首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The review deals with transformation of natural and synthetic aromatic compounds by fungi (causative agents of white rot, brown rot, and soft rot, as well as soil filamentous fungi). Major enzyme types involved in the transformation of lignin and aromatic xenobiotics are discussed, with emphasis on activity regulation under the conditions of secondary metabolism and oxidative stress. Coupling of systems degrading polysaccharides and lignin and non-phenolic lignin structures (without the involvement of lignin peroxidase) is analyzed, together with nonenzymatic mechanisms involving lipoperoxide free radicals, cation radicals, quinoid mediators, or transition metal ions. Metabolic pathways resulting in the formation of aromatic and haloaromatic compounds in fungi are described. Consideration is given to the mechanisms of fungal adaptation to aromatic xenobiotics.  相似文献   

2.
Biodegradation of Lignin by White Rot Fungi   总被引:16,自引:0,他引:16  
A review is presented related to the biochemistry of lignocellulose transformation. The biodegradation of wood constituents is currently understood as a multienzymatic process with the mediation of small molecules; therefore, this review will focus on the roles of these small molecular compounds and radicals working in concert with enzymes. Wood rotting basidiomycetous fungi penetrate wood and lead to more easily metabolized, carbohydrate constituents of the complex. Having a versatile machinery of enzymes, the white rot fungi are able to attack directly the "lignin barrier." They also use a multienzyme system including so-called "feed back" type enzymes, allowing for simultaneous transformation of both lignin and cellulose. These enzymes may function separately or cooperatively.  相似文献   

3.
Enzymatic degradation of TNT by aerobic bacteria is mediated by oxygen insensitive (Type 1) or by oxygen sensitive nitroreductases (Type II nitroreductases). Transformation by Type I nitroreductases proceeds through two successive electron reductions either by hydride addition to the aromatic ring or by direct nitro group reduction following a ping pong kinetic mechanism. TNT is reduced to the level of hydroxylaminodinitrotoluenes and aminodinitrotoluenes by pure enzyme preparations without achieving mineralization. Interestingly, database gene and amino acid sequence comparisons of nitroreductases reveal a close relationship among all enzymes involved in TNT transformation. They are all flavoproteins which use NADPH/NADH as electron donor and reduce a wide range of electrophilic xenobiotics. TNT degradation by fungi is initiated by mycelia bound nitroreductases which reduce TNT to hydroxylaminodinitrotoluenes and aminodinitrotoluenes. Further degradation of these products and mineralization is achieved through the activity of oxidative enzymes especially lignin degrading enzymes (lignin and manganese peroxidases).  相似文献   

4.
Biodegradation of 2,4,6-trinitrotoluene (TNT): An enzymatic perspective   总被引:2,自引:0,他引:2  
Enzymatic degradation of TNT by aerobic bacteria is mediated by oxygen insensitive (Type 1) or by oxygen sensitive nitroreductases (Type II nitroreductases). Transformation by Type I nitroreductases proceeds through two successive electron reductions either by hydride addition to the aromatic ring or by direct nitro group reduction following a ping pong kinetic mechanism. TNT is reduced to the level of hydroxylaminodinitrotoluenes and aminodinitrotoluenes by pure enzyme preparations without achieving mineralization. Interestingly, database gene and amino acid sequence comparisons of nitroreductases reveal a close relationship among all enzymes involved in TNT transformation. They are all flavoproteins which use NADPH/NADH as electron donor and reduce a wide range of electrophilic xenobiotics. TNT degradation by fungi is initiated by mycelia bound nitroreductases which reduce TNT to hydroxylaminodinitrotoluenes and aminodinitrotoluenes. Further degradation of these products and mineralization is achieved through the activity of oxidative enzymes especially lignin degrading enzymes (lignin and manganese peroxidases).  相似文献   

5.
Degradation of Lignin-Related Compounds by Actinomycetes   总被引:4,自引:2,他引:2       下载免费PDF全文
Evidence for activity against the lignin fraction of straw was produced for a range of actinomycete strains. Decolorization of the polymeric dye Poly R and oxidation of veratryl alcohol, indicators of ligninolytic activity in white rot fungi, and utilization of fractionated Kraft lignin and low-molecular-weight methoxylated aromatic compounds were the criteria used. The relationships between these activities and the solubilization of native lignin are discussed.  相似文献   

6.
The white rot fungi appear to be unique in their ability to degrade lignin by the secretion of hydrogen peroxide and a family of peroxidases now referred to as lignin peroxidases or simply ligninases. The fact that these enzymes are naturally secreted and seem to be capable of initiating the oxidation of lignin by a free-radical mechanism led to the proposal and demonstration that the white rot fungi are able to degrade a wide variety of normally very recalcitrant environmental pollutants. The mineralization of chemicals byPhanerochaete chrysosporium does seem to be dependent upon the lignin degrading system. Thus it should be possible to at least initiate degradation extracellularly, eliminating the need for absorption of the chemical. The nonspecific nature of the system gives the potential for oxidation of a wide variety of chemicals and even mixtures of chemicals. As the lignin peroxidases are synthesized and secreted in response to nutrient starvation there is no requirement for conditioning of the organism. Mineralization can occur in either a water or soil matrix using very economical agricultural or wood wastes as nutrients. The lignin peroxidases can be purified from the extracellular fluid quite easily by fast protein liquid chromatography. They are somewhat typical peroxidases but also have some unique properties. The oxidation of some xenobiotics has been demonstrated and cooxidation is also a possible mechanism.  相似文献   

7.
The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe3+-reductants. Phenolates were the major compounds with Fe3+-reducing activity in both fungi and displayed Fe3+-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe3+ and H2O2 (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum—a model brown rot fungus—other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.  相似文献   

8.
Lignins are the most abundant aromatic compounds in nature, and their decomposition is essential to the terrestrial carbon cycle. White rot fungi secreting phenol oxidases are assumed to be involved in the initial degradation of native lignin, whereas bacteria play a main role in the mineralization of lignin-derived low-molecular-weight compounds in soil. There are a number of reports on the degradation pathways for lignin-derived aromatic compounds, but their catabolism has not been enzymatically or genetically characterized. Sphingomonas paucimobilis SYK-6 is one of the best-characterized lignin-degrading bacteria. It can grow on a wide variety of lignin-related biaryls and monoaryls, including beta-aryl ether, biphenyl, diarylpropane, and phenylpropane. These compounds are degraded via the protocatechuate (PCA) 4,5-cleavage pathway or multiple 3-O-methylgallate (3MGA) catabolic pathways. In this review, the enzyme systems for beta-aryl ether and biphenyl degradation, O demethylation linked with one carbon metabolism, the PCA 4,5-cleavage pathway, and the multiple 3MGA catabolic pathways in SYK-6 are outlined.  相似文献   

9.
Mechanism of lignin biodegradation caused by basidiomycetes and the history of lignin biodegradation studies were briefly reviewed. The important roles of fungal extracellular ligninolytic enzymes such as lignin and manganese peroxidases (LiP and MnP) were also summarized. These enzymes were unique in their catalytic mechanisms and substrate specificities. Either LiP or MnP system is capable of oxidizing a variety of aromatic substrates via a one-electron oxidation. Extracellular fungal system for aromatic degradation is non-specific, which recently attracts many people working in a bioremediation field. On the other hand, an intracellular degradation system for aromatic compounds is rather specific in the fungal cell. Structurally similar compounds were prepared and metabolized, indicating that an intracellular degradation strategy consisted of the cellular systems for substrate recognition and metabolic response. It was assumed that lignin-degrading fungi might be needed to develop multiple metabolic pathways for a variety of aromatic compounds caused by the action of non-specific ligninolytic enzymes on lignin. Our recent results on chemical stress responsible factors analyzed using mRNA differential display techniques were also mentioned.  相似文献   

10.
Role of fungal peroxidases in biological ligninolysis   总被引:2,自引:0,他引:2  
The degradation of lignin by filamentous fungi is a major route for the recycling of photosynthetically fixed carbon, and the oxidative mechanisms employed have potential biotechnological applications. The lignin peroxidases (LiPs), manganese peroxidases (MnPs), and closely related enzymes of white rot basidiomycetes are likely contributors to fungal ligninolysis. Many of them cleave lignin model compounds to give products consistent with those found in residual white-rotted lignin, and at least some depolymerize synthetic lignins. However, none has yet been shown to delignify intact lignocellulose in vitro. The likely reason is that the peroxidases need to act in concert with small oxidants that can penetrate lignified tissues. Recent progress in the dissolution and NMR spectroscopy of plant cell walls may allow new inferences about the nature of the oxidants involved. Furthermore, increasing knowledge about the genomes of ligninolytic fungi may help us decide whether any of the peroxidases has an essential role.  相似文献   

11.
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.  相似文献   

12.
Evidence for cleavage of lignin by a brown rot basidiomycete   总被引:5,自引:0,他引:5  
Biodegradation by brown-rot fungi is quantitatively one of the most important fates of lignocellulose in nature. It has long been thought that these basidiomycetes do not degrade lignin significantly, and that their activities on this abundant aromatic biopolymer are limited to minor oxidative modifications. Here we have applied a new technique for the complete solubilization of lignocellulose to show, by one-bond 1H-13C correlation nuclear magnetic resonance spectroscopy, that brown rot of spruce wood by Gloeophyllum trabeum resulted in a marked, non-selective depletion of all intermonomer side-chain linkages in the lignin. The resulting polymer retained most of its original aromatic residues and was probably interconnected by new linkages that lack hydrogens and are consequently invisible in one-bond 1H-13C correlation spectra. Additional work is needed to characterize these linkages, but it is already clear that the aromatic polymer remaining after extensive brown rot is no longer recognizable as lignin.  相似文献   

13.
The degradation of lignocellulose and the secretion of extracellular oxidoreductases were investigated in beech-wood (Fagus sylvatica) microcosms using 11 representative fungi of four different ecophysiological and taxonomic groups causing: (1) classic white rot of wood (e.g. Phlebia radiata), (2) 'nonspecific' wood rot (e.g. Agrocybe aegerita), (3) white rot of leaf litter (Stropharia rugosoannulata) or (4) soft rot of wood (e.g. Xylaria polymorpha). All strong white rotters produced manganese-oxidizing peroxidases as the key enzymes of ligninolysis (75-2200 mU g(-1)), whereas lignin peroxidase activity was not detectable in the wood extracts. Interestingly, activities of two recently discovered peroxidases - aromatic peroxygenase and a manganese-independent peroxidase of the DyP-type - were detected in the culture extracts of A. aegerita (up to 125 mU g(-1)) and Auricularia auricula-judae (up to 400 mU g(-1)), respectively. The activity of classic peroxidases correlated to some extent with the removal of wood components (e.g. Klason lignin) and the release of small water-soluble fragments (0.5-1.0 kDa) characterized by aromatic constituents. In contrast, laccase activity correlated with the formation of high-molecular mass fragments (30-200 kDa). The differences observed in the degradation patterns allow to distinguish the rot types caused by basidiomycetes and ascomycetes and may be suitable for following the effects of oxidative key enzymes (ligninolytic peroxidases vs. laccases, role of novel peroxidases) during wood decay.  相似文献   

14.
White rot fungi efficiently degrade lignin, a complex aromatic polymer in wood that is among the most abundant natural materials on earth. These fungi use extracellular oxidative enzymes that are also able to transform related aromatic compounds found in explosive contaminants, pesticides and toxic waste. We have sequenced the 30-million base-pair genome of Phanerochaete chrysosporium strain RP78 using a whole genome shotgun approach. The P. chrysosporium genome reveals an impressive array of genes encoding secreted oxidases, peroxidases and hydrolytic enzymes that cooperate in wood decay. Analysis of the genome data will enhance our understanding of lignocellulose degradation, a pivotal process in the global carbon cycle, and provide a framework for further development of bioprocesses for biomass utilization, organopollutant degradation and fiber bleaching. This genome provides a high quality draft sequence of a basidiomycete, a major fungal phylum that includes important plant and animal pathogens.  相似文献   

15.
ABSTRACT Polycyclic aromatic hydrocarbons (PAHs) are present in products made from creosote, coal tar, and asphalt. When wood pile treated with creosote is placed in soil, PAHs can contaminate it. Creosote has been used for wood preservation in the past and is composed of approximately 85% PAHs and 15% phenolic compounds. PAHs cause harmful effects to humans and the environment because of their carcinogenic and mutagenic properties. White rot fungi can degrade not only lignin, but also recalcitrant organic compounds such as PAHs. Among numerous white rot fungi used in previous studies, four species were selected to degrade PAHs in a liquid medium. From this evaluation of the degradation of PAHs by the four fungal isolates, two species were ultimately selected for the highest rates of removal. Following 2 weeks of incubation with Peniophora incarnata KUC8836, the degradation rates of phenanthrene, fluoranthene, and pyrene were 86.5%, 77.4%, and 82.6%, respectively. Mycoaciella bispora KUC8201 showed the highest degradation rate for anthracene (61.8%). Hence, bioremediation of creosote-contaminated soil with an initial concentration of 229.49 mg kg?1 PAHs was carried out using the two selected fungi because they could simultaneously degrade 13 more PAHs than the comparison species. More importantly, isolates of P. incarnata KUC8836 were discovered as powerful degraders of PAHs by producing laccase and manganese-dependent peroxidase (MnP), with 1.7- and 1.1-fold higher than the comparison species, respectively. Therefore, the white rot fungus may be proposed for the removal of PAHs and xenobiotic compounds in contaminated environments.  相似文献   

16.
The transformations of lignin that occur during its biodegradation are complex and incompletely understood. Certain fungi of the white-rot group, and possibly other fungi and bacteria, completely decompose lignin to carbon dioxide and water. Other fungi and bacteria apparently degrade lignin incompletely. Differences in lignin-degrading abilities observed for different organisms may result from differences in the completeness of their ligninolytic enzyme systems. Not all lignin components may be attacked by a particular organism. Alternatively, different organisms may differ in their basic mechanisms of attack on lignin. The basic pathways of lignin degradation have been elucidated only for certain representatives of the white-and brown-rot fungi. Although it is known that each of the principal structural components of lignin is attacked by other fungi and bacteria, the biochemistry of that attack has not been elucidated. Work with low molecular weight lignin models has provided only limited information on possible pathways of lignin degradation by microorganisms. There is little evidence to suggest a correlation between abilities to degrade single-ring aromatic or lignin model compounds and the ability to degrade polymeric lignin. More evidence has come from analysis of spent culture media for lignin breakdown products and from comparative chemical analyses of sound lignins versus decayed lignin residues. Accumulated evidence with the most thoroughly studied white-rot fungi suggests that with these fungi lignin degradation proceeds by way of extracellular mixed-function oxygenases and dioxygenases, which catalyse demethylations, hydroxylations and ring-fission reactions within a largely intact polymer, concomitant with some release of low molecular weight lignin fragments. There are also apparent relationships between lignin, carbohydrate and nitrogen metabolism for some organisms, but the relationships may vary from one organism to another. Although research is now mostly at a basic level, industrial applications may result from lignin degradation research. Considerable potential exists for the development of bioconversions which might produce low molecular weight chemicals from waste lignins, and thereby reduce our dependence on petroleum as a source of these chemicals. Alternatively, such bioconversions might produce chemically altered forms of polymeric lignin that may be valuable industrially.  相似文献   

17.
The differential biodegradation of phenolic and nonphenolic (C-4-etherified) lignin units in wheat straw treated with the white rot fungi Pleurotus eryngii and Phanerochaete chrysosporium was investigated under solid-state fermentation conditions. Two analytical techniques applied to permethylated straw were used for this purpose, i.e., alkaline CuO degradation and analytical pyrolysis (both followed by gas chromatography-mass spectrometry for product identification). Despite differences in the enzymatic machinery produced, both ligninolytic fungi caused a significant decrease in the relative amount of phenolic lignin units during the degradation process. Nevertheless, no differences in the biodegradation rates of phenolic and etherified cinnamic acids were observed. Changes in lignin composition and cinnamic acid content were also analyzed in the phenolic and nonphenolic lignin moieties. The results obtained are discussed in the context of the enzymatic mechanisms of lignin biodegradation.  相似文献   

18.
White-rot fungi (WRF) are ubiquitous in nature with their natural ability to compete and survive. WRF are the only organisms known to have the ability to degrade and mineralize recalcitrant plant polymer lignin. Their potential to degrade second most abundant carbon reserve material lignin on the earth make them important link in global carbon cycle. WRF degrade lignin by its unique ligninolytic enzymatic machinery including lignin peroxidase, manganese peroxidase, laccase, cellobiose dehydrogenase, H2O2-generating enzymes, etc. The ligninolytic enzymes system is non-specific, extracellular and free radical based that allows them to degrade structurally diverse range of xenobiotic compounds. Lignin peroxidase and manganese peroxidase carry out direct and indirect oxidation as well as reduction of xenobiotic compounds. Indirect reactions involved redox mediators such as veratryl alcohol and Mn2+. Reduction reactions are carried out by carboxyl, superoxide and semiquinone radicals, etc. Methylation is used as detoxification mechanism by WRF. Highly oxidized chemicals are reduced by transmembrane redox potential. Degradation of a number of environmental pollutants by ligninolytic system of white rot fungi is described in the present review.  相似文献   

19.
Many white rot fungi are able to produce de novo veratryl alcohol, which is known to be a cofactor involved in the degradation of lignin, lignin model compounds, and xenobiotic pollutants by lignin peroxidase (LiP). In this study, Mn nutrition was shown to strongly influence the endogenous veratryl alcohol levels in the culture fluids of N-deregulated and N-regulated white rot fungi Bjerkandera sp. strain BOS55 and Phanerochaete chrysosporium BKM-F-1767, respectively. Endogenous veratryl alcohol levels as high as 0.75 mM in Bjerkandera sp. strain BOS55 and 2.5 mM in P. chrysosporium were observed under Mn-deficient conditions. In contrast, veratryl alcohol production was dramatically decreased in cultures supplemented with 33 or 264 (mu)M Mn. The LiP titers, which were highest in Mn-deficient media, were shown to parallel the endogenous veratryl alcohol levels, indicating that these two parameters are related. When exogenous veratryl alcohol was added to Mn-sufficient media, high LiP titers were obtained. Consequently, we concluded that Mn does not regulate LiP expression directly. Instead, LiP titers are enhanced by the increased production of veratryl alcohol. The well-known role of veratryl alcohol in protecting LiP from inactivation by physiological levels of H(inf2)O(inf2) is postulated to be the major reason why LiP is apparently regulated by Mn. Provided that Mn was absent, LiP titers in Bjerkandera sp. strain BOS55 increased with enhanced fungal growth obtained by increasing the nutrient N concentration while veratryl alcohol levels were similar in both N-limited and N-sufficient conditions.  相似文献   

20.
Several analytical methods were compared to evaluate characteristic wood decaying fungi for their potential to depolymerise lignin on spruce wood particles. Wood samples were treated with the white rot fungi Phlebia brevispora, Ceriporiopsis subvermispora, Merulius tremellosus, Pycnoporus sanguineus, Trametes pubescens and with the brown rot fungus Gloeophyllum trabeum. The UV absorbancies of crude ethanol extracts, total extractives content from sequential extraction, ligninolytic enzyme activities, lignin solubilisation and decrease of lignin content were compared. It was shown, that, in early decay stages, UV absorbancies of crude ethanol extracts and total extractives content correlate well with lignin degradation, increase of acid soluble lignin and increased production of ligninolytic enzymes (total peroxidase). Lignin content was determined using FT-NIR spectroscopy as well as by wet-chemical analysis, indicating a very good correlation between the two methods. According to the different analytical methods, the tested fungi can be classified into three categories based on their characteristic behaviour: brown rot, “slow” and “fast” white rot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号