首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: An existing method for measuring acetylcholine (ACh) and choline (Ch) is shown to be useful formeasuring the turnover rate of ACh in mouse brain. Methl-[3H]Ch is injected into mice. They are killed atdifferent times by microwave irradiation and Ch and AChextracted and separated by reverse-phase HPLC. Ch andACh are converted to hydrogen peroxide by a post-column enzyme reaction. Hydrogen peroxide, which isdirectly related to the tissue content of Ch or ACh, isdetermined electrochemically. The fractions that corre-spond to the detector response for Ch and ACh are col-lected for the measurement of radioactivity. In this wayspecific radioactivities of endogenous Ch and ACh areestimated in the same sample. We used the specific ra-dioactivity values determined by this procedure to esti-mate the turnover of ACh for striatum, cerebral cortex, and hippocampus of the mouse.  相似文献   

2.
Abstract: The present experiments were designed to test whether increasing the availability of choline to rat brain increases the rate of acetylcholine synthesis in that organ. The content of choline and acetylcholine and the turnover rate of acetylcholine in striatum, hippocampus, and cerebral cortex were measured following changes in dietary choline, intraperitoneal choline, or intravenous infusion of choline. Increasing plasma choline caused some increase in tissue choline but did not increase acetylcholine levels nor acetylcholine turn-over rate in any of the areas of brain studied. Indeed, in hippocampus, choline decreased the turnover rate of acetylcholine.  相似文献   

3.
Abstract: A simple, rapid method is presented for the determination of acetylcholine (ACh) and choline (Ch) in neuronal tissue using HPLC with electrochemical detection. The method is based on the separation of ACh and Ch by reverse-phase HPLC and mixing the effluent as it emerges from the column with acetylcholinesterase and Ch oxidase, which converts endogenous Ch and Ch produced by the hydrolysis of ACh to betaine and hydrogen peroxide. Production of hydrogen peroxide is continuously monitored electrochemically. The sensitivity of the procedure is 1 pmol for Ch and 2 pmol for ACh. Specificity of the method is based on HPLC, two specific enzymatic reactions, and the detection of hydrogen peroxide.  相似文献   

4.
Choline Administration Elevates Brain Phosphorylcholine Concentrations   总被引:8,自引:6,他引:2  
Abstract: The phosphorylcholine concentration of rat brain rises and falls in response to parallel changes in the concentration of circulating choline. A single oral dose of choline chloride (20 mmol/kg) elevated whole-brain concentrations of both choline and phosphorylcholine 5 h after administration; a greater proportion of exogenously administered choline was retained by the brain in its phosphorylated form than as the free arnine. Striatal phosphorylcholine concentrations were elevated within 2 h of choline administration and continued to be significantly greater than control values for up to 34 h after treatment. The response of striatal choline levels to exogenous choline was of shorter duration than that of phosphorylcholine and was correlated with a significant increase in striatal acetylcholine concentrations. The consumption of a choline-free diet for 7 days lowered both serum choline and striatal phosphorylcholine concentrations, but had no effect on striatal choline or acetylcholine. These results suggest that choline kinase is unsaturated by its substrate in vivo and may thus serve to modulate the response of brain choline concentrations to alterations in the supply of circulating choline.  相似文献   

5.
Acetylcholine Turnover and Compartmentation in Rat Brain Synaptosomes   总被引:2,自引:1,他引:1  
Abstract: The turnover of acetylcholine (ACh) in rat brain synaptosomes and its compartmentation in the labile bound and stable bound pools were investigated. The P2 fraction from rat brain was subjected to three sequential incubations, each terminated by centrifugation followed by determination of ACh concentrations by gas chromatography-mass spectrometry (GCMS): (1) Depletion phase: Incubation of synaptosomes at 37°C for 10 min in Na+-free buffer containing 35 mM-KCl reduced the content of both labile bound and stable bound ACh by 40%. (2) Synthesis phase: Incubation at 37°C with 2 μ M -[2H4]choline resulted in accumulation of labeled and unlabeled ACh in both compartments. Addition of an anticholinesterase had little effect on stable bound ACh but greatly increased the content of labile bound ACh. This excess accumulated ACh was probably due to inhibition of intracellular acetylcholinesterase (AChE), because negligible uptake of ACh from the medium was observed. The effects on ACh synthesis of altered cation concentrations and metabolic inhibitors were examined. (3) Release phase: The tissue was incubated in the presence of 35 mM-KCl, 40 μM-paraoxon, and 20 μM-hemicholinium-3 (HC-3) (to inhibit further synthesis of ACh). Measurements of the compartmental localization of ACh at several time points indicated that ACh was being released from the labile bound fraction. In support of this conclusion, 20 mM-Mg2+ reduced ACh release and increased the labile bound ACh concentration.  相似文献   

6.
The effects of intraperitoneally administered 4-(1-naphthylvinyl)pyridine (NVP; 200 mg/kg) on the concentrations of acetylcholine (ACh), choline (Ch), and acetyl-CoA (AcCoA) in rat striatum, cortex, hippocampus, and cerebellum were investigated. Twenty minutes after treatment, the content of ACh was significantly diminished, whereas that of Ch was increased. In response to stress (swimming for 20 min), these changes were enhanced. However, the AcCoA content did not change in any of the brain regions. It is thus very likely that the decrease of brain ACh concentration induced by NVP is due to the drug's effect on choline acetyltransferase (ChAT) and/or the reduction of the high-affinity Ch uptake, and not on the availability of AcCoA. Presumably, the pharmacologically diminished activity of ChAT may become the rate-limiting factor in the maintenance of ACh levels in cholinergic neurons.  相似文献   

7.
Abstract: Using sequential incubations in media of different K+ composition, we investigated the dynamics of choline (Ch) uptake and acetylcholine (ACh) synthesis in rat brain synaptosomal preparations, using two different deuterated variants of choline and a gas chromatographic-mass spectrometric (GC-MS) assay for ACh and Ch. Synaptosomes were preincubated for 10 min in a Krebs medium with or without high K+ and with 2 μM-[2H9]Ch. At the end of the preincubation all variants of ACh and Ch were measured in samples of the pellet and medium. In the second incubation (4 min) samples of synaptosomes were resuspended in normal or high K+ solutions containing [2H4]Ch (2 μM) and all variants of ACh and Ch were measured in the pellet and medium at the end of this period. This protocol allowed us to compare the effects of preincubation in normal or high K+ solution on the metabolism during a second low or high K+ incubation of a [2H9]Ch pool accumulated during the preincubation period. Moreover, we were able to compare and contrast the effects of this protocol on [2H9]Ch metabolism versus [2H4]Ch metabolism. The most striking result we obtained was that [2H9]Ch that had been retained by the synaptosomes after the preincubation was not acetylated during a subsequent incubation in normal or high K+ media. This result suggests that if an intraterminal pool of Ch is involved in ACh synthesis, the size of this pool is below the limits of detection of our assay. We have confirmed the observation that a prior depolarizing incubation results in an enhanced uptake of Ch during a second incubation in normal K+ Krebs. Moreover, Ch uptake is stimulated by prior incubation under depolarizing conditions relative to normal preincubation when the second incubation is in a high K+ solution. These results are discussed in terms of current models of the regulation of ACh synthesis in brain.  相似文献   

8.
A simple, efficient, economic, and sensitive method is presented for the detection of choline and acetylcholine in neuronal tissue using HPLC, a postcolumn enzyme reactor with immobilized enzyme, and electrochemical detection. The method is based on a separation of choline and acetylcholine by cation exchange HPLC followed by passage of the effluent through a postcolumn reactor containing a mixture of acetylcholinesterase and choline oxidase; the latter enzyme converts choline to betaine and hydrogen peroxide, the former enzyme hydrolyzes acetylcholine to acetate and choline. The hydrogen peroxide produced is electrochemically detected. A simple and efficient preparation of neuronal tissue is described using an optional prepurification step on Sephadex G-10 columns, offering the possibility to detect choline and acetylcholine as well as catecholamines and their related metabolites in the same tissue sample. The sensitivity of the assay system is 250 fmol for choline and 500 fmol for acetylcholine.  相似文献   

9.
The main objective of this study was to test the hypothesis that the chronic administration of choline supplements a bound pool of choline from which free choline can be mobilized and used to support acetylcholine synthesis when the demand for precursor is increased. For these experiments, brain slices from rats fed diets containing different amounts of choline were incubated in a choline-free buffer and acetylcholine synthesis was measured under resting conditions and in the presence of K+-induced increases in acetylcholine synthesis and release. Rats fed the choline-supplemented diet had circulating choline levels that were 52% greater than the controls, and striatal and cerebral cortical slices from this group produced significantly more free choline during the incubation than slices from the controls. However, the synthesis and release of acetylcholine by these tissues did not differ from those by controls, during either resting or K+-evoked conditions. In contrast, acetylcholine synthesis and release by striatal and hippocampal slices from choline-deficient rats, animals that had circulating choline levels that were 80% of control values, decreased significantly; the production of free choline by these tissues was also depressed. Results indicate that, despite an increased production of free choline by brain slices from choline-supplemented rats, the synthesis of acetylcholine was unaltered, even in the presence of an increased neuronal demand. In contrast, the choline-deficient diet led to a decreased release of free choline from bound stores and an impaired ability of brain to synthesize acetylcholine.  相似文献   

10.
The in vivo effects of beta-bungarotoxin (beta-BT) on the acetylcholine (ACh) system were studied in the whole cerebrum and in different brain regions. The effect of beta-BT on cerebral ACh and choline (Ch) contents was time-dependent. The results show that a single intracerebroventricular injection of 1 microgram toxin increased both the ACh and Ch contents in the cortex, hippocampus, and cerebellum, while in the striatum the ACh level was decreased. Ten nanograms of toxin injected into the lateral ventricle twice, on the first and third days, led to a reduced ACh level 2 days after the last treatment. In animals treated with the same dose three times, on the first, third, and fifth days, and sacrificed 2 days after the last injection, the choline acetyltransferase and acetylcholinesterase activities were reduced and the number of muscarinic acetylcholine receptors was decreased. A biphasic effect of the toxin was therefore demonstrated. It is suggested that in the first phase of the toxin effect the increased levels of ACh and Ch may be due to the inhibition of neuronal transmission, while in the second phase, when the elements of the ACh system are reduced, the neuronal degenerating effect of beta-BT plays a significant role.  相似文献   

11.
Insulin-induced hypoglycemia in normothermic rats caused progressive neurological depression and differentially altered regional cerebral acetylcholine metabolism. Reductions of plasma glucose from 7.7 mM (control) to 2.5-1.7 mM (moderate hypoglycemia associated with decreased motor activity) or 1.5 mM (severe hypoglycemia with lethargy progressing to stupor) decreased glucose concentrations in the cerebral cortex, striatum, and hippocampus to less than 10% of control. Moderate hypoglycemia diminished acetylcholine concentrations in cortex and striatum (21% and 45%, respectively) and reduced [1-2H2, 2-2H2]choline incorporation into acetylcholine (62% and 41%, respectively). Severe hypoglycemia did not reduce the acetylcholine concentration or synthesis in cortex and striatum further. The concentrations of choline rose in the cortex (+53%) and striatum (+130%) of animals that became stuporous but a similar rise in [1-2H2, 2-2H2]choline left the specific activities of choline in these structures unchanged. Even severe hypoglycemia did not alter the hippocampal cholinergic system. In rats that developed hypoglycemic stupor and were then treated with glucose, the animals recovered apparently normal behavior, and the concentrations of acetylcholine and the incorporation of [1-2H2, 2-2H2]-choline into acetylcholine returned to control values in the striatum but not in the cerebral cortex. Thus, impaired acetylcholine metabolism in selected regions of the brain may contribute to the early symptoms of neurological dysfunction in hypoglycemia.  相似文献   

12.
The effects of tacrine (1,2,3,4-tetrahydro-9-aminoacridine) and 7-methoxytacrine on the metabolism of brain acetylcholine were investigated in experiments in which acetylcholine turnover was stimulated by tissue depolarization or by 4-aminopyridine. Rat cerebrocortical prisms were preincubated under "resting" conditions (Krebs-Ringer buffer with 3 mmol/L K+ and with paraoxon to inhibit cholinesterases) and then incubated in the presence of tacrine or methoxytacrine and of 50 mmol/L K+. Both drugs diminished the amount of acetylcholine released by depolarization and the amount of acetylcholine synthesized during incubation; in experiments in which [14C]choline was present in the incubation medium simultaneously with tacrine or methoxytacrine, the drugs diminished the uptake of [14C]choline by the tissue and the amount of [14C]-acetylcholine synthesized and released into the medium. In these experiments, it was not possible to distinguish whether the inhibitory effects of tacrine and methoxytacrine were primarily on the process of acetylcholine synthesis (particularly on the uptake of choline), or whether the drugs also acted directly on the process of neurotransmitter release. In subsequent experiments the prisms were preincubated with [14C]choline and only then subjected to a short depolarization in the presence of hemicholinium-3 and tacrine or methoxytacrine. Both drugs severely inhibited the release of preformed [14C]acetylcholine and prevented the diminution of tissue [14C]acetylcholine stores. Methoxytacrine was also found to diminish the release of acetylcholine induced by 4-aminopyridine while increasing the content of acetylcholine in the tissue. Tacrine and methoxytacrine had no effect on the activity of choline acetyltransferase (EC 2.3.1.6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Cholinergic neurotransmission has been the subject of intensive investigations in recent years due to increasing recognition of the importance of its roles in physiology, pathology and pharmacology. The fact that the disposition of a neurotransmitter may reflect its functional status has made the measurement of acetylcholine and/or its precursors and metabolites in biological fluids an integral part of cholinergic research. With evolving complexity in experimental approaches and designs, and correspondingly increasing demand on sensitivity, specificity and accuracy matching advancements in sophistication in analytical methods have been made. The present review attempts to survey the array of analytical techniques that have been adopted for the measurement of acetylcholine or its main precursor/metabolite choline ranging from simple bioassays, radioenzymatic assays, gas chromatography (GC) with flame ionization detection, GC with mass spectrometry (GC–MS) detection, high-performance liquid chromatography (HPLC) with electrochemical detection (ED), HPLC with MS (HPLC–MS) to the sophisticated combination of micro-immobilized enzymatic reactor, microbore HPLC and modified electrode technology for the detection of ultra-low levels with particular emphasis on the state of the art techniques.  相似文献   

14.
Acetylcholine and choline release from rat brain synaptosomes have been measured using a chemiluminescent technique under a variety of conditions set up to mimic anoxic insult, including conditions of low pH (6.2) and the presence of lactate plus pyruvate as substrate. Lactate plus pyruvate as substrate consistently gave higher respiration rates than glucose alone, but with either substrate (glucose or lactate plus pyruvate) the omission of Ca2+ caused an increase in respiration whereas a low pH caused a decreased respiration. Acetylcholine release under control conditions (glucose, pH 7.4) was Ca2+-dependent, stimulated by high K+ concentrations, and decreased significantly during anoxia but recovered fully after a period of postanoxic oxygenation. Low pH (6.2) suppressed K+ stimulation of acetylcholine release, and after a period of anoxia at low pH the recovery of acetylcholine release was only partial. With lactate plus pyruvate as substrate, the effects of anoxia and/or low pH on acetylcholine release and its subsequent recovery were exacerbated. Choline release from synaptosomes, however, was not affected by anoxic/ionic conditions in the same way as acetylcholine release. At low pH (6.2) there was a marked reduction in choline release both under aerobic and anoxic conditions. These results suggest that acetylcholine release per se from the nerve is very sensitive to anoxic insult and that the low pH occurring during anoxia may be an important contributory factor.  相似文献   

15.
The Role of Chloride in Acetylcholine Metabolism   总被引:1,自引:1,他引:0  
Abstract: The chloride dependence of acetylcholine (ACh) synthesis and release and of choline uptake was studied in synaptosomal preparations from rat brain. The substitution of propionate for chloride, in the presence of 35 m m -potassium, lowered the ACh content of the synaptosomes. However, in the presence of 5 m m -potassium, the ACh level in synaptosomes was reduced, but significantly less so. Propionate had no effect on choline acetyltransferase (EC 2.3.1.6) activity when measured in a standard chloride-containing medium. In the presence of propionate, the spontaneous release of ACh was unchanged, but potassium-stimulated release of ACh was markedly reduced as compared with a chloride-containing medium. The synthesis of ACh, as measured by the net increase in the amount of ACh in the synaptosomes and that released to the medium, was reduced with propionate at 5 m m -potassium and was totally inhibited when the potassium concentration was increased to 35 m m . Choline uptake studies revealed that with propionate only a low-affinity component of the choline transport system existed. Further, the V max was markedly reduced when the potassium concentration was increased to 35 m m . The results suggest that under certain conditions choline transported by a low-affinity system might provide a substantial source of choline for ACh synthesis.  相似文献   

16.
Immortalized rat brain endothelial RBE4 cells do not express choline acetyltransferase (ChAT), but they do express an endogenous machinery that enables them to release specifically acetylcholine (ACh) on calcium entry when they have been passively loaded with the neurotransmitter. Indeed, we have previously reported that these cells do not release glutamate or GABA after loading with these transmitters. The present study was set up to engineer stable cell lines producing ACh by transfecting them with an expression vector construct containing the rat ChAT. ChAT transfectants expressed a high level of ChAT activity and accumulated endogenous ACh. We examined evoked ACh release from RBE4 cells using two parallel approaches. First, Ca2+-dependent ACh release induced by a calcium ionophore was followed with a chemiluminescent procedure. We showed that ChAT-transfected cells released the transmitter they had synthesized and accumulated in the presence of an esterase inhibitor. Second, ACh released on an electrical depolarization was detected in real time by a whole-cell voltage-clamped Xenopus myocyte in contact with the cell. Whether cells synthesized ACh or whether they were passively loaded with ACh, electrical stimulation elicited the release of ACh quanta detected as inward synaptic-like currents in the myocyte. Repetitive stimulation elicited a continuous train of responses of decreasing amplitudes, with rare failures. Amplitude analysis showed that the currents peaked at preferential levels, as if they were multiples of an elementary component. Furthermore, we selected an RBE4 transgenic clone exhibiting a high level of ChAT activity to introduce the Torpedo vesicular ACh transporter (VAChT) gene. However, as the expression of ChAT was inactivated in stable VAChT transfectants, the potential influence of VAChT on evoked ACh release could only be studied on cells passively loaded with ACh. VAChT expression modified the pattern of ACh delivery on repetitive electrical stimulation. Stimulation trains evoked several groups of responses interrupted by many failures. The total amount of released ACh and the mean quantal size were not modified. As brain endothelial cells are known as suitable cellular vectors for delivering gene products to the brain, the present results suggest that RBE4 cells genetically modified to produce ACh and intrinsically able to support evoked ACh release may provide a useful tool for improving altered cholinergic function in the CNS.  相似文献   

17.
The Independency of Choline Transport and Acetylcholine Synthesis   总被引:3,自引:2,他引:1  
The coupling of choline transport to acetylcholine synthesis has been investigated by measurement of the isotopic dilution of a pulse of [3H]choline during its incorporation into the recently synthesised acetylcholine of cerebral cortex synaptosomes. Recently synthesised acetylcholine was identified as that containing 14C-labelled precursors introduced by a preincubation before the pulse. When [14C]glucose was used to label acetyl-CoA coupling ratios (calculated as the inverse of the dilution of extracellular [3H]choline during its incorporation into [3H]acetylcholine) of about 0.05-0.2 were found at a choline concentration of 1 microM, rising to 0.5 at choline concentrations of 10-50 microM. Experiments using [14C]choline as a precursor gave similar results, and it was shown that the isotopic dilution did not occur extrasynaptosomally and was not affected by low glucose concentrations. Coupling ratios were always less than unity and rose as the choline concentration increased. It is concluded that choline transported into the nerve terminal has no privileged access to choline acetyltransferase. The results can be explained by a rate-controlling transport of choline into the terminal followed by its rapid acetylation rather than any linkage or coupling of the two processes.  相似文献   

18.
The purpose of the present study is to clarify the effects of the administration of choline on the in vivo release and biosynthesis of acetylcholine (ACh) in the brain. For this purpose, the changes in the extracellular concentration of choline and ACh in the rat striatum following intracerebroventricular administration of choline were determined using brain microdialysis. We also determined changes in the tissue content of choline and ACh. When the striatum was dialyzed with Ringer solution containing 10 microM physostigmine, ACh levels in dialysates rapidly and dose dependently increased following administration of various doses of choline and reached a maximum within 20 min. In contrast, choline levels in dialysates increased after a lag period of 20 min following the administration. When the striatum was dialyzed with physostigmine-free Ringer solution, ACh could not be detected in dialysates both before and even after choline administration. After addition of hemicholinium-3 to the perfusion fluid, the choline-induced increase in ACh levels in dialysates was abolished. Following administration of choline, the tissue content of choline and ACh increased within 20 min. These results suggest that administered choline is rapidly taken up into the intracellular compartment of the cholinergic neurons, where it enhances both the release and the biosynthesis of ACh.  相似文献   

19.
20.
Uptake of labeled choline and its incorporation into acetylcholine (ACh) were assayed at the neuromuscular junction of the extensor digitorum longus (EDL) muscle of rats aged 11 (mature adult) and 27 (aged) months. Under resting conditions, there were no significant differences in muscle ACh or choline levels. Following a 1-h incubation in labeled choline, however, tissue from the younger rats contained significantly greater amounts of labeled choline and labeled ACh; the specific activities of ACh and choline were nearly 10-fold higher in the 11-month-old animals, indicating reduced uptake of labeled choline in the older animals. ACh and choline efflux rates under resting conditions did not change with age, indicating an uncoupling of exogenous choline uptake and ACh efflux in EDL during aging. During nerve stimulation (1 Hz), the amount of labeled choline incorporated into ACh was 150% greater in the aged animals. The specific activity of ACh released during stimulation was correspondingly greater in the 27-month-old animals, although total ACh released did not change appreciably with age. There were no age-related differences in choline acetyltransferase activity. Contrasting results were obtained from diaphragm in previous studies; the linkage between choline uptake and ACh efflux was maintained during rest and stimulation in the diaphragm. Hypothetically, these differences between EDL and diaphragm may be related to their diverse activation patterns: EDL is recruited much less frequently and less regularly than diaphragm, a continually active vital muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号