health. To date several studies have been published concerning the effects of acute MP exposure on psychomotor performances. This study investigated the effects of daily exposure to GSM 900 type MP on cognitive function. Fifty-five subjects (27 male and 28 female) were divided into two groups: a group with MP switched on and a group with MP switched off. The two groups were matched according to age, gender, and IQ. This double blind study lasted for 45 days and was divided in three periods: baseline (BLP, 2 days), exposure (EP, 27 days), and recovery (RP, 13 days). Subjects were exposed during EP and sham exposed during RP for 2 h/day, 5 days/week. The neuropsychological test battery composed of 22 tasks screened four neuropsychological categories: information processing, attention capacity, memory function, and executive function. This neuropsychological battery was performed four times on day 2 (BLP), day 15 (EP), day 29 (EP), and day 43 (RP). Our results indicate that daily MP use has no effect on cognitive function after a 13-h rest period.  相似文献   

13.
To investigate the influence of radiofrequency electromagnetic fields (EMFs) of cellular phone GSM signals on human sleep electroencephalographic (EEG) pattern, all-night polysomnographies of 24 healthy male subjects were recorded, both with and without exposure to a circular polarized EMF (900 MHz, pulsed with a frequency of 217 Hz, pulse width 577 μs, power flux density 0.2 W/m2. Suppression of rapid eye movement (REM) sleep as well as a sleep-inducing effect under field exposure did not reach statistical significance, so that previous results indicating alterations of these sleep parameters could not be replicated. Spectral power analysis also did not reveal any alterations of the EEG rhythms during EMF exposure. The failure to confirm our previous results might be due to dose-dependent effects of the EMF on the human sleep profile. Bioelectromagnetics 19:199–202, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
The main goal of this study was to assess the usability of a tablet-computer-based application (EmoCogMeter) in investigating the effects of age on cognitive functions across the lifespan in a sample of 378 healthy subjects (age range 18-89 years). Consistent with previous findings we found an age-related cognitive decline across a wide range of neuropsychological domains (memory, attention, executive functions), thereby proving the usability of our tablet-based application. Regardless of prior computer experience, subjects of all age groups were able to perform the tasks without instruction or feedback from an experimenter. Increased motivation and compliance proved to be beneficial for task performance, thereby potentially increasing the validity of the results. Our promising findings underline the great clinical and practical potential of a tablet-based application for detection and monitoring of cognitive dysfunction.  相似文献   

15.
Aim and method The present university-based outpatient clinic, cross-sectional study assessed cognitive performance in a sample of 137 adults, with the primary objective of determining differences in cognitive performance as a function of gender and hypertension status in a type 2 diabetes cohort.Results Approximately 64% of the sample was 65 years old and younger, and 50 subjects had > 13 years of education. Global mental ability scores were relatively similar by age grouping, and higher-ordered cognitive functioning and reading literacy were strongly correlated, r (98) = 0.62, P < 0.01. Approximately 30% of the sample posted global mental ability scores in the slow learner range on tasks measuring attention, immediate memory and verbal reasoning. Males achieved higher cognitive functioning scores compared to females on multiple mental ability tasks. The presence of hypertension was associated with significantly worse cognitive performance compared to those subjects without hypertension, t = 2.11, P = 0.03. Approximately 57% of the hypertension group was classified as mild cognitive impaired.Conclusion While approximately half of the general population can be expected to demonstrate an average range of performance on cognitive ability measures, such an expectation could be inappropriately generalised to persons diagnosed with type 2 diabetes, even among those who were high school educated.  相似文献   

16.
A double-blind study was conducted to determine between-laboratory variability in the doubly labeled water method for measurement of total energy expenditure in humans, and to compare the accuracy and precision of three widely-used procedures for calculating rates of carbon dioxide production from the original isotope data. Eighteen laboratories from five countries participated in the study. All laboratories were provided with five water standards containing varying amounts of 2H and 18O, and in addition 11 laboratories were provided with urine and dose specimens from one (six laboratories) or two (five laboratories) healthy elderly subjects of normal height and weight undergoing a calorimetric validation of the doubly labeled water method. The data from the five water standards were analyzed to predict between-laboratory variability in the doubly labeled water technique in all laboratories. In addition, data from the subjects were analyzed using the “slope-intercept”, “2-point” and “modified” methods of calculation. The results confirm that the doubly labeled water method can be an accurate technique for the measurement of energy expenditure in adult human subjects in some laboratories. However, there was substantial between-laboratory variability in the results and some laboratories returned physiologically impossible results. There was no significant effect of calculation procedure on the accuracy of the technique in this limited comparison, although the slope-intercept procedure appeared to be more susceptible to analytical error than the other procedures. The isotope standards analyzed by participants in this study will be made available to other investigators on request.  相似文献   

17.
Recent studies have indicated that acute exposure to low level radiofrequency (RF) electromagnetic fields generated by mobile phones affects human cognition. However, the relatively small samples used, in addition to methodological problems, make the outcomes of these studies difficult to interpret. In our study we tested a large sample of volunteers (168) using a series of cognitive tasks apparently sensitive to RF exposure (a simple reaction task, a vigilance task, and a subtraction task). Participants performed those tasks twice, in two different sessions. In one session they were exposed to RFs, with half of subjects exposed to GSM signals and the other half exposed to CW signals, while in the other session they were exposed to sham signals. No significant effects of RF exposure on performance for either GSM or CW were found, independent of whether the phone was positioned on the left or on the right side.  相似文献   

18.
The aim of this study was to gain insight in the prevalence of cognitive impairments among active older drivers and in driving performance of cognitively impaired ones. The study was implemented in the existing Dutch relicensing procedure for older drivers and consisted of three evaluation moments: a medical screening (for all subjects), a neuropsychological assessment and a test-drive (for candidates with cognitive impairments). In total, 2992 drivers were medically evaluated. In 4% of cases indications for impaired cognitive functioning were observed that could be evaluated and confirmed with neuropsychological tests. Eighty subjects performed an on-road test. Of these subjects, 57% were allowed to renew their driver's license, while in the remaining 43% no new licenses or restricted licenses were issued. During the test-drive, slow reactions and attention deficits were the most important causes for impaired fitness to drive.  相似文献   

19.
ABSTRACT

Sleep deprivation impairs performance on cognitive tasks, but it is unclear which cognitive processes it degrades. We administered a semantic matching task with variable stimulus onset asynchrony (SOA) and both speeded and self-paced trial blocks. The task was administered at the baseline and 24 hours later after 30.8 hours of total sleep deprivation (TSD) or matching well-rested control. After sleep deprivation, the 20% slowest response times (RTs) were significantly increased. However, the semantic encoding time component of the RTs remained at baseline level. Thus, the performance impairment induced by sleep deprivation on this task occurred in cognitive processes downstream of semantic encoding.  相似文献   

20.
The precise impact of age-related changes in hormone levels on cognition in men is still unclear due to differing study designs and contradictory findings. This study was undertaken to examine the relationship between endogenous sex hormone levels and cognitive functioning in healthy older men using a comprehensive battery of neuropsychological tests and measurement of serum sex hormone levels. Verbal learning and memory, visual-motor processing, spatial abilities, working memory and attention, and levels of testosterone and estradiol were evaluated in 54 healthy older men. Regression analyses revealed significant curvilinear associations between working memory function and both free and bioavailable testosterone levels, suggesting that an optimal hormone level may exist for maximal performance on tasks of executive/frontal lobe functioning. However, no other relationships were evident between either estradiol or testosterone levels and any of the other cognitive functions evaluated. Hormone assays performed at the end of the study revealed that a considerable portion of the healthy elderly men in our sample met criteria for hypogonadism and suggests that their low hormone levels may have mitigated against discovering other significant hormone-cognition relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号